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Editorial

The world of neural networks extends rapidly almost 
in all the areas of human knowledge. Though still the 
interest of many people dealing in this area is concer­
ned to the fundamental problems related to the need 
to improve significantly our up to now very unsatis­
factory level of understanding the principles how our 
brains are really operating ( and also how the living 
cells are processing and storing the information co­
ming from the external world ), also large interest is 
given to the questions related to the simulation of neu­
ral networks by means of mathematical and technical 
tools and to the possibilities of their applications for 
practical purposes.

For this issue we have selected three mainly theore­
tical oriented papers dealing with some serious pro­
blems concerning one of the most important phase of

all the artificial neural network activity, which is the 
the learning and training procedure ( Gorse and Tay­
lor; Personnaz, Ncrrand, Roussel-Ragout and Drey­
fus; Bitzan ) and three papers oriented more to theore­
tical problems related to the artificial neural network 
applications ( Bulsari and Saxen; Chudý, Chudý and 
Hapák; Rybak, Golovan, Gusakova, Shevtsova and 
Podladchikova ).

We continue also in the Horejs’s tutorial on neural 
networks paradigms and include some book and con­
ference, symposiums and workshops information.

We hope that the readers will enjoy this selection.

Mirko Novák 
Editor - in - Chief

UNIVERSAL ASSOCIATIVE STOCHASTIC
LEARNING AUTOMATA

D. Gorse*)
J. G. Taylor**)

Abstract.
A generalisation of the concept of binary-input sto­

chastic learning automata is given which incorporates 
non-linearity and stochasticity to a maximal degree. 
This universal automaton is identified with the ‘probabi­
listic random access memory’ (pRAM), a hardware-rea­
lisable neural model previously proposed by the authors. 
A reinforcement training rule is presented for such au­
tomata, and convergence theorems proved. The nature of 
the invariant measure is explored for a 1-input automa­
ton with a two dimensional state space. The reinforce­
ment rule is then simulated in the context of a particu­
lar classification task, and the results compared favou­
rably with those obtained by Barto and Anandan using 
a less general training rule.

*) I) Corse
Department ov Computer Science, 
University College,
Gower Street,
London WCI L 6BT

**) J C, Taylor
Department of Mathematics, 
King's College,
Strand
London WC2R 2I S
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1. Introduction

Automata may be considered as simplified models 
of living systems. The automaton interacts with an en­
vironment about which it has limited knowledge, and 
modifies its behaviour so as to maximise the probabil­
ity of receiving ‘reward’ from the environment. More 
sophisticated automata also act so as to avoid a ‘pun­
ishment’ signal. Stochastic automata are those which 
use some intrinsic ‘noise’ to generate exploratory ac­
tions which are then assessed by the environment. As­
sociative automata are aware not just of the environ­
mental reinforcement response, but of other environ­
mental conditions which may predispose them to se­
lect certain actions.

It is clear from the above that the notion of an auto­
maton is one which may be applied at a variety of 
scales, from the behaviour of an entire organism (such 
an approach may be termed ‘mathematical psycholo­
gy’) to that of its individual cells. At the lower end of 
this spectrum, the work of Klopf [I] has been particu­
larly influential, Klopf proposed that individual neu­
rons exhibit a form of goal-seeking behaviour; his
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ideas have been adapted by a number of workers in 
the neural networks field, who have proposed a varie­
ty of reinforcement training schemes which in some 
sense embody KlopPs original “hedonistic neu­
ron ” [ 1 j concept.

in this paper we propose to further develop these 
ideas by using a more general model of the neuron 
than has hitherto been adpoted. In fact the model we 
will present has claim to being the most general sto­
chastic neural automaton operating in the binary do­
main (in which we take a d '  to represent a firing event 
at some time, and a ‘O’ to represent inactivity). Thus 
the most general associative automaton (formal adap­
tive neuron) A has inputs u (with the vector u having 
N binary components u,,... uN) and a binary output v 
which is a stochastic variable with Bernoulli distribu­
tion defined by the variable a u, w here

Prob( y = 1 | u ) “ a u

The set of all 2N values of the a u will be denoted a. T he 
state of A is thus given by a 2N-component vector a, 
with a e [0,1] \  It is clear that A exhibits a response 
which is of maximal non-linearity in the components 
of the input vector u. In particular, in the determinis­
tic case (when o. e ¡0,1} N) it can be seen that A can 
compute any of the 2:N possible Boolean functions of 
its inputs. In the language of POP [2], A is the ultimate 
I - n  unit.

The idea of a stochastic associative learning auto­
maton was analysed in detail in [3] (and earlier papers 
by Barto and colleagues) but only with respect to the 
restricted form of input-output relationship

Prob( y = 1 | u ) = 0( u . w -  r\ ) (2)

where w is an N-vector of real-valued weights and p is 
a random variable. Our approach extends this model 
in two ways.

The first, as indicated above, is in the highly non­
linear dependence of the output probability on the 
input vector components (which in the language of [3] 
represents the context in which A is responding). Our 
model is essentially identical with the full X—11 exten­
sion of (2)

Prob( y = 1 | u ) = 0( u.w + X u,UjW!jk +
ij

+ X  U,UjUkWljk + • •• -  Tp (3)
i. J. k

although we have preferred to work in terms of the 2N 
parameters a rather than the sets of weights w„ Wy ; 
we feel that this allows the analysis to be presented 
more cleanly.

The second extension of (2) is in the assumption of 
stochasticity of all the parameters a u, rather than hav­
ing a single random variable, the threshold p. This ex­
tension was motivated by a model of synaptieally noi­
sy neurons developed earlier by one of us [4], which 
has led to the pRAM [5] and to a theoretical analysis

of noisy neurons in terms of random iterative ne­
tworks [6], extending the spin glass approach to neural 
networks [7] to a more realistic level. The pRAM re­
presents a hardware realisation of this noisy neural 
model, in which the variables a u are output probabili­
ties stored in the 2N memory locations of a random 
access memory; this can be regarded as a neurobio- 
logically motivated extension of the PLN model of 
Aleksander [8].

As in [3] we consider variable structure stochastic 
automata in which there are specific rules for updat­
ing the parameters cxu of (1) at each time step k. These 
rules will be assumed to be of the reinforcement kind, 
in which the environment E emits a random variable 
r, on receipt of A’s action y in context u. The signal 
r = 1 is to be regarded as a reward, and the aim of the 
reinforcement rule is to update the a uso as to in­
crease the probability of obtaining the reward r = 1, 
rather than the penalty r -  0. In general, if r = I is ob­
tained in context u, the quantity a u, is changed by 
some function f(au) so as to keep the new value 
a u + u(au) e [0,1], and improve the probability of 
choosing the same action y in that context on future 
occasions (note that the probability of the alternative 
action (y e {0,1}) is automatically decreased):

«u + f(«H), r = 1 (4a)

If r = 0 is obtained, a u is changed by some function 
g(au to make the chosen action less likely, again en­
suring that the new value of a u e [0,1], and this time 
increasing the probability of the alternative action:

If
-a — <*u + g(aH), r = 0 (4b)

Prob( r=l | y,u ) = ßy.H (5)

then the enviroment itself may be regarded as acting 
as an (N + l)-input pRAM, with 2N"-component 
memory content vector p. We may thus visualise the 
situation as in Figure 1.

Figure I

The universal associative stochastic automaton A has binary N-vector 
context input u and binary stochastic output y. The output y and the 
context u are evaluated by the environment A which responds stochas­
tically with a binary reward signal r.
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As in the case of [3] it is assumed that the values of 
the Py u are not known by the automaton A, and that 
the purpose of the training rules (4) is to produce that 
behaviour by A which maximises the probability of re­
ceiving a reward r = I. Let P be a probability distribu­
tion over the input addresses u with Z  Pu = 1. If this

U
distribution is independent of A’s actions (as in the 
classification task described below) the enviroment is 
stationary, otherwise (as in the bug example) it is 
termed non-stationary [9]; we will assume for simplici­
ty that the former is the case. A performance criterion 
for the nth of a series of trials is given by the expected 
probability of success at that trial;

E(r„) = Q„ = X  U V u K ' y  + rC’y] (6)
1. u

(where the a lyn) are the values of the parameters (1) at 
trial n, and x~= 1-x for any x). In terms of the average 
expected success rate

fl, = /  | y P „ ( b , ,  + p,,M) (7)
U

the natural extensions of the concepts expedient and 
optimal are

lim E(Qn) > Q„ (8a)
H—► oo

and

lim E(Q„) = Z  Pu max j p0.H} (8b)
H —> oo L1

(with similar definitions for the e-versions of the 
above). A general discussion of these ideas is con­
tained in [9], and the references contained therein.

The contents of the paper are as follows. In the next 
section the mathematical framework for the analysis 
to follow is established; this is based on the work of 
Norman [10]. In Section 3 the convergence properties 
of a learning scheme of particular interest, the associa­
tive reward-penalty (AR ,,) scheme, are analysed (this 
algorithm is one which is wholly implementable in 
pRAM technology [1 1]). The dynamical behaviour of 
the simplest (N=l) pRAM system is simulated for 
various values of learning rate parameters, and these 
results are compared with the theoretical predictions. 
In the following section the performance of the 
pRAM form of the Ak P algorithm is compared with 
that more conventionally based on equation (2) and is 
found to represent a significant improvement on the 
Barto algorithm [3j. A brief discussion of the results 
presented in the paper, future extensions of the mod­
el, and possible applications is contained in the final 
section.

2, General Definitions

In this section we propose to make precise the 
structure of the automaton we are considering. The
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description will be based on the introductory discus­
sion of the previous section. The stochastic automaton 
A operates, according to equation (I), to produce an 
output y with probability cxu of being I for context u. 
Its state space S is the set of all 2N values of the rxu’s, 
indexed by the binary N-veetor u:

S = [0,1]2N (9)

Its event space E, the set of triplets (u, y, r), is the 
space

E =  {0 ,1 } :N 4 2 (10)

The environment responds to u and y with a reinforce­
ment signal r, according to equation (5), with proba­
bility (}v u of r being 1 (reward). At each time step n the 
vector a Tn) is updated according to the rules (4). In 
other words, for every event e n = (un_yn, r„) there 
must be a rule for changing a°” to a in4 u which de­
pends on the event e,„ expressible as

a (n+l) = F£n (ot(n)) (11)

where Fc is given in terms of f and g in an evident 
manner. The purpose of the learning rule (11) is to 
make A respond either optimally or expediently (or 
within e of either). It can be seen that the events e oc­
cur with probability O, (ot), where

dr (a) -  [a,,by i + 0 y.0] [ßy.u r + ß y.u rj P,, (12)

The rule above derives straightforwardly from (1) and 
(5), since, for example, the probability that the ad­
dressing of location u yields output y=l, and reward 
reinforcement r=l is au[3,_u, which must be multiplied 
by Pu, the probability that location u was chosen.

The transition probability or kernel K for the auto­
mation is defined [10], for any subset B of the state 
space S, as

K(s, B) = X  <P,(s) (13)
e

where the summation in (13) is over those events e for 
which Fe(s) € B. If the characteristic function of the 
set B in the state space S is denoted S(B, s), so that

8(B, s) = 1, s e B (14)
= 0, s $ B

then (13) may be written as

K(s, B)= X > £(s)8(B, F,(s)) (15)
c

where there is a Markov operator M induced bv K on 
the Borel measure li on S by

M(p)(B) = J K(s, B) du(s)
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The asymptotic behaviour of' the automaton may be 
described by means of the nth iterate of K, denoted 
K <nl, with

K fl"(s, B) = £  0)£,(s)O„(s))...(D?n(FEI £n(s)...)
e , ......e,

5(B. F£1 . en(s)) (16)

and Fe| en = Fe|t....Fen. The convergence of K (n) to 
a limiting kernef due to the finiteness of S, will 
reduce to the uniform convergence of K (n)(s, B) to 
K «, (s, B) in s and B: for any i: > 0, there is an inte­
ger N such that

| K ln)(s, B) — K „ (s, B) | < oo

for all n > N, s e S and B c  S.
Norman [10] (see also [15]) derived powerful the­

orems for stochastic associative learning automata for 
which the state space S is a compact metric space, and 
for which all event operators Fe are strictly diminish­
ing in the sense that, V e e E,

sup [d(Fs(s), F£(s')) /  d(s, s')] <1 (17)
s ^ s'

Since in our case S is [0,1 ]2N, in has the natural Eucli­
dean distance function derived from R N; we take d to 
be that function. Then (S, d) is compact. Let us sup­
pose that Fe is distance diminishing. Then it may be 
seen that one of two possibilities must occur [10]:
(a) the asymptotic distribution K  ̂ is independent of 

the initial state: the associated (invariant) mea­
sure u is then ergodic.

(b) there are a Finite number of absorbing states s„ 
and the asymptotic kernel K m (or the measure ¡a „) 
is concetrated on these states.

The two possibilities (a), (b) are given by properties 
of the set of points Tn(s) that a given point s iterates to 
with positive probability after n time steps:

T„(s) -  [s': K(n,(s, {s'}) > 0] (18)

Then (a) will occur if

lim d(Tn(s), Tn(s')) = 0, s, s' e S (19)
n —* oo

whilst (b) will be the case if there are a finite set of ab­
sorbing states a, . . ., aN with the property that 
Vs e S, 3 some j(s) such that

lim d(Tn(s), aj(s)) = 0 (20)
n oo

In this case there is a set of non-zero probabilities of 
arriving at each of the absorbing states from a given 
initial state, of the form

Prob(sM = a j | s„ = s)

The automaton is then termed non-ergodic or absorb­
ing.

We note that in the ergodic case the measure ¡1« 
may be either continuous or fractal [12]; we will con­
sider these features in more detail for the simplest 
non-trivial case (S = [0,1 ]2) in the next section.

3. T heA R P Algorithm

We will now concentrate our attention on the exten­
sion of the associative reward-penalty algorithm of [3] 
to the case of the universal automaton considered in 
the previous two sections. This algorithm has proven 
to be of considerable utility in various neural network 
applications, and we would hope that the extension of 
the algorithm in the directions indicated above would 
result in still more powerful learning systems. The ori­
ginal AR P algorithm was based upon weight updates 
within the restricted input-output relation (2); as indi­
cated above, our approach extends this by working di­
rectly with the 2N random variables (1), utilising 
a maximal degree of non-linearity and synaptic rather 
than threshold noise.

The natural extension of the AR ,» training rule of 
[3] appears to be

Fe(a-u) = a H + p(y — a j  r+ pL(y — a,) r (21)

It may be seen that (21), like the original AR__P algo­
rithm, achieves the general aim of reinforcement train­
ing rules, to encourage behaviour which has led to 
a reward and to discourage behaviour which has led 
to punishment: if there is a reward (r = 1), the proba­
bility cxu stored at address u is changed to be closer to 
the output y which produced the favourable environ­
mental response; if there is punishment (r = 0), that 
address is made more likely to output the opposite va­
lue y when accessed. The rates of these two processes 
of change are governed by the independent parame­
ters p and pL.

It is instructive to consider the learning rule (21) in 
the special case which corresponds to the simple bi­
nary threshold model (2) with a single noisy synapse 
with weight w, and the possibility of releasing only 
one vesicle of neurotransmitter at any given time step 
(single vesicle model). In this case the distribution 
function f for w is given by

f(w) = p 8(w — 1) + p 5(w) (22)

where p is the probability of firing of this single neu­
ron model. Then, for a positive threshold rj and binary 
input u e [0,1},

Prob(y= 1 | u) = a u = j f(w) dw 0(wu rj)

= P 0(U — T|)

The learning rule (21) becomes, for u = 1 > T|,
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Ap = p(y — p)r + pA(y — p)r (23)

There are two possible actions, y = 1 and y = 0, 
which occur with probabilities p, p respectively. When 
r = I, (23) becomes

Pn + I = Pn I p(l •« Pn) (24a)
Pn f I = P Pn

whilst when r = 0, this equation takes the form

Pn. 1 = pApn + P^ (24b)
Pn . 1 = pA Pn

(24a,b) are exactly the rules of the Barto and Anandan 
Ak p algorithm (see [3], equations (I) and (2), with 
« = p, (I = pA) for an automaton with a binary output 
set. This justifies our claim that the learning rule (21) 
is to be regarded as a natural extension of the Barto 
Ar p algorithm to the case where synaptic as well as 
threshold noise is present, and where the firing rule is 
the most general Boolean function of the inputs, as 
described in the previous two sections.

We now return to the general form of the AR ,> rule 
(21), and analyse its asymptotic behaviour. As was dis­
cussed in the previous section, this behaviour is deter­
mined by the conditions (17), and (19) or (20). Let us 
first consider ( I 7). Using rule (2 I), (1 7) takes the parti­
cular form

sup | d(a„ + p(y a J r  + pA(y - a Jr, a„ + p(y - 
a J r  T pA(y — a j r / d ( a ,  a) J < I (25)

ci ^  a

The numerator on the left hand side of (25) reduces, 
using the Euclidean distance function d( , ) on R N, to

The lemma is proved by noting that absorbing points 
are those which satisfy, for any e e E,

F, (a ) •• a | ( 26a)

or, if this is not the case

<!>(«) = 0 (26b)

We may catalogue the values of Fc and O, for different 
values of r and y:

r y F, %
0 0 ci u + pAa u «uPl.u Fu
0 i «U “ P̂ «U ft li Po. U By

1 0 «U “ P«u «u Pi), u Py
1 1 + p«„ äu Po. y P

Table I

If A # 0, then by inspection of the above table it is not 
possible to satisfy either of (26a), (26b) for arbitrary 
p’s, so there are no absorbing points. On the other 
hand, if A 0, and again the (Vs are non-zero, then 
any boundary point« e (0,1 ):N automatically satis­
fies (26). The lemma is therefore proven. D

We note that in the case that A, = 0, and some of the 
(Vs are zero, there will be further absorbing points 
away from the boundary, as is clear from the table; 
this situation will not be discussed further here. The 
question of most interest is the nature of the automat­
on in the case that there are no absorbing points. This 
question will be addressed in the following theorem 
(see (15], p. 162):

(1 ... pr _  pAr) d(u ;, a J

Since d(«u, « J ^ d(«, «) for any «, «, then since 
() pr — p/,r) < 1, condition (17) is satisfied; the 
Ar p algorithm (21) corresponds to a strictly distance 
diminishing learning automaton.

In order to distinguish between the ergodic and ab­
sorbing cases of the last section it is necessary to de­
termine which of conditions (19), (20) are true. In or­
der to do this the set of first interates T„ = T, is inves­
tigated for the case (21). The absorbing points of the 
automaton are determined first, from the following 
lemma (which we clarify here, although this result is 
well-known in the literature ((15], ChapterS)):

Lemma

Theorem 1
If A. ^  0 and none of the pUl e {0, 1} (so that there are 
no absorbing points), the automaton (21) is ergodic.

The theorem is proved by the formula

d(T, («), T, («)) < c d(a, a) (27)

for c < 1. The left hand side of (27) is equal to

min 11 P — (V 11 (28)

where | | | | denotes the Euclidean distance, and the 
minimum is taken over p e T,)«), (V c T,(«). From 
the definition (18) we may take p -  Fe(a), p' Fc(a) 
for some e, A € E, with <lx(a) > 0, (l)e (a) > 0. I lien 
(28) may be seen to be equal to

The absorbing points of the automaton (21) (with 
event space Ei given by (10)) are, for p # 0, p, u ^  0, I
(i) absent if A =A 0
(ii) equal to the boundary points 

(a e (0, 1(2N) if A = 0

NNW 4/91, 193-202

min 11 Fe(a) — Fe(a) 11 (29)
e, e' g El

A bound to (29) is obtained by taking e = e', with
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F£(a) — F£(a) = (1 — pr — pAr) (aH — a J  (30)

Thus the formula (27) is valid, with

c = I — pr — pAr < 1

Therefore the condition (19) is valid, and by the re­
sults of Norman [10] the theorem is proven. □

We note that the inequality (31) need not be valid 
for X = 0 if the only values of r involved in the mini­
misation in (30) are zero. This is to be expected, since 
in the case X = 0 all the boundary points in the state 
space S [0, 1]:X are absorbing points and the condi­
tion (20) must be true in that case; condition (19) is no 
longer valid.

The N - Î Case

It is of interest to examine the structure of the invar­
iant measure u œ in the case of a 1-input pRAM whose 
memory contents a = (a0, a,) are updated according 
to (21 ), since in this case the state space S = [0, l]2, al­
lowing visualisation. At each time step one of eight 
update rules is chosen; these are indexed by the event 
e = (u, y, r):

Map Probability

F(o.o.o)(«) = (Xpoto + Xp, a,) a oßooPo

F<o.o.n(a) = (pao a,) a oPooP.o

F(o.i.o)(a) ~ (Apa (i, a | ) aoßo.Po
F,o.ui(a) = (pa o + p, a,) aoPoiPo
F(i.o.oi(a) = (a0Xpa, + Xp) a ißi0Pi

F(i.o.i»(a) = (a0, pa,) a iP.oP i
F,u .o)(a) = (ao, /.pa ,) a | ß 11P |

F,,.i i,(a) = (a„, pa0 + p) a i ß 11P i

Table 2

Successive iterations thus generate a random trajecto­
ry in the unit square. The set of mappings above forms 
a random iterated F unction System (IFS); analysis of 
the behaviour of learning automata in terms of IFS’s 
goes back to the work of Karlin [12]. Random IFS’s 
have been recently used to describe the behaviour of 
associative stochastic learning automata by Bressloff 
and Stark [13], who based their discussion on a simple 
linear reward-penalty scheme. In particular it was 
shown in [13] that in a 2-action automaton with state 
space S = [0,1], governed by a single learning rate par­
ameter, the support of u K) was fractal when the learn­
ing rate was greater than 0.5 and continuous other­
wise. In our case we have two parameters to vary 
(p, X) and a 2-dimensional state space. For X -  0 it 
could be seen that the boundary points of S, (0,0),

(0,1), (1,0), (1,1), were indeed absorbing (as indicated 
by the Lemma above) whilst for X ¥= 0 the invariant 
measure was continuous for p < 0.5, fractal for 
p > 0.5. For fixed p it was found that the measure be­
came progressively smoother as A,—*0. Figures 
2(a)-(c) show the results of 10 iterations of the above
IFS, using (3U = ~  Pu = y ,  X = 0.75 and p = 0.25,
0.50, (continuous measure) and 0.75 (fractal).

It is important to understand the implications of the 
above results for practical reinforcement training 
problems, in particular to appreciate the difference 
between the concepts of 'strong convergence' and 
’convergence in the mean’. Convergence in the mean 
only ensures that the values of the a u converge when 
averaged over many runs; an individual run is typical­
ly characterised by the ergodic behaviour displayed in 
Figure 2. it is strong convergence which is required 
for practical purposes, since this will guarantee that a 
converges to an appropriate limiting value during 
a particular run. Convergence in the mean can be de­
monstrated when the learning rate p is held constant 
([10]), whilst strong convergence requires that p be ap­
propriately decrement at each time step ([3]).

We will start our investigation of the AR P training 
rule (21) with the case in which p is constant. Strong 
convergence cannot be expected here, but the theorem 
2.2 of [10] applies directly. We may quote this result in 
a form relevant to our situation:

Theorem 2
If X # 0, then in the IFS (10), (21) the random var­
iable a u converges in the mean to a unique value 
a'u00' uniformly with respect to its initial value, with

| E(au(n)) — E(au(oo)) | < C a(n)

Fig. 2a
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Fig. 2b

Figure 2

invariant measure o f the random IFS defined by Fable 2 for k = 0.75 
and

(a) p : 0.25
(b) p = 0.50
(c) p = 0.75

where MJ and a are constants with a < I and 
E(a;i(v)) = J d(xu K (n)(p, a), with K (n) defined in (16).

This theorem follows from Theorem 1 and [10], since 
when X # 0 our ITS is ergodic and theorem 2.2 of [10] 
is then applicable. We will consider in detail the deri-

NNW 4/91, 193- 202

vation of cx,co) for a particular example in the fol low­
ing section; in general the limiting « u,00) can be ob­
tained from the stationarity condition
E(a}J(,1)) — E(au(oo)) = 0.

The case in which p -»■ 0 may be investigated by ex­
tending the strong convergence theorem of [3]. In fact 
this extension is straightforward on using the fact that 
we are able to work directly with the probabilities « u 
rather than with a set of weights (see the discussion in 
Section 1). The lemmata 1.2 and 4 can be taken di­
rectly from Appendix II of [3] to give a result which 
may be seen as a traightforward application of sto­
chastic approximation methods;

Theorem 3
Provided each Pu is strictly positive and the sequence 
pn > 0 is such that ^  p„ — °o, ^  p; < oo, there

n n
exists a unique a(0l(A.) § S = [0.1] N such that the ran­
dom sequence ja(nl] generated in S by the Ak ,> algo­
rithm converges to a{t))(X) with probability 1, with

a ,0,M  > 0.5 if |f u > (k)u 
(f^iX) < o.5 if ik.: <

This proves the expediency of the algorithm V X, p. In 
addition, for all u,

lim a u((l)(V) = 1 if(Vu > Po.u
>.30

= 0 if PI. U < Po. u

The Ar__p algorithm is therefore e-optimal.
In short, if each Pu is assumed to be strictly positive, 

each context is experienced infinitely often. Hence 
each automation converges in the sense appropriate to 
the algorithm used.

4, Comparison with the Barto A  R _ P 

Algorithm

The performance of the pRAM form (21) of A K ,, 
training may be compared with that based on equa­
tion (2) and developed by Barto, Sutton and others. 
As remarked above, we would expect the pRAM ver­
sion of Ar p  training to be more effective due both to 
the maximally non-linear input-output relationship 
implied by (1) and due to the inclusion of synaptic 
noise.
The algorithms were compared in the context of 
a simple classification task presented by Barto and 
Anandan [3]. The task required a discrimination to be 
made between the two input vectors x(l) = (1,0) and 
x(2) = (1, 1), which were equally likely to occur at each 
time step (P,0 = P,, = 0.5). The desired output is a 1 in 
response to pattern x(l), a 0 in response to x'21. Con­
text-dependent reward probabilities (5) are given by 
the parameters |i0. ,0, B, ,,, [30.,,, B, In order to make 
the task non-trivial, |5() ,0, [k ,,, j=- 0 and (k. ¡0, B0 n #  1. 
Ihus the automaton has to learn to cope with an en-
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vironment which is responding with somewhat con­
tradictory reinforcement signals.

Following Barto and Anandan we use Qn„ the ex­
pected probability of success at the nth trial, as a mea­
sure of the performance of the system. In this example 
our general expression (6) becomes

0 , 1 « :  iv I.. + '< r  P, in + « 'Y Po, + < ’ (b.nl
(32)

(Q co = 0.7868). These asymptotic values are numeri­
cally identical to those obtained by Barto and Anan­
dan [3], although the expressions involved in the deri­
vation are necessarily quite different —■ our derivation 
is in fact simpler because we are able to work directly 
with the probabilities otlu. The data show the average 
value of Qn over 100 runs for 0 < n < 200. The re­
sults of this simulation are qualitatively similar to 
those obtained by Barto and Anandan (compare with 
Figure 1(a) of [3]), for example in the way that the

Initially tx,„ = a,, -  0.5, so that On -  0.5. Q is maxi­
mised when the optimal action for each input pattern 
is chosen with probability 1. in which case it is given
by

Q ... (  ¡max (a 1,'" |)n. „„ « ViV IV. w) + max (a 1/]1 f!„

«;;/ i c ,,) i

The average increment to u Ul expected on the nth trial
is given bv

< \<< > pkv;/p , , a !"' |( )o.,, + /.((/. P n. I H
a ou' P 1 Iu)« lu! (33)

Asymptot ic (mean) values for the a ,u may be obtained
by settingï (33) to zero; these values are given for
(b), lu ^  (b. iu by

« u, =
— (Po. lu ~~ P i. iu) 3* 2bp0 |U — [(Po. lu —P ! M b + 4X.2po ,

2(Po. iu Pi Uj x
(34a)

2
Pi. iu - -

- P 0.1 u P 1, 1 u
1 (34b)

II' fb, ,u - fb iy, so that the automaton is equally likely
to be rewarded for either action, a “ = 0.5. The
asymptotiic (mean) value of Q, Qco, may be■ obtained
using (32 ) and (33)

(w  = i r I  I I'«. u,U
+ P,.,U- 2 1 +  [(P0. tu P 1. lu)2 +

4/.:Po.,uP
1

i. lu] } X ¥= 1 (35a)

Po, | uP(III! "h P 1, lu P 1, |u (35b)7 ...itrw* P O. i u — Pi. I u
X = 1

Task 1
In this case

Po. m ~ 0.2, B , 10 = 0,9, [),,,, -  0.8, p ,.,,=0.1

Optimal performance would be obtained by setting 
u !(i = 1, a,i = 0, resulting in a value for Qmax of 0.85. 
Figure 3(a) shows the result of simulating the AR ,> al­
gorithm (21) for p = 0.5 and three different values of 
X. The horizontal lines show the theoretical values for 
Q ,, obtained from (35a), for (top to bottom) X = 0.01 
(Q c 0.8485), X = 0.25 (Q . = 0.8152), X = 0.5
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Figure 3

Simulation results for Cask I,

(a) Curves showing averages o f Q„ over W0 runs o f A r p algorithm 
for three values ofX and constant p.

(h) Curve showing Q „for a single run o f A R ¡> algorithm with p„ de­
creasing with n.
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learning rate slows as X decreases. However the 
pRAM Ar p algorithm is around 8—10 times faster 
than the Barto algorithm. Figure 3(b) is a plot of Qn, 
0 < n < 5000, for a single run of the AR P algorithm 
with X — 0.25, pn = 1/n 0 55. This p-sequence satisfies 
the requirements of Theorem 3, so this simulation dis­
plays the property of strong convergence. The expect­
ed success probability after 5000 time steps is 0.8142; 
this should be compared with the theoretical asymp­
totic value 0.8152. The pRAM algorithm is again fas­
ter than that due to Barto (Figure 1(b) of [3]), but con­
vergence to the asymptote Q ,  is less smooth.

Task 2

This task is more difficult because the reward prob­
abilities (3y-ll, (3y.u are closer in value:

Po, io = 0.9, P i io = 0-6, Po n = 0.2 Pin = 0.4

In this case optimal performance would be obtained 
from a 10 = 0, a,, — 1 (Qmax = 0.65). Figure 4(a) shows 
the average of Q n over 100 runs when pn = 0.5 for all 
n, X = 0.05. The horizontal line is the theoretical value 
Q  ̂ = 0.6348. Figure 4(b) shows results obtained un­
der the same conditions as for 4(a) except that p is 
held constant at 0.1. It can be seen that in this case the 
average of Q n approaches the asymptote more closely, 
although training times are longer. Again, our results 
are qualitatively similar to those of Barto and Anan- 
dan (Figures 2(a), (b) of [3]), but differ in the speed of 
convergence the pRAM algorithm is again around 
8-—10 times faster.

Comparison with the Barto AR P algorithm on the 
above classification tasks has indicated that the 
pRAM algorithm is significantly faster. This may be 
largely due to the high degree of non-linearity in our 
system. The role of noise is less clear; in general con­
vergence in our model is less smooth, although we be­
lieve it is likely that the stochastic features are also

Fig. 4a

0.65

<

0.50 .. _______________ ______ ____ ______ _..r.........._ ................, __________ ___,
i) looo :ooo .woo 4000 six«

TIME STEP

Fig. 4b

Figure 4

Simulation results for Task 2 averaged over 100 runs with constant p 
where

(a) p “ 0.5
(h) p = 0.1

responsible for improving the speed of convergence. 
It will be important to investigate the scaling behav­
iour of our model, in order to ensure that these advan­
tages persist at the scale of more realistic problems, 
and such investigations are in progress.

5. Discussions

In this paper we have presented a very general mod­
el of stochastic neural automata, in fact the most gen­
eral such model within the binary domain. This model 
has been identified with the ’probabilistic random 
access memory’ or pRAM [5]. A particular reinforce­
ment training rule, extending the AR P rule of Bar­
to [3] to our ’universal’ learning automaton, has been 
investigated in some detail, and conditions under 
which the behaviour is ergodic or absorbing, and for 
which strong convergence may be expected, have been 
determined. Simulation work with our AR P algorithm 
has indicated that the maximal degree of nonlinearity 
and stochasticity associated with the pRAM model al­
lows very effective learning to take place, both in the 
case of convergence in the mean and when the condi­
tions for strong convergence are fulfilled.

There are several interesting questions on the theor­
etical side, for example with respect to the e-optimali­
ty of the A R_P training rule when the training rate p is 
held constant. Barto and Anandan [3] raised (but did 
not answer) this question in the context of their own 
A R P rule, having observed simulations which suggest­
ed that the constant-p system might indeed be e-opti- 
mal. Work on this question is in progress.
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In the AR P rule (21), the punishment signal was 
identified with the condition r = 0, In fact it is possi­
ble (and many in general he advisable) to have sepa­
rate reward (r = 1) and punishment (p = 1) signals; 
this allows the possibility of 'neutral' actions which 
are neither rewarded nor punished, but which may 
correspond to a useful exploration of the environ­
ment. A significant extension of the pRAM model it­
self would allow it to realise mappings from [0, 11N to 
| 0,1 | (this condition defines the integrating pRAM  or 
i- pRAM). Simulation work has indicated that i- 
pRAMs are very effective in solving a variety of prob­
lems of adaptive control, using an appropriate gen­
eralisation of the learning rule (21).

The pRAM is a device which has a straightforward 
hardware implementation (a small pRAM net has al­
ready been built [ 14]). The A R.P training algorithm de­
scribed above may itself be implemented in hardware 
using either digital or analog technology, thus making 
possible the manufacture of self-contained 'learning 
pRAMs' (it would also be possible to realise the i- 
pRAM in hardware, together with its AR ,, learning 
rule). Networks of such units could find wide applica­
tion, for example in the control of autonomous robots. 
Control need not be centralised; small nets of learn­
ing pRAMs could for example be located in the indi­
vidual joints of a robot limb (such a control arrange­
ment would be akin the neural ganglia found in in­
sects).

One of the questions to be explored is the problem 
of scaling in pRAM networks, since in an N-input 
pRAM the number of memory locations u increases as 
2N. In some applications we may thus need to look for 
ways in which the number of locations could be res­
tricted (other than by the simple expedient of putting 
strict bounds on N, as in the “pyramid neurons” made 
up of 2-input RAMs which have been proposed by 
Aleksander). We are investigating ways in which a dy­
namical list of the current ‘most important' locations 
may be maintained and utilised within advanced 
pRAM architectures, such as are being developed by 
Clarkson [16]. The current rapid increase in size of 
RAM memory chips (for example 64 megabyte chips 
are now available) indicates that there may be an ex­
ponential increase in memory availablity to meet our 
requirements. In any case we note that scaling is un­
likely to be a problem in many control applications, 
which typically require non-linear discriminations to 
be made but do not involve large numbers of proces­
sors; we consider such applications to be a very pro­
mising area for the use of pRAM technologies.

In conclusion, we believe that the identification of 
our pRAM model with the universal associative sto­
chastic learning automaton described above leads to

a learning system of very general utility which is cap­
able of hardware implementation using conventional 
technologies. The system is trainable using a rein­
forcement algorithm (not requiring the intervention of 
a centralised learning controller, and thus suitable for 
‘on-line’ applications), and capable of being extended 
in various useful ways. We hope both to develop fur­
ther the mathematical analysis of the system and its 
extensions, and to apply it to more challenging prob­
lems of adaptive control.
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mean field annealing (MFA), which is applied to the graph 
partitioning problem. The M FA algorithm combines charac­
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Technical report: CSRD-905 Washington, University of Illi­
nois at Urbana-Champaign, 1989, 18 p.

Key words: applications; networks,
Abstract: Focusing on signal processing applications in 

pattern recognition and classification, we present some ana­
lytic and experimental results that indicate promising direc­
tions for future research. At the same time, these results 
show that in a well defined sense, a certain class of neural 
computing techniques are universally applicable if feasibili­
ty constraints are not an issue.

Devos M., Orban G. A.: Modeling Orientation Discrimina­
tion at Multiple Reference Orientations with a Neural Ne­
twork, Neural Computation, Vol. 2, 1990, No, 2 pp. 152-161

Abstract: We trained a multilayer perceptron with back- 
propagation to perform stimulus orientation discrimination 
at multiple references using biologically plausible values as 
input and output. Hidden units are necessary for good per­
formance only when the network must operate at multiple 
reference orientations. The orientation tuning curves of the 
hidden units change with reference. Our results suggest that 
at least for simple parameter discriminations such as orien­
tation discrimination, one of the main functions of further 
processing in the visual system beyond striate cortex is to 
combine signals representing stimulus and reference.

Dontas K., Sarma J., Srinivasan P., Wechsler H.: Fault Toler­
ant Hashing and Information Retrieval Using Back Propaga­
tion, IEEE, 1990 pp. 345-351

Abstract: The paper describes the architecture and per­
formance of neural networks designed and trained to com­
pute hashing functions.The networks described are of the 
connectionist type and are capable of learning complex 
mappings using the back propagation algorithm.

Eberhart R. C.: Standardization of Neural Network Termino­
logy, IEEE Transactions on Neural Networks Vol, 1, 1990 
No. 2 pp. 244-245

Abstract: It is desirable to move toward commonly ac­
cepted terminology in the neural network field.This letter 
outline the initial activities of an Ad Hoc Standards Com­
mittee established by the IEEE Neural Networks Council to 
pursue this effort.

Ersoy O. K,, Hong D.: Parallel, Self-Organizing, Hierarchi­
cal Neural Networks (Scanning the Issue), IEEE Transactions 
on Neural Networks, Vol. 1, 1990 No. 2, pp. 167-178

Abstract: This paper presents a new neural network archi­
tecture called the parallel self-organizing hierarchical neural 
network (PSHNN) which involves a number of stages. At 
the end of each stage, error detection is carried out, and 
a number of input vectors are rejected. Between two stages 
there is a nonlinear transformation of those input vectors re­
jected by the previous stage. The new architecture has desir­
able properties such as high classification accuracy, mini­
mized learning and recall times, and truly parallel architec­
tures. Experiments show advantages in comparison to multi­
layered networks with back-propagation training.

Fanelli R., Raphan T., Schnabolk Ch,: Neural Network Mo­
delling of Eye Compensation During Off-Vertical-Axis Rota­
tion, Neural Networks, Vol. 3, 1990, No. 3 pp. 265-276

Key words: oculomotor system; vestibular system; back 
propagation; modelling; otoliths; nystagmus.

Abstract: Compensatory eye motion during off-vertical 
axis rotation of the head in darkness (OVAR), has been mo­
delled with a neural network. The three layered network was 
trained with back-propagation to simulate the estimation of 
head velocity during OVAR. The network produced good 
estimates within its training range and predicted the eye ve­
locity versus head velocity characteristics in the monkey. In­
variance of the compensation to changes in tilt angle, not 
fully addressed in previous models, was demonstrated by 
the network, along with as booth decline in velocity estimate 
below a threshold angle.

Farrell J.A., Michel A.N.: A Synthesis Procedure for Hop- 
field’s Continuous-Time Associative Memory, IEEE Transac­
tions on Circuits and Systems, Vol. 37, 1990 No. 7 pp. 
877-884

Abstract: The present paper presents a new technique for 
designing associative memories to be implemented by Hop- 
field neural networks. This technique guarantees that each 
desired memory is stored and is attractive. The procedure al­
so guarantees that the resulting network is implementable, 
a requirement often overlooked by other methods.

Foo S.Y., Anderson L.R., Takefuji Y.: Analog Components 
for the VLSI of Neural Networks, IEEE — Circuits & De­
vices Vol.6, 1990 No.304 pp. 18-26

Abstract: Artificial neural networks can be implemented 
with simple analog devices.

Frean M.: The Upstart Algorithm: A Method for Construct­
ing and Training Feedforward Neural Networks, Neural Com­
putation, Vol.2, 1990 No.2 pp.198-209

Abstract: A general method for building and training mul­
tilayer perceptrons composed of linear threshold units is 
proposed. A simple recursive rule is used to build the struc­
ture of the network by adding units as they are needed, 
while a modified perceptron algorithm is used to learn the 
connection strengths. Convergence to zero errors is guaran­
teed for any boolean classification on patterns of binary var­
iables. Simulations suggest that this method is efficient in 
terms of the numbers of units constructed, and the networks 
it builds can generalize over patterns not in the training set.
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TRAINING DISCRETE-TIME FEEDBACK 
NETWORKS FOR FILTERING AND CONTROL

L. Personnaz, O. Nerrand, P. Roussel-Ragot, G. Dreyfus*)

Introduction

During the 1960's, the most popular learning rules 
were essentially based on the minimization of quadra­
tic criteria by gradient descent. Among those methods, 
the Widrow-Hoff rule [1], is widely used in the field of 
linear signal processing and adaptive control, without 
reference to neural networks. One of the reasons of 
the revival of the field was the introduction of a new 
gradient descent technique, known as backpropagtion 
[2], which has been widely applied to neural networks 
having a specific architecture: multi-layer feed­
forward networks.

In the present paper, we propose a general frame­
work for training discrete-time neural networks by 
gradient descent. The techniques that we suggest are 
applicable to any network architecture, including 
feedback networks, whose behaviour depends on time 
explicitly. This systematic, explicit introduction of 
time is important since it casts neural networks in the 
framework of non-linear recursive filters, which sug­
gests potential applications in signal processing and 
adaptive control.

In the first section, we shall deal with feedforward 
networks, in which the outputs of the neurons depend 
on the inputs at the same instant of time, the necessa­
ry delay for information transmission across the layers 
being negligibly small: these networks simply perform 
input-output mappings irrespective of the past history 
of the network. We shall introduce a gradient descent 
training method termed “forward computation”, and 
we shall describe the advantages and shortcomings of 
this method as compared to those of baekpropaga- 
tion.

In the second section of the paper, we introduce 
a general description of feedback neural networks, to­
gether with a general methodology for training any 
network, regardless of its architecture.

We shall distinguish between two kinds of pro­
blems:

*) L PERSONNAZ. O. NERRAND, P. ROUSSEL-RAGOT, G. DREYFUS 
Ecole Supérieure de Physique et de Chimie Industrielles de lu Ville de Pa­
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— “non-adaptive” problems, for which the network is 
first trained, and subsequently used; this is the case 
in most neural networks studied to date; 
“adaptive” problems, for which the neural network 
is trained permanently while it is used.

Feedforward (Static) Networks

At present, a large number of investigations of neu­
ral networks deal with the classification of static, non- 
ordered patterns, with the prediction of time series 
(ordered patterns), etc. These studies use feedforward 
networks: in this framework, one considers neurons 
whose outputs depend only on their inputs at the sa­
me instant of time, neglecting the time necessary to 
compute the outputs as a function of the inputs. 
Therefore, information How can take place in one di­
rection only, from the inputs to the outputs.

1. Definitions and notations:

A static neuron is defined as: x, = f,(v,) with
Vi = X  CijXj 

11 p,

where v, is its potential,
f,(.) is its activation function, 

and x, is the output o f neuron i.
Trie inputs o f neuron i are the neurons, or the net­

work inputs, which send their values x, to neuron i. P, 
stands for the set of the indices of the inputs of neu­
ron i, and Cij is the synaptic weight or the coefficient of 
the input j of neuron i.

Any differentiable activation function can be used. 
One often uses the sigmoidal transfer function:

f(U) = — -  I = tanh(u).
1 + e2u

The most general architecture for a static network is 
that of a fully connected feedforward network (Figure 
La). In such a structure, the neurons can be numbered 
in a definite order: the first neuron is driven by the in­
puts of the network only, the second neuron is driven 
by the network inputs and by the first neuron, . . ., the 
last neuron is driven by the network inputs and by all 
other neurons (CM 0 i > j).

Output neurons are the neurons whose output are ta­
ken into account in the criterion which is minimized
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l.a. Fully connected network.
Nourons 2 and 4 am output neurons. 
Neurons 1 and 3 am hidden neurons.

Examples of feedforward networks.
Fig. I

during training (which will be defined in the next sec­
tion): all other neurons are hidden neurons.

Layered networks (Figure i .b) are a special case of 
fully connected feedforward networks.

In the following, we consider the general case of a ful­
ly connected network.

Ne stands for the number of input units,
Nn stands for the number of neurons,
Nh stands for the number of hidden neurons, 

and Ns stands for the number of output neurons 
(Nn = Nh + Ns).

As mentioned above, the neurons can be ordered:
— the Ne network inputs are numbered from i = 1 to 

Ne; we denote the set of their indices by E;
— the Nn neurons are numbered from i = Ne + 1 to 

Ne + Nn; we denote the set of their indices by N;
Finally, we denote by H the set of indices of the Nh 
hidden neurons, and by S the set of the indices of the 
N output neurons.

2. Training:

Supervised training consists in computing the valu­
es of the coefficients {C,,| so that the network per­
forms the desired task (classification, prediction, etc.). 
This is done by an iterative procedure whereby each 
modification of the coefficients is performed accor­
ding to

" M 3 C,

where i is a suitable cost function of the form

j(C) = x  jk(Q = F  x  X  (d? -  *:)2.
k e L k € L r € S

2 0 6  Personnaz et all: Discerete-Time Feedback Networks

where L is collection of pairs of vectors dkJ; e,k is 
an example vector, with Ne components xk (i belongs 
to set E); dk is a vector of desired outputs, with Ns 
components dk (i belongs to set S).

Typically, in classification, ^k may be a representati­
on of a pattern (picture, phoneme,. . .) and dk may be 
the code of the corresponding class, provided by a su­
pervisor; in filtering, c,k may be a temporal sequence of 
values of a signal s(t): {x, = s(t -  Ne + 1),
xk = s(t -  Nc + 2),. . ., xk e = s(t)}; in the case of a pre­
dictor for instance, dk may be the value of the signal at 
time t + 1 : dk = s(t + 1).

In a classification task, or in non-adaptive transversal 
filtering, the ordering o f the examples is arbitrary, and 
their number is finite, so that J(C) may be the criterion 
which must be minimized after completion of the trai­
ning phase; in the latter case, L is the whole training 
set. In adaptive filtering, the ordering of the examples 
is imposed by the temporal nature of the input signal, 
and their number is infinite, so that L cannot possibly 
be the whole training set.

Thus, during training, the computations necessary 
for one modification o f the coefficients are performed 
as follows:
— propagation: during a given step, the weights com­

puted during the last step are available; examples 
j(^k, dk), for all k e L }  are presented to the net­
work, which computes the values of vk and xk for 
all i € N.

— gradient computation: Vr(J) = 6J/0C (see below).
— modification of the weights: the modification of the 

weights Cy is performed according to:

ACjj = Y ACk = - p  /  ~ p r  for i e N and
kTl Z_J 0 c u

k e L
j e E u N with j < i.
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The gradient 6Jk/0C can be computed in two diffe­
rent ways:

a) Gradient estimation by forward computation:

0 J
ô Cij

c J 0 V,
e Vi ô Cjj

Ô J----  X;Ô Vi J for i g N and j g E u N

with j < i.

The gradient of Jk is given by (omitting subscript k):

0 J
O C i j

Xr)
0 Xr
0 C i j

for i g N

Defining: y,

Ym = C(vm)

0 J
0 V, , one obtains

(dm -  xm) + Z  Chm yh for m g S,
h e Rn,

and j g E u N with j < i.

The partial derivatives on the right-hand side are 
obtained by the following relations:

if i = r then

0 x,.if i r then eCi,

ÔXr et \
a č "  = r'(v'} Xi’

m e P,

Thus, we get recursively:

ô x,.
0  C ,

fm(vm) Xj for all m g N,

ô Xm . \ T  Ô xh
= C(vm) /  c mh for all m g N, i ¥= m,O C

h e P„,
0 C;

with — j o  for all i > m, and #  0 for all0 C; 0  C ;

m e E.

Pm stands for the set of the indices of the inputs of 
neuron m. Thus, the above relations show clearly that 
the computation must be performed in the forward di­
rection, i.e. from the inputs of the network to the last 
neuron.

ym = C(VJ  Z Chm yh for m g H.
h e R,„

Rm stands for the set of the indices of the neurons 
to which neuron m transmits its output: 
Rm = {h I h > m}. This set is empty for the last neu­
ron. In this case, computations are performed from 
the outputs to the inputs (backpropagation).

3. Computational complexity:

The number of multiplications required for a modi­
fication of all the weights of a fully connected net­
work scales like N4n in the case or forward computati­
on and like N„ with backpropagation.

Thus, for a given network and a given criterion 
(hence for the same modifications of the weights), 
training by backpropagation is less expensive than by 
forward computation.

However, training by forward computation gives 
a measure of the sensitivity of the outputs of the neu­
rons to the modifications of the weights, whereas 
backpropagation gives the sensitivity of the criterion 
to the variations of the potentials of the neurons only. 
The analysis of the values of the sensitivities may lead 
to rational alterations to the architecture of the net­
work.

Feedback (Dynamical) Networks
b) Gradient estimation by backpropagation [2]:

The backpropagation technique consists in using 
the partial derivatives of the criterion with respect to 
the potentials as intermediate variables:

Discrete-time neuron i in a network; synaptic delays are shown within rectangles

We now come to the networks which keep a memo­
ry part of their past behaviour : the evolution of the 
neurons is driven by difference equations (discrete-ti-

Fig. 2
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me networks) or by differential equations (conti­
nuous-time networks). In the following, we present 
a general, rigorous framework for training discrete-ti­
me feedback networks with arbitrary architectures.

I. Definitions and notations:

Model of discrete-time neuron:
Its equation is defined by the activation function 

f,(.) and its synaptic weight {C1| T}, where x is the (dis­
crete) delay of the synapse ij,t transferring informati­
on from neuron j to neuron i:

x,(t) = f,
q,i

Z Z c.i.tXj(t - T)
j e P t - o

where x, can be either the output of neuron j or the va­
lue of an external input j.

It should be clear that several synapses can transfer 
information from neuron (or network input) j to neu­
ron i, each synapse having its own delay t and its own 
weight Cn T (Figure 2).

Clearly, one must have C,l0 = 0 Vi, otherwise the 
output of neuron i cannot be computed.

If neuron i is such that: i V P, and qH = 0 Vj e P„ 
neuron i is static.

If t = 1 for all synapses, the neurons are of first or­
der. This specific type of network has been investiga­
ted by other authors [3, 4, 5].

Definitions of the state variables and of the order of the
network:

The computation of the outputs o f the network requi­
res the knowledge of the values of a minimal number 
of neuron outputs, in addition to the knowledge of the 
values of the network inputs. The required values of 
the neuron outputs are the state variables of the net­
work, and their number is the order o f the network. 
The state o f the network is the set of values of the state 
variables.

Any network can be represented as a graph whose 
nodes are the neurons and whose edges are the con­
nections between neurons, weighted by the synaptic 
delays. The order of the network is the weight of the 
cycle of maximum weight in the graph.

The canonical representation of a discrete-time feed­
back network:

Any discrete-time feedback network can he cast in­
to a canonical form made of a feedforward (static) 
network

whose outputs are the outputs of the network and 
the outputs of the state neurons, 
whose inputs are the inputs of the network and the 
outputs of the state neurons, the latter being delayed 
hv one time unit.

Example: a third-order feedback network:
Figure 3.a. shows a third-order network. Its equati­

ons are:

x2(t + 1) — f2[f 22.1 x2(t) + C2|.oX|(t + 1) + C'23,o 
x3(t + 1) I C23 l x3(t)]

X3(t 4- 1 ) = f 3[C33 | X3(t) T C3 1 t)X 1 (t + 1) + C 32,2
X2(t -  1 )].

The output of neuron 2 at times t -  1 and t, toge­
ther with the output of neuron 3 at time t, can be cho­
sen as state variables.

Thus, the following variables can be defined:

z,(t) = x,(t + 1); z2(t) = x2(t); z3(t) -  x:(t -  1);
z4(t) = x3(t).

The state variables are z2(t), z3(t), z4(t).
The corresponding canonical form is shown on Fi­

gure 3.b.
A feedback network is completely defined by its as­

sociated static network, its state variables, its outputs, 
and its external inputs. The general canonical form of 
a feedback network is shown on Figure 4. A feedback 
network may have several canonical forms.

2, Training:
Just as in the case of static networks, training con­

sists in computing the weights so that the network per­
forms the desired task (filtering, prediction, control, 
etc.). In the present case, for each modification of the 
coefficients, the training algorithm estimates the gra­
dient of the following function, on a temporal horizon 
T:

J,(C) = Z  J(t) Where J(t) = \  Z  K (0  -  x,(t)f,
t e l  ^  r e  D,

where D, is set of neuron outputs for which there exis­
ts a desired value d,.(t) at time t (D, is included in S), 
and where xr(t) is the corresponding output. Various 
cases of interest may arise: in problems of the type in­
vestigated in [10], the temporal horizon and the initial 
conditions are defined by the task itself (i.e., the num­
ber of time steps in the trajectory), and d,(t) exists at 
the last time step of the temporal horizon only; in ty­
pical adaptive filtering tasks, the desired values are ta­
ken into account on a sliding window, and both the 
temporal horizon and the initial conditions are para­
meters of the training algorithm.

To summarize, the problem of training a feedback 
network is defined by the following elements:

a function, whose gradient is estimated on a tempo­
ral horizon T, from a set of desired values; 
the inputs at all times on that horizon;

— the values of the state variables at the beginning of 
the horizon.

Just as in static networks, the modification of the
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3.a.
Symbol

Symbol ©

3.b.
denotes a neuron which computes f(v).

denotes a ’’neuron“ which performs a weighted sum only 
(here, the neuron which computes z (+ + I) is just the identity 
operator).

Delays are in boxes.

Example: a third-order feedback network.

Fig. 3

Outputs at 
time t+1

S ta te  v a r i a b le s  
at  t im e  t+1

Unit
d e l a y s

General canonical form of a feedback network.
Fig. 4

coefficients consists in modifying iteratively the we­
ights {Cij T, in the direction opposite to that of the gra­
dient:

ACIJ.T
QJ,(C) _ V  o J(t)
0 Cij., M / _ j  0 Ci,,

l e T

for i e N,

j e E u N and x u [0, q,,].

NNW 4/91, 205-212

Training proceeds as follows:
— initialization: at the initial time t„ of horizon T, the 

state variables, which are necessary for computing 
the values of the outputs at time t0 + I and beyond, 
are initialized. For the network shown on Figure 3, 
one must know the values of x2(t0), x2(t0 I) and 
x3(t()) in order to be able to compute x3(t0 + I) and 
X 2 (t o + 1 )•
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propagation : the network is presented with the valu­
es of the external inputs, which allows the compu­
tation of the values of v,(t) and x,(t) for all neurons 
i N and all times t e T.
i>radient estimation: once the outputs are known, 
the gradient is estimated (see below). 
weight modifications: the modifications of the 
weights {Cit T} are given by the above relation.

a) Gradient estimation by forward computation:

The gradient to be estimated is given by:

o.Ko x,(t)) 0 Xr(t)
o Cij<T for i e N,

j € E u N and x e [(.), q,,j.

It can be shown that one has:

c xm(t)
0 C„,

fm[Vm(t) j

Ôun Xj( t T) T
C Xh(t Ç) 

0 Cij.T

for all m e N,

with
0 xm(t) 
0 C,,T 0 for all m 1 E, for all t.

It should be noted that the computations are perfor­
med in the forward direction (from the inputs to the 
outputs of the netw ork), from the beginning to the end 
of the temporal horizon. A similar approach has been

proposed [2, 5], restricted to the case where all synap­
ses have unit delays.

b) Computation by backpropagation:

First,the network is put into a canonical form. In 
general, the resulting static network has additional “li­
near neurons” (Figure 3.b); thus, neurons are renum­
bered as described above for feedforward networks. 
Since all synapses of the static network have zero de­
lays (t = 0), we denote their weights by Q r

Thus, the successive outputs of the feedback net­
work can be computed by developing the operation of 
the network with a number of copies which is equal to 
the length of the horizon (Figure 5). The copy related 
to time t computes the state at time t + 1 from the va­
lues of the inputs and of the state variables at time t. 
The set of copies builds up a static network on which 
the gradient is estimated by backpropagation. Figu­
re 6 shows an example in which the chosen horizon is 
of length 4, and in which the function JT takes into ac­
count the desired values of the output at the last two 
instants of the horizon.

Depth of a network.

During training of a feedback network by backpro­
pagation, several copiqs are necessary, in general, to 
compute the modifications of all the weights of the 
network. This minimal number of copies is termed the 
depth of the network. In the previous example, the 
depth is equal to 3. If the length of the chosen horizon 
is smaller than the depth, some weights are not affec­
ted by training.

Comparison between the two gradient methods.

The above methods compute the same gradient, 
hence yield identical coefficient modifications for the 
same initial conditions. Backpropagation is less com­
putationally expensive, but it is less flexible with re-

Propagation on a temporal horizon.

Fig- 5
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Fig. 7

spect to the initialization of the derivatives of the feed­
back inputs [6].

Adaptiv vs. non-adaptive networks:

Feedback networks have been investigated mainly 
as non-linear dynamical systems operating as associa­
tive memories [3, 4, 7, 8]; it is only recently that they 
have been used for attacking problems in adaptive fil­
tering and in adaptive control [6, 9, 12]. In this frame­
work, two types of networks must be considered: 
(\)noti-adaptive networks, whose weights are computed 
during a training phase, and are subsequently used, 
and (ii) adaptive networks which are trained perma­
nently.

In an adaptive system, the coefficients of the net­
work are updated periodically with period T.,. Bet­
ween t and t + T;1, modifications of the weights are 
computed, possibly by performing several iterations 
of the gradient descent.

NNW 4/91, 205-212

Figure 7 illustrates such an adaptive operation. 
Training is performed on a given horizon (of length 
four in the example), with a given set of desired values 
(in this example, desired outputs are defined on the 
last three instants of the horizon). The updating peri­
od is equal to 1.

Conclusion

In the present paper, we have described a general, 
rigorous framework for training any discrete-time net­
work. Within this framework, a variety of training al­
gorithms can be derived; some of them are described 
in more detail in [6, 11]. This approach may open new 
perspectives for the use of neural networks in adapti­
ve signal processing and adaptive control.
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tum space are the same.As in the conventional random- 
access memory of a comp., any stored item can be accessed 
directly, and sequent, retrieval is achieved by storing the 
memory record as a pointer chain. Accessing of many loca­
tions at once accounts forrecognit. Three main results are 
obtained: (1) The propert. ofneur. allow their use as address 
decoders for a generalized random-access memory; (2) dis- 
trib.the storage of an item in a set of locat.makes very large 
addr. spaces (2.,000) pract.; (3) struct.similar to those sug­
gested by the theory are found in the cerebellum.

Karnin E.D.: A Simple Procedure for Pruning Back-Propaga­
tion Trained Neural Networks, IEEE Transactions on Neural 
Networks vol., 1, 1990 No. 2 pp.239-242

Keller J. M., Hunt D. J.: Incorporating Fuzzy Membership 
Functions into the Perceptron Algorithm, IEEE Trans, on Pat­
tern Analysis and Machine Intelligence. Vol. PAMI-7, 1985 
No. 6 pp. 693-699

Abstract: The perceptr. algorithm, one of the class of gra­
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Abstract: The fifth-generation computers have essentially 
been designed around knowledge data bases. Originally 
they were supposed to accept natural data such as speech 
and images; these functions, however, have new been aban­
doned. Some vistas to sixth— and later-generation compu­
ters have already been present, too. The latter are supposed 
to be even more „natural“. Certainly the fifth-generation 
computers have applied very traditional logic programming 
but what could the alternative be? What new functions can 
evolve from the „neuralcomputer“ principles? This presen­
tation expounds a few detailed questions of this kind. Also 
some more general problem areas and motivation for their 
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Abstract: The problem of symbolic represent.of intensity 
variations in gray value pictures of real scenes is studied. 
The goal is to relate the responses of a filter bank of differ­
ent gradient filters to the structure of the picture which is 
determined by the physics of the image generation process. 
A simple criterion is proposed for the selection of a suitable 
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NEURAL NETWORKS SIMULATOR
P. Bitzan *)

Abstract:
Programmed models of neural nets sometimes exhibit 

slow training and uncertain testing which can fail if the 
system converges into improper minima. Subsequently, 
they face strong competition from standard algorithms. 
When one is interested only in applications, neural nets 
can be simulated highly effectively on the base of non- 
adaptive algorithms. We have described here a so-called 
neural networks simulator, which provides simulation of 
neural nets by means of a pseudo-metric which is con­
structed in the space of training samples.

1. Introduction

The basic general property of neural nets as used in 
computer science is the ability to learn a mapping on 
the base of some finite number of examples of such 
a mapping (training samples). This means that there is 
no need to specify any additional rules or principles 
and the only thing the user must provide are these 
examples.

Generally this mapping, denoted by O, can be defi­
ned from the /7-dimensional real space R" to the A-di- 
rnensional real space /?*; hence O: D cz R '~> R k. 
Training samples in this case are formed by a finite 
number of vector pairs, where the first is //-dimensio­
nal and the second A-dimensional. Let us denote the 
set of training samples by

L = {(.*,, v,). / = 1,2..A; V, c D cz R'\ r , € R k, (1) 
O: x-,-> v,\

A neural net learns a mapping usually by repeatedly 
setting training samples on its input and output neu­
rons. In this way inner weights of the net are adapted 
and after the learning is finished, the neural net is able 
to realize the mapping from the whole domain 
D -* R k. We can say that the mapping formally defi­
ned on the finite set of points (training samples) is 
enlarged into the whole domain I). This enlarging is 
not arbitrary of course, but represents some hidden 
principles of the mapping being learned.

The kind of information processing just described 
can be called neural network-like information proces­
sing. Obviously, this is a simple procedure and it is ap­
propriate particularly in cases where it is difficult to

*) Pavel Bitzan
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specify some attributes of the information being pro­
cessed.

Unfortunately programmed models of neural nets 
are somewhat time consuming, particularly in the trai­
ning phase of perceptron-like paradigms. Depending 
on the architecture and on the set of training samples 
these weights can converge very slowly or don’t con­
verge at all. The testing phase of a neural net has simi­
lar problems; the system can converge to some impro­
per point.

Let us elucidate some problems of programmed mo­
dels of neural nets a bit more precisiously. From the 
general point of view programmed models of neural 
nets suffer from the improper connection between na­
turally parallel neural nets and existing computer sy­
stems, which don’t usually support higher levels of 
parallelism. Natural neural nets are systems consisting 
of a great number of elements (neurons). This is not 
exceptional; everything is composed of a large num­
ber of elements, molecules, atoms, etc., and there are 
algorithms which can acceptably model such systems 
on computers. However, in these cases it is possible to 
group some elements into classes according to their 
properties and hence we are able to simplify the who­
le description. In the case of neural nets, these techni­
ques are hardly acceptable, because each neuron has 
its own important function and when modeling a neu­
ral net, we must take every neuron into account. The 
case where a large number of neurons are present dif­
fers from common physical systems and much parallel 
computing is necessary, something that current com­
puters are not prepared to master. Special co-proces­
sors can only increase the low' efficiency of possible 
algorithms, but they can’t change it substantially. 
Thus, the computation of neural networks on current 
computers resemble an army attacking through a tube.

If we omit physical models of neural nets, then this 
problem of low efficiency can be solved in three ways.

The first one is the improvement of existing algo­
rithms for neural networks. Nevertheless, such an im­
provement, though possible, has its limit. Considering 
the very low efficiency of available algorithms one 
could predict that any possible speed up won’t be sig­
nificant.

The second way is based on large parallel computer 
architectures such as, e.g., CM! and CM2 | I ], which 
consist of many thousands of processor units. Systems 
of such a high parallelism might be appropriate for ef­
fective neural networks computing.

The third way to cope with the low efficiency of 
neural networks computing is through simulation.
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This simulation can be done regardless of their real 
structure and can substantially accelerate the learning 
phase, which is the most time consuming part of this 
kind of processing. For this purpose we have develo­
ped a neural networks simulator [2] which is described 
in the next section.

2. Neural Networks Simulator

We could imagine that every type of a neural net­
work uses some inner pseudo-metric on the domain D. 
If we have determined this pseudo-metric , then we 
could interpolate our resulting mapping using pseu­
do-distances among training samples. Let us propose 
how such an appropriate pseudo-metric can be deter­
mined.

For each x, e L n (projection of L into D) let us define
vectors :C  •x X 2 as

v" = V

* r ! = [xa -_ v n v n A il» A ß —

.. n 2 _ r ,s n 1 v n - !A, -  L(,2 ■ x i\ »•Yo

v n v it
A /2 ’ * * ’ A in

x

x"
K ill !

1 v n - I
'■ in I

k X
x 1 ç R ",
1 € R"

, n  1
' in- 2
x'! 2 e R

k
n  -  2

(2)
The vectors defined above represent 0,1 . . .  n -  1 dif­
ferences of vector x, and we call them moments of 0,1 
..n -  1 order of data pre-processing.

The principles of physical systems are usually cha­
racterized by means of differential description. Their 
behavior mostly does not depend on current values of 
parameters, but rather on their relations to each other. 
Hence we can establish the following generalization 
for j vectors xj.

Let us define for every vector x-j, i=  1,2..K; j  = n, 
n — 1,-2, a binary matrix m \ = [m{k,\ k, / = 1,2,../] as 
follows:

Let r: M" x M" R f + [0] be a symmetric, non-ne­
gative function of the form as follows:

r ( M ; ' , M ; )  =  a b s ) t  £  £  a [ ,S {,) (4)
7 = 2 k  = I ! -  1

s j = 1 ™J2ki)
0 if(m{k,= m{kl),

where a ‘kls R, k,l=  1,2,..y are arbitrary, in k,I symme­
tric coefficients. Considering the mapping (3), then (4) 
establishes a pseudo-metric in R ” as follows:

*2) = tiM'l, Mf). (5)
Hence, this pseudo-metric is defined in D by (2), 

(3), (4), (5) and coefficients a'kl. In contrast to a regu­
lar metric, (5) accepts zero distance between different 
points and in general, does not satisfy triangle inequa­
lity.

The natural way of establishing these metric coeffi­
cients a'kl is to require mapping O ( See (I) ) to be “as 
continuous as possible“. This requirement implies the 
triangle inequality is to be satisfied „as much as possi­
ble“. Hence we can require the following expression

N N

X  (p (T, Xj) -  e(yh y,))2 (6)
i= 17=1 + 1

to be minimal; e denotes Euclidean distance.
We can say that we seek for such «{/that correspon­

ding pseudo-distances among x, in R" are closed “as 
possible“ to corresponding Euclidean distances 
among y, in R ' in the sense that ( 6 ) reaches its mini­
mum.
Example.

Let us take the following set of training samples, 
which map symmetric 3-dimensional vectors to I and 
non-symmetric ones to 0:

x, = [1,2,1] — y, = [1] x2 = [2,1,2]-> y2 = [1]
x 3 = [1,2,3] — y3 -  [0] x4 = [3,2,1] [ y4 = [0].

ijlfk  < -<i) mlu = 1,
*/( x > x',) — m'ikl = 0,
ifix'i\ = x ’h) then if  (k < I) — m\k, = 1,
if(x'lk -  x(„) then if(k > 1 ) — m f  -  0. (3)

For the transformation (0 —► 1) and (0-> 1) m\ is 
a anti-symmetric matrix which contains ordering 
among components of a vector xj.

Hence, every vector x, t.; L 0 can be characterized by 
at most n -  1 binary matrices (3); this matrices we for­
mally denote by M r This description is appropriate 
for computer processing because many compilers can 
operate in bit arithmetic mode. It also considers the 
fact that physical principles can be expressed by me­
ans of differential (difference) description, which is, 
in fact, a kind of a description of data ordering.

Let us limit ourselves to the zero moment of data 
pre-processing (See (2)) and according to (3), we can 
process vectors x t, x2, x3 and x4 to the form of binary
matrix:

0 1 1 00 1 0 1 1 00 0
0 0 0 - [ 1 ]  1 0 1 — [1] 00 1 —*■ [0] 100
0 1 0 000 000 1 1 0

In order to find R min we can directly require
f i x  1, x2) -  0, p(x„ x3) = 1, p(x„ x4) = 1, p(x2, x3) = 1, 
f i x 2, x4) = 1, p(x3, x4) = 0, which implies the follo­
wing

equations for the upper triangle coefficients a f:

abs («j2 + a (f )  = 0 abs («23) = 1
abs (a°u + « |3) = 1 abs ( a f )  = 1
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abs («,3 + «"3) = 1 abs (a?2 + a ?3 + a°3) = 0.

The solution of this set of equations is a°n = 1, 
«13 = 0 and «23 = — 1. Because the whole matrix a°KL 
is symmetric, and diagonal coefficients don’t change 
the pseudo-metric, p is complete.

In general, the evaluation of metric p is a problem 
of unconstrained optimization and of course it may 
assume higher moments of data processing.

While training the system we store the matrices M , 
with corresponding vectors y, in some I/O file, which 
e.g., we can denote MEMORY. Once the pseudo-me­
tric is determined, it is possible to exclude those sam­
ples which are sufficiently close to some former ones 
(with respect to the chosen pseudo-metric), so as to re­
duce the stored redundant information. Then the trai­
ning is finished.

Once p is determined, we can test our simulator,
i.e., for some testing x  e D ez R m we can construct its 
mapping. First we determine some number of „nea­
rest“ samples and then on this set we can interpolate 
the mapping of x, for instance by the formula as fol­
lows:

)’ ~ NORM 1 X  P (*/. *) >>„ (7)
i

NORM = X  P (x i> x) s

where v > 0 is a shape factor. If for some i we have 
p(xh x) = 0, then we define y  = yr

In order to find these „nearest“ samples, it would 
be ineffective to evaluate distances from all memori­
zed samples. For a particular pre-selection we can use 
appropriate global quantities which could be joined to 
stored training samples and which would provide 
their global characterization.

By the method just described, we are able to pro­
cess information in the same way that neural networks 
do, that is without any specification of rules or princi­
ples. Because most of the data processing concerns bi­
nary matrix operations, this method is advantageous 
particularly when it is implemented on a computer sy­
stem with binary arithmetic mode. If this isn’t availa­
ble it is appropriate to code binary matrix into real 
digits.

In contrast to neural nets the learning phase of this 
method is sped-up quite markedly. This speed-up is 
more significant for greater numbers of neurons. We 
shall dismiss the actual descriptions of problems 
which have been solved and compared; instead we 
shall demonstrate relative performance in the two fol­
lowing exemplary time comparisons of the back-pro­
pagation algorithm. All tests have been processed on 
a standard PC AT-286.

A back-propagation network with 10 input, 6 hid­
den and one output neurons spent more than 2 hours 
learning 44 training samples. The described simulator 
took only 10 seconds.

A back-propagation network with 5 input, 80 hid­

den and 180 output neurons spent about 10 hours le­
arning 62 training samples using the ANZA co-pro­
cessor. Without this co-processor, we can estimate 
that the time needed for learning could be more than 
10 days. In this same case, the simulator took less then 
25 seconds.

According to the description of the simulator, it is 
clear that when training, there is no need to adapt any 
weights. Besides the pseudo-metric optimization 
which can be solved using standard optimization me­
thods, the only thing we must do is to store binary ma­
trices in MEMORY provided they are not redundant. 
This is the reason for such an extreme speed-up in 
comparison to standard adaptive algorithms. We 
should also admit that in the testing phase, the simula­
tor might take a bit longer than the back-propagation 
algorithm, since the program must seek „near stored 
samples“ and evaluate their pseudo-metric distances 
from the testing sample.

It is necessary to also emphasize that the described 
simulator could fail when using a small number (5 or 
less) of input neurons. Due to transformations on bi­
nary matrices, many different samples might degene­
rate improperly; that is, they could be improperly re­
presented by the same record. This instance can be 
removed by special pre-processing which is not descri­
bed in this paper. This pre-processing assumes the ad­
dition of an appropriate number of components to 
input vectors.

We could also study the relations among various ty­
pes of neural networks and various types of the abo­
ve-mentioned pseudo-metrics. We can’t prove the the­
orem that every neural network with arbitrary training 
samples can be substituted for the afore-mentioned si­
mulator, but we can verify this statement for many ca­
ses when testing it on computers.

Nevertheless, we consider this type of study to be 
a bit unnecessary, because our goal is not to simulate 
exactly various neural networks, but to simulate their 
properties that are useful in information processing.

3. Conclusion

We have introduced the basic principles of the neu­
ral networks simulator. Considering training and te­
sting difficulties of programmed models of neural 
nets, the proposed simulator might be expected to 
find a general application, especially in large pro­
blems of neural network-like information processing.

The neural networks simulator has been used for re­
cognizing indications of heart diseases. As was descri­
bed, it learns only on the basis of training vectors 
whose dimensions vary within the range 50 to 800 in­
put neurons. There is no need to specify any additio­
nal rules or principles and the only thing the expert 
must provide is a specification of what disease the 
sample under consideration represents. In addition, 
the above-mentioned I/O file MEMORY can be easi­
ly modified by adding new samples or by cancelling
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some of the old ones. This can he done even during 
the testing phase and hence the system can be conti­
nuously updated. For this problem, it is possible to 
use a standard PC AT with an acceptable response ti­
me.
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INTERESTING AND COMING EVENTS

In this section of our Journal the information on some inte­
resting and coming conferences, symposiums and seminari­
es are given;

J UNE 1991

Fourth Int'I Cunf. on Industrial and Eng. Applications of Ar­
tificial Intelligence and Expert Systems, June 2—5, Kauai, 
Hawaii. Sponsors: ACM et al. Contact Moonis Ali, Univ. of 
Tennessee Space Inst., MS 15, R. H. Goethert Pkwy,, Tulla- 
homa, TN 37388-8897, phone (615) 455-0631, ext. 236, fax 
(615) 454-2354, e-mail alifoutsiv 1. bitnet.

Fifth Supercomputing Symp. June 3—5, 1991, Fredericton, 
N.B.. Canada. Cosponsors: Canadian Special Interest 
Group on Supercornputing, Univ. of New Brunswick. Con­
tact Virendra C, Bhavsar or Uday G. Gujar, Faculty of 
Computer Science, Univ. of New Brunswick, Fredericton, 
N. B., E3B 5A3, Canada, phone (506) 453-4566, fax (506) 
453-3566.

Parle 91, Conf. on Parallel Architectures and Languages Eu­
rope, June 10—13, 1991, Einhoven, The Netherlands. Con- 
sponsors: Commission of European Communities et al. 
Contact F. Stools, Philips Research Labs, PO Box 80.000, 
5600 JA Einhoven. The Netherlands, fAX 31 (40) 744-758,e- 
mail: stoots®dooma. prl. philips, nl.

1991 IEEE International Symposium on Circuits and Systems 
-  ISC AS ’91, June 11-14, 1991, Raffles City, Singapore. 
Contact: 1SCAS ’91 Secretariat c/o Communication lnt’1 
Associates Pte Ltd. 44/46 Tanjong Pagar Road, 0208 Singa­
pore (65) 226-2838.

1991 ACM International Conference on Supercornputing , Ju­
ne 17 — 21, Cologne, Germany.
Cosponsors: Gesellschaft fuer Informatik; contact Ruediger 
Esser, FKA-ZAM, D-5170 Juelich, Germany, phone (0049) 
2461 61 6588, fax: (0049) 2461 61 6656, e-mail : zdvQ03®djuk- 
fa 1 !. bitnet

First Int’I Conference on AI in Design, June 25—27,1991,
Edinburgh, UK; contact Helen Hodge, Butterworth Scienti­
fic Ltd., Westbury House, Bury St., Guildford, Surey GU2 
%BH, UK; 04 (83)300966.

AIME-91 AI in Medicine, June 24 — 27, Maastricht NL. The 
scope ranges from theoretical research to practical applicati­
ons. Main themes: knowledge representation and model­
ling, knowledge acquisition and explanation, temporal and 
spatial reasoning, uncertainty management, expert databa­
ses, KBS evaluation, clinical applications and integration, 
technology assessment of KBS. Cosponsors: AIME-91, 
Univ. of Limburg, PO Box 616, 6200 MD Maastricht, The 
Netherlands. Fax + 31 43 436080, phone ...43888409. AI- 
ME 1991@HM ARL%. Bitnet.

ICANN 91, International Conference on Artificial Neural 
Networks, June 24—28, Espoo, Finland 
Cosponsors: IEEE Neural Network Council, International 
Neural Network Society. Contact: Congress Management 
Systems, P. O. Box: 151, SF 00141 Helsinki, Finland, 
phone: (003580) 175 355, fax: (003580) 170 122

6th Czechoslovak Conf. on AI, June 25—27, Prague CS. Con­
tact: Vladimir Marik, Czech Technical University, K 335, 
Technicka 2, 166 27 Prague 6, Czechoslovakia. Fax +422 
290159, phone . . .  2 295664.

JULY 1991

PDK ’91, International Workshop Processing Declarative 
Knowledge. Representation and Implementation Methods, Ju­
ly 1—3, 1991, Kaiserslautern, Germany. Sponsors: PDK, 
DFK1 Gmbh, P. O.Box 2080, 6750 Kaiserslautern, F.R.Ger­
many, fax: + 49-631-205-3210, email: pdk@informatik. uni- 
kl.de.

ACAI-91, Adv. Course on AI, July 1 — 12, Bilbao ES. Theme 
of the course: Issue on Reasoning. Topics: Trends in Coo­
perative Distributed Problem Solving, Temporal reasoning, 
Case Based Reasoning and Learning, General Cognitive Ar­
chitectures, Validation of Knowledge Based Systems, 
Knowledge Elicitation Techniques. Sponsors: Mikel Emal- 
di, EABE1N, IDEIA Dep. Cuesta de Olabeaga 16, E-48013 
Bilbao, Spain, fax +34 4 441 1749, phone ...441 9300, 
emaldi®labein.es.
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1991 International Joint Conference on Neural Networks 
IJC NN ’91, July 8—14, 1991, Seattle, WA, USA 
Cosponsors: IEEE, International Neural Network Society, 
Contact: IJC NN 91, UW Extension, GH-25, 5001 25th Ave, 
NE, Seattle, WA. 98185, phone: (001 206) 543 2310, fax: 
(001 206) 685 9359, Diana Nielsen (001 206) 543 0888.

Third Conference on Innovative Applications of AI ’91, July 
15—17,1991, Anheim, CA. Contact IAAI '91, AAAI, 445 
Burgess Drive, Menlo Park, CA 94025-3496; (405)328-3123.

International Congress of Psychology, July 19—24, 1991,
Brussels, Belgium. Address: Brussels International Confe­
rence Centre, Parc des Expositions, Place de Belgique, B- 
1020 Brussels, Belgium. Tel.: +32 2 478 48 60. Fax: + 32 22 
478 80 23. Telex: 234643 foire b.

AUGUST 1991

IEEE International Conference on Systems Engineering, Au­
gust 1—3, 1991, Wright State University, Dayton, Ohio, 
USA
Contact: Dr. B. A. Shenoi, Electrical Engineering Depar­
tment, Wright State University, Dayton OH 45435, phone: 
(001 513) 873 3527, fax: (001 513) 873 3301

CRYPTO ’91, Aug. 11 — 15, Santa Barbara, Calif. Cospon­
sors: lnt,l Assoc, for Cryptologic Research et al. Contact 
Burt Kaliski, Crypto 91, RSA Data Security, 10 Twin Dol­
phin Dr., Redwood City, CA 94065, phone (415) 595-87822, 
fax (415) 595-1873, Internet: burotrsa.com.

6th IEEE International Symposium on Intelligent Control, 
August 12—16, 1991, Key Bridge Mariott, Arlington VA, 
USA,
Contact: Prof. A. H. Levis, Dept of E. C. E., George Mason 
University, Fairfax, VA 22030, phone: (001 703) 764 6282

I FAC Symposium on Distributed Intelligence Systems, DIS’ 
91, Aug. 13—15, 1991, Washington DC. Contact: A. H. Le­
vis, M. I. T„ 35-410/LIDS, Cambridge, MA 02139.

Twelfth International Joint Conference on Artificial Intelli­
gence, IJCAI ’91, Aug. 24—30. Sydney, Australia. Contact: 
Prof. J. Mylopoulos or Prof. R. Reiter, Department of Com­
puter Science, University of Toronto, Toronto, Ontario, Ca­
nada M5S 1A4; Phone: + 1-416-978-1455; e-mail: ij- 
cai@cs.toronto.edu.

DEXA ’91 Int’l Conf. Database and Expert Systems Applica­
tions, August 28—30, Berlin-Potsdam DE. Contact: Dr.Di­
mitris Karagiannis, FAW-lJIm, AI-Lab, Helmholtzstrasse 
16, P.O.Box 2060, D-7900 Ulm, Germany. Fax +49 731 
501-999, phone . . . 501-540. karagian@dulfawla.bitnet.

SSD 91, Second symp. on Large Spatial Databases, Aug. 
28—30, Zurich, Switzerland. C ontact: H. J. Schek, Inst, fur 
Information Systeme, Eth Zentrum, 8092 Zurich, Switzer­
land, phone 41(1) 254-7240.

SEPTEMBER 1991

14th Annual Meeting of the European Neuroscience Associa­
tion, ENA, Sept. 8—12, Cambridge, England. Address: Con­

ference Contact, 42 Devonshire Road, Cambridge CBI 2BL, 
UK. Tel: +44 223 323427. Fax: +44223 460396

17th Int’l Conf. on Very Large Data Bases, Sept. 3—6, Barce­
lona, Spain. Sponsors: IEEE Computer Soc. Tech. Commit­
tee on Data Eng. et al. Contact Guy Lohman, IBM Almaden 
Research Center, 650 Harry Rd,, San Jose, CA 95120, e-mail 
lohmani@bm.com.

2nd Ws Uncertainty Processing in Expert Systems, Sept. 
9—12, Bechyne CS. The attendance of the workshop is limi­
ted to about 50 persons, lectures presenting unfinished 
work, opening new problems and provoking active discussi­
on are welcome. Sponsors: WUPES, Czechoslovak Cyber­
netic Society, Pod vodárenskou vezi 4, 18208 Prague 8, 
CSFR, fax +42 2 815 2171, phone . . .  815 2384.

1991 Annual International Course Neural Networks. Adaptive 
Neural Networks, Sept. 9—13, Garmisch-Partenkirchen, 
Germany. Course Director: Bernad Widrow. CEI-Europe/ 
Elsevier, BOX 910, S-61225.

Compsac 91, 15th Int’l Computer Software and Applications 
Conf., Sept. 11 —13, Tokyo. Cosponsor: Information Proces­
sing Soc. of Japan. Contact Stephen S. Yau, Univ. of Flori­
da, CIS Dept., Rm.301, Gainesville, FL 32611, phone 
(904)335-8006.

XS ’91 BCS Conf. on Expert Systems, Sept. 17—19, London, 
UK. Cosponsor: Clearway International, attn mrs. Fiona 
Pearson, Conference House, 9 Pavilion Parade, Brighton 
BN2 1 RA. fax +44 273 57 1224, phone . . . 273 695 811.

First IEEE-SP Workshop on Neural Networks for Signal 
Processing, Sept. 29-Oet. 2, 1991, Sponsors: IEEE Signal 
Processing Society in cooperation with the IEEE Neural 
Networks Council. Contact Gary Kuhn, Publicity Chair, fax 
(609) 924-4600 or (609) 924-3061.

OCTOBER 1991

EPIA-91 5th Portuguese Conf on Al, Oct. 1—3, 1991, Albu- 
feira, Algarve PT. Info: Prof. Pedro Barahona, Dep de In- 
formtica, Univ Nova de Lisboa, 2825 Monte da Caparica, 
Portugal, fax +351 1 2955641, phone . . . 295 4464. pb@fctu- 
nl.rccn.pt.

IEEE Workshop on Visual Motion, Oct. 6 -9 , 1991, Prince­
ton, N. J. Contact Thomas S.Huang, Coordinated Science 
Lab, Univ. of Illinois, I 101 W. Springfield Ave., Urbana, IL 
61801, phone (217) 333-6912.

11th IEEE Symposium on Mass Storage Systems, October 
7—10,1991, Monterey, California,
Sponsor: IEEE Computer Society Technical Committee on 
Mass Storage Systems and Technology, Contact: B. T. 
O’Lear, NCAR, P. O. Box: 3000, Boulder, CO 80307, pho­
ne: (001 303) 497 1268, fax: (001 303) 497 1 137

Sixth Banff Knowledge Acquisition for Knowledge-Based Sy­
stems Workshop, Oct. 6—11, 1991, Banff, Canada. Contact 
John Boose, Advance Technology Center, Boeing Computer 
Services, 7L-64, PO Box 24346, Seattle, WA 98124; (206) 
865-3253.
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11th IEEE Symp. on Mass Storage Systems, Oct. 7—10, 
1991, Monterey, Calif. Sponsor: IEEE Computer Soc. Tech­
nical Committee on Mass Storage Systems and Technology. 
Contact Bernard T. O.'Lear, NCAR, PO Box 3000, Boulder, 
CO 80307, phone (303) 497-1268, fax (303) 497-1137.

First Int’l Conf. on Artifical Intelligence Applications on 
Wall St., Oct. 9—11, 1991. New York City. Sponsor: Poly­
technic Univ., Brooklyn NY 11201, phone (718) 260-3360, 
fax (718) 260-3136.

Workshop on Experimental Distributed Systems, Oct. 12, 
1991, Huntsville, Ala. Contact Raif M Yanney, TRW, 1 Spa­
ce Park, DH2/2328, Redondo Beach, CA 90278, phone 
(213)764-6033.

ICCD ’91. IEEE International Conference on Computer De­
sign: VLSI in Computers & Processors, Oct. 14—16, 1991,
Hyatt Regency Cambridge, Cambridge, Mass. Sponsor: 
IEEE Computer Society and IEEE Circuits and Systems So­
ciety. In Cooperation with: IEEE Electronic Device Society. 
Contact Dwight Hill, AT&T Bell Laboratories 3D-446, Mur­
ray Hill, NJ 07974. phone 201-582-7766, E-mail: dwight@re- 
search.att.com.

European Conference on Industrial Applications of Know­
ledge-Based Diagnosis, Oct. 17—18, 1991, Milano, Italy. 
Contact A. Camnasio, CISE, PO BOX 12081,20134 Milano, 
Italy; (39) 2-21672400, fax (39) 2-26920587.

1st Int Conf Practical Application of Prolog, Oct. 28—31, 
1991, Edinburgh UK. Info: A1 Roth, 31 Bexley Avenue, 
Blackpool, Lancs FY20TE, UK. fax 4 44 253 53811, phone 
. . . 253 58081. alroth®cix.compulink.co.uk.

AI*IA 2nd Nat Congres on AI, Oct. 29—31, Palermo, Italy. 
Info: Prof. Salvatore Gaglio, CRES, Centro per la Ricerca 
Electrónica in Sicilia, Viale Regione Siciliane 49, 90046 
Montreale (Palermo), Italy, fax +39 91 640 6200; phone 
. ..640 6192/619/4501.

NOVEMBER 1991

TAI 91, Third IEEE Computer Soc. Conf. on Tools for Artifi­
cal Intelligence, Nov.5—8, 1991, San Jose, Calif. Contact 
Benjamin Wah, Coordinated Science Lab, MC 228, Univ. of 
Illinois, 1101 W. Springfield Ave., Urbana, IL 61801-3082, 
phone (217)333-3516, fax (217)244-1764, e-mail wah®aqui- 
nas%cso.unicu.edu; or Nikolaus G. Bourbakis, 4138 Moon- 
flower Ct„ San Jose, CA 95135, phone (4080284-6494.

First Int’l Conf. on Artifical Intelligence Applications on 
Wall St., Oct. 9—11, 1991, New York City. Sponsor; Poly­
technic Univ., Brooklyn. Contact Mary Bianchi, Polytechnic 
Univ., 333 Jay St., Brooklyn NY 11201, phone
(718)260-3360, fax (718)260-3136.

Int’l Joint Conference on Neural Networks ’91, Nov. 18—22,
Singapore. Contact Teck-Seng Low, Communicationn Int’l 
Associates, 44/46 Tanjong Pagar Rd., Singapore 0208; 
(65)226-2838; fax (65) 226-2877; e-mail mpeangh@nusvm.

Supercomputing 91, Nov, 18—22, 1991, Albuquerque, N.M. 
Cosponsor: ACM. Contact Raymond L. Elliott, Computing 
and Comm. Div., MS B260, Los Angeles Nat’l Lab, Los Ala­
mos, NM 97545; or Supercomputing 91, IEEE Computer

Soc., 1730 Massachusetts Ave. NW, Washington, DC 
20036-1903, phone (202)371-1013.

DECEMBER 1991

Int’l Conf, on Parallel and Distributed Information Systems, 
Dec. 4—6, 1991, Miami Beach, Fla. Cosponsors: IEEE 
Computer Soc. et al. Contact Ainit Sheth, Bellcore, IJ-210. 
444 Hoes Ln., Piscataway, NJ 08854, phone (908)699-9011, 
e-mail amit@ctt.bellcore.com.

1991 IEEE Workshop on Speech Recognition, Dec. 15—18,
1991, Harriman, NY. Contact Jay G. Wilpon (201)582-3559.

World Congress on Expert Systems, Dec. 16—19, 1991, Or­
lando, Fla. Cosponsors: Int’l Assoc, of Knowledge Engi­
neers et al. Contact World Congress on Expert Systems, c/o 
Congress Secretariat, Congress (USA), Inc., 7315 Wisconsin 
Ave., Suite 404E, Bethesda, MD 20814, phone 
(301)469-3355, fax (301)469-3360.

JANUARY 1992

25th Annual Hawaii International Conference on System 
Sciences ( HICSS — 25 ), January 7—10, 1992
Kauai, Hawaii; Contact; Dr. Bhushan Saxena, Department 
of Computing, Hong Kong Polytechnic, Hung Horn, Kow­
loon, Hong Kong, e-mail: cssaxena ® hkpcc.hkp.hk

MAY 1992

IEEE International Symposium on Circuits and Systems — 
ISCAS ’92, May 10-13, 1992, Sheraton Harbor Island Ho­
tel, San Diego, California; Contact: Dr. Stanley A. White, 
433 Avenida Cordoba, San Clemente, CA 92 672, phone: 
(001 714) 498 5519

SEPTEMBER 1992

IEEE International Workshop on Robot and Human Commu­
nications, September 1—3, 1992, Hosei University, Tokyo, 
Japan; Contact: Prof. Hisato Kobayashi, Dept, of Electrical 
Engineering, Hosei University, Kajinocho, Koganei, Japan, 
phone: (0081) 423 87 6187, fax: (0081) 423 87 6122

JANUARY 1993

IEEE International Symposium on Information Theory, Janu­
ary 10-15, 1993, San Antonio, Texas, Contact: Mr. Costas 
N. Georghiades, Texas A&M University, Department of 
Electrical Engineering, College Station, TX 77843-3128, 
phone:(001 409) 845 7408

MAY 1993

IEEE International Symposium on Circuits and Systems — 
ISCAS ’93, May 2—6, 1993, Sheraton Chicago Hotel and 
Towers, Chicago, Illinois; Contact: Dr. W. Kenneth Jen­
kins, Coordinated Science Lab., University of Illinois, 1101 
Springfield Ave.,Urbana, IL 61801
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SYSTEM IDENTIFICATION USING THE 
SYMMETRIC LOGARITHMOID AS AN 

ACTIVATION FUNCTION IN A FEED-FORWARD
NEURAL NETWORK

Abhay B. Bulsarif and Henrik Saxen*)

Abstract
In most applications, the sigmoidal activation func­

tion is used without questioning its limitations. The sig­
moid restricts the outputs from feed—forward neural 
networks to between —1 and 1, or 0 and 1. However, 
there are systems whose outputs are not constrained 
within —1 and I, or 0 and 1, and for reasons of loss in 
sensitivity, it is not desirable to map the output range to 
0 to 1. In such cases, the symmetric logarithmoid pro­
vides a viable alternative to the sigmoid, while preserv­
ing many characteristics of the sigmoid.

This paper illustrates the applicability of the symmet­
ric logarithmoid activation function in a feed — forward 
neural network, exemplified by a system identification 
problem of a biochemical reactor. The inputs to the ne­
tworks were the three state variables at a time, and the 
process input variables (control variables and disturb­
ances) from that time to the time for which the state var­
iables are to he predicted. This duration was 0.1 hour, 
and the characteristic time for the process was 2.9 hours 
under normal circumstances.

Levenberg-—Marquardt method was used to train the 
neural networks by minimising the sum of squares of the 
residuals. In most cases, the symmetric logarithmoid re­
sulted in lower error square sum values than the sig­
moid. The predictions were quite accurate.

The symmetric logarithmoid is continuous, first-—or­
der differentiable and a simple, monotonically increa­
sing algebraic function. Convergence is generally faster 
compared to the sigmoidal activation function. Ex­
tremely large weights are not commonly generated by 
the training process, but is a usual feature with the sig- 
moids,

1. Introduction

A lot of work has been done on feed—forward neu­
ral networks taking the sigmoid for granted. The sig­
moid, however, has its limitations and its applicability 
is not universal. Sigmoids are applicable for outputs

*) Abhay B. Bulsari1. and Henrik Saxen
Varmetcknik, Kemisk lekniska fakulteten 
Abo Akadcmi 
Si 20500 Turku. Finland

t  on leave from Lappeenranta University of Technology

contrained between 0 and 1, or 1 and 1. A linear 
mapping can extend this range. But many variables do 
not have such limits, and it is not always desirable to 
map them to a range of 0 to 1 since sensitivity can be 
lost in the process of mapping. Feedforward neural 
networks can be used for system identification of pro­
cesses [1], and one often comes across variables like 
temperature, pressure, viscosity, concentration, etc. 
which have no upper limits, although for a system un­
der consideration, they may stay in a particular range.

System identification is an important task for che­
mical, biochemical and metallurgical processes, espe­
cially where the mathematical models are not accurate 
enough for control purposes. This is more true of bio­
chemical processes, where models based on first 
principles are not so common.

Although back propagation has become popular on 
grounds of simplicity and its capability to learn se­
quentially from training instances, we have used the 
Levenberg Marquardt method [2 — 5] for minimising 
the sum of squares of errors.

The sigmoid is very flat when the absolute value of 
its argument |a,| > 10. In other words, its derivative is 
extremely small, and has poor sensitivity to its argu­
ment. This is the root cause of the very slow rates of 
convergence during the training phases of neural ne­
tworks, and relative insensitivity of the network to 
a fairly wide range of weights.

The symmetric logarithmoid, given by the following 
equation overcomes these limitations despite, per­
haps, creating some others of its own.

The sigmoid and the symmetric logarithmoid can be 
considered to be in a continuum of activation func­
tions. One extreme of the activation functions is the 
switch (the sign function), a network based on which 
cannot be trained by any of the optimisation methods 
meant for continuous functions. The sigmoid allevi­
ates this problem by smoothening the switch near its 
discontinuity. The symmetric logarithmoid is continu­
ous and first —order differentiable. It is a monotoni­
cally increasing function with maximum sensitivity
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near zero and monotonically decreasing sensitivity 
away from zero, as with the sigmoid. However, the 
symmetric logarithmoid never becomes insensitive to 
the argument, and its output is not limited to between 

1 and 1. Networks using this function are a bit eas­
ier to train, and the convergence is better. The deriva­
tive of this function can he expressed as a function of 
its output, and can thus be used in an algorithm like 
back-propagation also. The other extreme of activa­
tion functions is the linear (identity) function, which 
finds limited use in our work for statistical purposes. 
This function, obviously poses no problems to the 
usual optimisation methods, and the Levenberg-Mar- 
quardt method, which we use, converges in very few 
iterations.

2. The biochemical process

Biochemical processes have highly non-linear char­
acteristics, and have operability in limited domains. In 
the process considered here, Saccharomyces cerevisiae, 
a yeast, is grown on glucose substrate in a chemostat 
(a biochemical continuous stirred tank reactor) produ­
cing ethanol as a product of primary energy metabo­
lism. There are three state variables: microbial con­
centration, X\ substrate concentration, S ; and pro­
duct concentration, P. The kinetic and stoichiometric 
parameters were taken from a recent study on kinetics 
of this system [6]. The feed to the chemostat is sterile,
i.e. there are no microorganisms in the feed. The feed 
concentration of substrate, glucose, is S (), and D is the 
dilution rate (volumetric flow rate per volume of the 
chemostat.) The dynamics of this system can be de­
scribed by the following equations.

Glucose

0.427S
■l ~ 0.245 + S ' 

Yr v -  3.436,
y\ s -  0.152 (1 -  /V302.3),

- ( P /1 0 1 .6 ) 195)

y v p =  0.291

Ys x = 1 /Y x p

The growth rate, // cannot exceed 0.427, and that is 
also the upper limit for the dilution rate, D. If the di­
lution rate is higher than the growth rate, microbial 
concentration in the bioreactor decreases to zero. 
Table I shows typical steady state values for the pro­
cess parameters.

Table 1, Typical steady state values of the process par­
ameters.

So i 01.416 gm/lit
D 0,345 hr 1
X 12.0 gm/lit
s 10.0 gm/lit
p 41.232 gm/lit
B 0,345 hr 1
Yx,- s 0,1313
Y\ p 0.291

3. The Levenberg-Marquardt method

Levenberg-Marquard methodt [2 5] was used to
determine the weights in the neural networks by mini­
mising the sum of squares of errors (the difference be­
tween the calculated output and the desired output), 
which is the aim of network training. Back propaga­
tion by the generalised delta rule, a kind of a gradient 
descent method is one popular method for such train­
ing. Most algorithms for least-squares optimisation 
problems use either steepest descent or Taylor-series 
models. The Levenberg-Marquardt method is a res­
tricted step method, which uses a interpolation be­
tween the approaches based on the maximum neigh­
bourhood (a „trust region“) in which the truncated 
Taylor series gives an adequate representation of the 
non-linear model. The method has been found to be 
advantageous compared to other methods which use 
only one of the two approaches.

4. Results

(lx
(It (ß -  D)X

dS
dt = ms„ S) -  Ys , LiX

dP
dt DP + Y,. x /,iX

where the growth rate, u and the yield coefficients, 
x and )/ \ are given by

Several simulations were carried out using Sim- 
non [7] to generate the data for the system’s dynamics. 
Results from 16 simulations were used to tabulate the 
training instances. The few instances which had out­
puts exceeding 1 were excluded to permit usage of the 
sigmoid. The total number of training instances was 
1562.

The 9 inputs to the networks were the state var­
iables X, S, P at a time /, St) and D at times /, 1 + 0.5 At 
and t + At. The outputs of the neural networks were 
the changes in the state variables X, S, P between
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times l + At and t. All training instances had outputs 
between — I and ! to permit usage of the sigmoid. At 
was 0.! hour and the process had a characteristic time 
of 2.9 hours.

4.1 Training the feed-forward neural networks
A network without hidden layers is not applicable. 

The minimum sum of squares of errors (SSQ) was 
found to be about 14 with the sigmoid as well as the 
symmetric logarithmoid activation functions.

Two nodes in the hidden layer w/ere not sufficient. 
The SSQ were about I 1.5 for both the activation func­
tions. The (9,3,3) network performed much better re­
sulting in SSQ of 1.498 and 2.154 for the symmetric 
logarithmoid and the sigmoid respectively. It was 
much easier to get converged results with the symmet­
ric logarithmoid than with the sigmoid. For (9,4,3) and
(9,5,3), the SSQ were 0.9487 and 0.3516 respectively, 
using the symmetric logarithmoid activation function. 
The rms error for (9,5,3) with 68 weights was 
8.66x10 A linear correlation between the outputs 
and the inputs results in a SSQ of 13.56.

Networks with two hidden layers were difficult to 
train. (9,2,2,3) and (9,3,3,3) had SSQ od 11.971 and 
1.762 respectively with symmetric logarithmoid activa­
tion functions.

Fig. 2. Comparison of predicted changes in the state variables X, S
and P in 0.1 hr.

This trained neural network (9,5,3) was tested on 
another set of conditions, which it was not trained for. 
There were two step changes in ,S0 and in D in the test 
conditions. The predicted and actual changes in the 
state variables are shown in Fig. 2. The prediction is 
very good throughout. The sum of squares of these er­
rors is 0.04096, and the root mean square error is
0.01 174. This small error in the change of state var­
iables is hardly visible on the plot of the state var­
iables, shown in Fig. 3.

It is sometimes better1 to use the logarithms of the 
inputs instead of their actual values, especially if the 
inputs span more than an order of magnitude. How­
ever, it did not improve the results in this case. The 
SSQ for (9,3,3), (9,4,3) and (9, 5, 3) were 2.103, 0.940

+ as experienced with the CSTR system identification problem in
[ 11, unreported

and 0.470 respectively using the symmetric logarith- 
moids, which are not better than the ones obtained 
without the logarithmised inputs. It may therefore be 
concluded that logarithms of inputs help only when 
the range of inputs is more than a few orders of mag-
nitude.

19.0 _ ■ 1 1 1 [ r ! 1
17.0 —

15.0

13.0

11.0
_ _

x  X
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0
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Fig. 3. Comparison o f predicted and actual values of the state 
variables X and S (Differences in P are also not discernible.)

4.2. Dominant weight analysis

Dominant weight analysis is a rationalisation of the 
nature of dominant weights. This method is not appli­
cable in a straightforward manner when there are no 
singular dominant weights. Its applicability is limited 
to monotonously increasing or decreasing activation 
functions, and is thus not applicable to activation 
functions like the radial basis (normal distribution, or 
the derivative of the sigmoid) functions. For a net­
work without hidden layers, every weight is a domi­
nant weight. For single hidden layer networks, iden­
tify the hidden node with the largest weight in magni­
tude from the first output, if the second largest weight 
in magnitude is substantially smaller than the largest 
weight. The sign of the product of this weight with the 
weights from that node to the input nodes indicates 
whether the relationship between corresponding input 
node and the first output is positive or negative. For 
more hidden layers, identify the dominant weights for 
all the hidden layers to the layer above, and take the 
product all those weights with the weights from that 
node in the first hidden layer to the input nodes. The 
sign of the product indicates whether the relationship 
between corresponding input node and the first out­
put is positive or negative. This can be done for all the 
outputs, and should work for all configurations of the 
networks.

In this chemostat system, the first output AX hat 
a negative relationship with D: the second output AS  
has a positive relation with S {) and /). and negative 
with A and S ; and the third output AT has a negative 
relation with D and P\ and a positive relation with X.

This could be confirmed with (9,3,3) and (9,5,3). 
(9,4,3) did not have dominant weights for any of the 
outputs, but considering that both the large weights 
were of the same sign for all the three outputs, pro­
ducts were taken for both the “quasi-dominant”
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weights and added. The resultant explained the ex­
pected nature of the relations between the output and 
input variables. (Similarly, dominant weights from the 
hidden layer to the inputs should also be identified to 
consider if they could influence the upper layers.) One 
more modification was needed with this system. We 
have three values for ,Sn and for D. Only one represen­
tative node for S () and one for D were considered. 
These were the middle nodes among the three, repres­
enting averages of *S(, and D during that At.

The fault tolerance of the neural networks, which is 
being considered as a desirable or useful by-product 
of their architectures, is limited to the non-dominant 
weights. If one of the nodes with dominant weights is 
removed, the network cannot function properly. The 
fault tolerance is very good when nodes with very 
small weights are removed. This technique can be 
used to trim a network. However, those small weights 
are by no means useless. They perform effective 
curve-fitting in small regions by small amounts.

A corollary of this analysis is that replacing the 
weights by their multiplicative inverse (-1 times the 
weights) except the biases on the output nodes and 
second, fourth, etc. hidden layers, leaves the outputs 
unchanged for networks with an odd number of hid­
den layers.

5. Conclusions

System identification of the biochemical system 
could be performed successfully using the symmetric 
logarithmoid activation function in feed-forward net­
works, and the results were often better than with the 
sigmoid. Convergence during training was faster than

is usually encountered with sigmoids. The weights 
generated after training were never very large, al­
though that happens often with sigmoids.

The symmetric logarithmoid, thus provides a feasi­
ble activation function for the neurons, when the out­
puts are not in a well-defined limited range. It may 
not be correct to consider this function as an alterna­
tive to the sigmoid. The sigmoid is applicable when 
the output is in limited ranges, and this function is 
applicable when the output is not limited, and hence 
their areas of application do not really overlap.
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Book Review

Forrest Stephanie: Parallelism and Programming in Classifi­
er Systems.
Research Notes in Artificial Intelligence, Morgan Kaufmann 
Publishers, San Mateo, California 1991, pp. 213.

The book is based on the concept of general-purpose lear­
ning algorithms applied to parallel rule-based systems, as 
proposed by J.H.Holland.

It is an updated version of the author’s 1985 PhD thesis, 
extended by broad discussion on parallelism, intelligent sy­
stems and emergent computation. It is intended both for 
graduate students in AI and cognition theory and for specia­
lists in the classifier systems, which represent an alternative 
model to connectionism (such as neural networks) from one 
hand and to knowledge representation systems on the other 
hand, but unlike them they operate on a symbolic/sub-sym- 
bolic level.

The schema of the system is the usual one: performance 
system, which is a rule based, message passing and highly 
parallel system of classifiers [over the alphabet 0,1,], credit

assignment level, based on bucket brigade algorithm and the 
rule discovery level using a genetic algorithm.

The first part of the booklet [chapters 1,2 and 3] may serve 
as an introduction to all above mentioned components in­
cluding a brief description of the KL-ONE family of langua­
ges (with a good source of references). What is to be appre­
ciated is a nice discussion on parallelism, which can be of 
benefit to a broad range of readers.

The second part is more specialized and requires familia­
rity with KL-ONE and patience to swallow all of the many 
formulas. On the other hand, general remarks are pleasing 
to read by anyone. This part brings some implementation 
details, study of various complexity measures of parallel 
KL-ONE operations and examples ending with 50 pages of 
Most Specific Subsumer and, above all, a theoretically sup­
ported general compiler for producing classifiers implemen 
ting any semantic net specified by a KL-ONE expression.

The book is provided by a well selected bibliography [but 
no subject index]. The formulas are typed in two fonts, 
which contributes to the clarity, but needs good eyes or glas­
ses.

Jiří Hořejš
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INVARIANT SPEECH PERCEPTION AND RECOGNITION
BY NEURAL NETS

V.Chudý*), L. Chudý**), V. Hapák***)

Abstract:
In the paper is described one of the possible appro­

aches to speech recognition in the family of modern In- 
do — european languages, esspecially in Slovak. The 
model describes the processes of perception by an inva­
riant feature neural net and the learning and recogni­
tion by the probabalistic neural net. The model requires 
maximum 256 bits for a pattern of any word what corre­
sponds to compression of the information rate from so­
me 216 bits per second to 2s bits per second for an isola­
ted word. The aim of the model is recognition which is 
independent (invariant) of a speaker, and the redundant 
physical and phonetic parameters. An underlying Group 
symmetry approach is implicitly involved in the model.

1. Introduction

Despite the fact that from the I960’s it was beco­
ming clear that the final goal of speaker independent 
connected speech recognition is one of the hardest re­
cognition problems, work in this field has been conti­
nued by investigation of the particular speech recogni­
tion tasks. In the 1980’s were applied three different 
concepts to deal with these tasks. The first two were 
strongly statistical ones:

Dynamic Time Warping and the Hidden Markov 
Model. The last one is connected with the re-emergen­
ce of the Artificial Neural Networks (ANN). In spite 
of the great potential benefits of ANN, which are ba­
sed on strong motivation by the nature-like appro­
aches and solutions, the mainstream of the ANN 
speech recognition investigations still has more engi­
neering-like fashion.

The usual strategy here is the following one:
1. to apply some standard acoustic preprocessing, 
which transforms or encodes the speech signal into so­
me coefficients: spectral, cepstral, LPC etc.
2. to use some learning and recognition methods for 
the classification of the obtained coefficient represen­
tation of speech sound.

*) Dr. V. Chudý,
Dept, of Phonetics, Philosophical Faculty of Comenius University, Gon- 
dova 2, 818 01. Bratislava, Czechoslovakia 
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The main effort is oriented solely in the investiga­
tion and improvement of the learning and recognition 
methods.

Conversely relatively very little attention is focused 
on the signal preprocessing stage. It is known, howe­
ver, that the biological auditory system is sensitive not 
only to the spectral representations of speech but also 
to various transient features in the time domain, 
which are responsible for the highly nonlinear dyna­
mical processing of the auditory system. Widespread 
opinion is that for the time being this nonlinear pre­
processing is not understood well enough to warrant 
the design of artificial speech preprocessing methods 
or standard electronic analogies.

The approach proposed in this paper is just focused 
on the understanding and design of the biologically 
motivated and plausible preprocessing stage of speech 
recognition. We think that the key for further deeper 
understanding of the human speech recognition lies in 
this field. However, we investigate here also the subse­
quent learning and recognition methods.

Our speech processing approach is crucially based 
on the invariant feature perception principles. These 
are incorporated in a fundamental way in the con­
struction of the processing mechanisms, whereas inva­
riant features (which correspond to words or phone­
mes) emerge naturally. As a consequence the relevan­
ce and significance of the Group symmetry approach 
naturally arises and is involved in our model.

The proposed approach can be considered as the 
ANN model of speech perception and recognition, 
but also as the design of an artificial speech recogni­
tion system.

The paper is organized as follows:
In Sect. 2 we introduce the concept based on the in va­
riant feature principles. We describe the model of the 
phonetic preprocessor of the neural network form. We 
discuss this model from the point of view of the isola­
ted word recognition in time domain.
In Sect 3 are introduced and discussed the learning 
and recognition methods by a probabilistic neural net 
related to the above task.
In Sect. 4 we discuss the results of computer simula­
tions on the real speech data.
Sect. 5 contains some discussion and comments about 
human perception in the comparison with that of par­
rots.

Proposals of the more human-like perception and 
recognition methods are discussed.
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Some technicalities and fundamental concept pro­
posals related to the general field theory approach are 
deferred to the Appendix,

In this paper we prefer a physically oriented treat­
ment to a mathematically rigorous one.

2. Neural Phonetic preprocessor — NP 4

In the first part of this section we want to make so­
me general remarks about speech perception from the 
point of view of abstract ideas of information proces­
sing and about the role of invariant feature recogni­
tion mechanisms. The aim is to see the motivation and 
background of our argumentation in the proposed 
construction of the speech perception model.

In the second part we mathematically describe in 
detail particular processing stages of the neural per­
ception phonetic preprocessor model. In the following 
text we will address this model shortly as NP 4.

OUTER MIDDLE INNER AUDITORY HIGHER
EAR EAR EAR NERVE NERVOUS

SYSTEM

We now present a short remark about the information 
processing aspect of human speech recognition. From 
the point of view of information processing the hu­
man speech perception and recognition mechanism 
can be considered as a special device which

compresses the information rate from about l ' 6 bits/s
to 2H bits/s. for isolated words.

These estimations follow simply from the following 
expressions for the information rate in analog or digi­
tal form

sound waves. For this outer speech signal this gives 
about 216 bits per second.

The lower limit follows from the next considera­
tions. When we want to describe a phoneme-like unit 
in terms of binary distinctive features (see [4]), we 
need for this about six bits (whereas the number of 
phonemes is about 40). We then have about 10 phone- 
me-like units for a single word one second long. This 
approximately leads to the information rate of about 
28 bits per second. At this point we want to note that 
our model final representation of the word is a 32 di­
mensional vector of 1-byte numbers, what is just the 
reguired information rate 28.

Thus we can conclude that the speech signal has 
a relatively high redundancy, so when designing the 
recognition system we must be sure that the compres­
sion of the information rate does not change in a con­
siderable way any of the essential phonetic properties 
of the speech signal, which are necessary for the re­
cognition of the phonemes, words, or continuous 
speech. In practice it means that the artificial recogni­
tion system is as effective and optimal as is the value 
of the obtained compression information rate of the 
original speech sound to the final bit representation of 
the phoneme or word.

Our approach is based on the conviction that the 
crucial role in this process is played by the invariant 
feature mechanisms. In the next section we therefore 
introduce some basic facts about invariant speech re­
cognition.

2.2 Invariant feature recognition requirements

In speech perception and recognition it is possible 
and useful to take into account two kinds of invarian­
ces. The first of these deals with the configuration spa­
ce or outer space, space-time, frequency, intensity, etc.

Invariances under
— the intensity o f speech signal
— the acoustical and phonetic noise
— the pitch o f the speech signal
— the rapidity o f speaking and the total time duration 

o f a word
— the relative location and motion o f the observing sy­

stem to the source o f speech signal

~ ~  -  BW\og2 {1 + S/N} for the analog form,

2BW \o%2 {2A/D} for the digital form,

where A l /A t  is the information rate (bits/s); BW is 
the frequency bandwidth of the input signal (Hz); 
S /N  is the signal to noise ratio of the speech signal 
and A /D  is the number of bits used for analog to digi­
tal conversion.

The upper limit is the input information rate which 
is transferred from the outer space to the ear via

are called the outer ones of the recognition mecha­
nism.

All these invariances we use in every-day life and 
they are enormously important for effective and ro­
bust speech communication. On the more fundamen­
tal level they point to the possible internal mecha­
nisms of speech perception and recognition which can 
be used in the design of the recognition system. That 
is analogous to the situation when from the invariance 
under group symmetry transformations we can con­
struct differential equations (invariant under these 
transformations) [15].

The proposed NP4 model in the next section can be
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considered just as the invariant (under above listed 
transformations) feature extraction mechanism.

The second kind of invariances are the so called in­
ner ones and are reflected in the symmetries of the 
phonemic system (what will be discussed in the Dis­
cussion). At the present stage of the investigations we 
have not incorporated these inner invariances in the 
construction of the proposed NP4 model. However, 
we consider it incorporation in the model as crucially 
important and in final effect responsible for the hu­
man-like speech perception and recognition (see again 
Discussion and also Appendix).

And finally we require a feature of beauty, which 
means to be simple, compact, small and realizable in 
a simple way in analog or digital hardware fashion.

We presume the languages satisfying the invariance 
requirements to be almost all Indo — european langu­
ages.

2.3 The NP4 model

To design our invariant feature system we strongly 
follow the physiological mechanisms of speech per­
ception. So every physiological part making an impor­
tant operation with the speech signal (illustrated in 
fig. 1) corresponds roughly to the subsequent part of 
NP4 recognition system. Thus we can construct the 
NP4 schematically according to fig. 2, which follows 
the sketch in fig. 1. In the upper line of this figure we 
have denoted physiologically significant parts artifi­
cial processing analogies of which are in the middle li­
ne. In the lower line are presented the information 
rates of the individual levels of the processing.

MIDDLE BASILAR HAIR AUDITORY AUDITORY
EAR MEMB. CELL NERVE NEURONS

Figure 2

Here it must be pointed out however, that the phy­
siological resemblance of the proposed model is 
a qualitative one, of course. Moreover, the NP4 model 
as a preliminary model does not include frequency 
analysis processing (as it appears in human chochlea). 
That is the main reason for considering the proposed 
model as a more parrot-like perception model. We 
will discuss this topic in detail in Sect. 5, where there 
are proposed more consistent and elaborate appro­
aches for modeling of human-like speech perception

and recognition. A hypothesis of a more general field 
theory concept of this topic is introduced in the Ap­
pendix.

In what follows we will not deal in detail with the 
physiological background of the particular processes. 
More information related to our model can be found 
in [1, 2, 16, 17]. In this section we do not introduce any 
concrete values of parameters in a question. This is 
done in Sect. 4 where we will present the numerical re­
sults on the real speech data.

Now we mathematically describe the particular 
parts of the NP4 model.

1. Let us consider the input speech signal s(t) as 
a function of time.The first part of the NP4 is low- 
pass filter

s,(0 = J h, ( t , t >) s ( i ' ) d t > , (2.1)
where /i, (t, f )  is the impulse response of the low-pass 
filter. This impulse response must be linear, stationary 
and its phase characteristic must be linear, too. The 
system realization of this filter is the so called non- 
recursive filter. Output from this filter is s, (/).

This part models the function of the middle ear.
2. The following part describes the function of the 

basilar membrane. We model this function in a very 
approximative fashion, simply by the certain approxi­
mation of the first derivative of x,(t)

s2(0=J ha(t, t ' )si(t ' ) d t f ~ (ds]t ) / d t . (2.2)

The requirements of the impulse response h2 (t, t') 
are similar to the previous ones. In simulations we ha­
ve chosen a physically realizable, causal response, dis­
crete version of which is given in Sect. 4. The frequen­
cy characteristic is illustrated in fig. 6., which has simi­
lar properties as the measured ones of basilar mem­
brane (with the exception of the presence of unimpor­
tant nonlinear effects).
3. The third part describes exactly the functioning of 
one hair cell, which has two types of outputs. The first 
one v(t) copies exactly the output of the basilar mem­
brane potential x2(0- The second output y{t) makes 
approximately the derivative of this potential

x ( t ) = s 2( t )  = J d t "  Jh2(t, t " ) s ( t " ) d t ' ,
y ( t )  = J d t n t  J d t "  J h2(t, t ' ) h \ ( t ' , /")(/', /")

/?,(/", t " ' ) s ( t " ' ) d t (2.3)

4. The effect of the auditory nerve and cochlear nu­
cleus we describe by the nonlinear operator tAvhich 
operates on both functions x(t) and y(t) and its out­
puts are values I or 0, only. To understand better the 
behavior of this operator we construct the so called
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phase plane of .\(/) and y(t) illustrated in fig. 3. We 
now define 2// equally spaced axes each of them be­
ginning in the intersection of coordinate axes. Then 
we can define the assumed output by a so called ele­
mentary spikes generator

Every (even) axis which is used for the counting of 
intersections has its sector which is staked out by adja­
cent (odd) axes. The mathematical treatment of this 
generator is quite similar to the previous one. We de­
fine the so called elementary time generator as

qf t )  ~ lim 0[  -  f i t  + ôti f f t )]  , (2.4a)
l i t  —* o

where 0  is the unit piecewise operator defined as

0 ( a ) -  lim
<it - 0

P ÍV.HI
------- da)co + ir

1 for a > 0 , 

0 for a < 0 ,

m, (0  = & [ -  gi ( t ) gi+ i (/)]. (2.4b)

The meaning of 0  is the same as above and the 
function gj is defined as

g f t )  -  arctg x( t )  -  an - i y f t )  
y( t )  -  a n -  i x( t ) for i = . . n.

here i ( 1)' % the time St can be interpreted as the
refraction time of the nerve and in the digital model it 
is equal to the sampling period. Variable f ( t )  is defi­
ned by

f ( t  )arctg / Vt) -  a2iy(y) \
\ v(0 -  oc2lx(t)  ) for / = . . n ,

where x(f). y(t) are given in (2.3) and arctg (a2i) is the 
angle of a 2/-th axis. We see that the physical meaning 
of this generator is to generate a unit impulse when 
the trajectory intersects the given (even only) axis. We 
will explain the meaning of the factor 2i later.

The physically important meaning of the above type 
of processing is to make some quasi-topological featu­
re extraction, which is invariant to intensity and noise, 
For a more detailed physical explanation of this we 
refer to Appendix A. However, this meaning is also 
clear from the comparison of fig. 3a, b, c. The number 
of spikes produced inthese three situations is the same 
or in other words this operation is invariant under so­
me continuous deformations of the phase trajectory. 
It is interesting to realize that the above mechanism 
explicitly models the firing of neurons.

A “cochlear nucleus“ has two kinds of outputs. The 
first one we have just described, the second one deals 
with the time duration which the system spends in the 
single sector of the phase plane.These sectors are il­
lustrated in fig. 3.

The physical meaning of the elementary time ge­
nerator is to be the weight factor of the spike genera­
tor q f t ) in the input of n neuron-like units as we will 
see in the next part. The purpose of this weight is to 
normalize in some sense the time duration and rapidi­
ty of speaking. On the more local level it takes into ac­
count the relative probability of the input firing of the 
/-th neuron-like unit relative to the other ones.

5. We will now discuss the fifth part of the NP4 
model, which reflects the activity of the network of 
auditory neurons, which consists of n neuron-like un­
its, with inputs from the cochlear nucleus. In the de­
scription of the dynamics of this network we will fol­
low some common ideas from Kohonen, [5]. Thus we 
describe the activity of n neurons by the following sys­
tem of dynamic equations

d,h/ d t =  I  cpi ( Çij) -  pi ( v\i), (2.5)
i - i

where tj is the output firing activity of /-th neuron, Ç„ is 
the frequency of the firing delivered by some other 
neuron to the /-th input of the /-th neuron. Functions 
0  and p have some general form. Assuming that the 
inverse function p exists and the stationary input-out- 
put matching condition holds we can obtain

l i f t )  -  C7i [1f t )  + y f t )  ],

where /,■(/) is the input activity of the /-th neuron, y is 
the offset value, the hypothetical “threshold”, a  is 
called the sigmoid function, (for more details see Ko­
honen). As was mentioned by Kohonen the true trig­
gering threshold depends on the collective behavior, 
interactions of neurons. In this paper we define this 
threshold function in a similar way to the lateral feed­
back of Kohonen [5]. So we define the output activity 
of the /-th neuron like unit as

i j f t  + At) = Oi AI  f t )  + X Asi f t )  q f t ) (2.5a)
L / = 1

where one of the possible forms of AI, (t) may be writ­
ten as

Figure 3 Ah  (/) = A f f t )  Api(t), (2.5b)
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where A^ ( t )  and Aj.it (t) are the integral or sum activi­
ties of the /-th elementary spikes and time generators 
during the time duration At defined as

i + At ^

AÇ{ t ) ~  J dtdqi /dt
'

t + At

Ajii{t)= J dtdnij/dt
1 y

(2.5c)

In this paper we do not discuss whether the inte­
grals are in the standard form or in some generalized 
form. The quantities Asu(t) are defined as

Asij(t) = ( A Ç i ( t ) ) - A Ç ( t ) 
(AÇi(t)) + AÇ(t )  ’ ( 2.5 d )

where (£}(t)) denotes the back-time mean value of 
Q(t), generally weighted. In our case we have then

(AC( t ) )=  E A $ ( t - k A t ) w ( k A t ), (2.5e)
k = I

where the weight function w is generally a nonincrea­
sing function of kAt and expresses some forgetting ef­
fects. The basic form of this function is

w(kAt)  = 0{(a — k) At) / a.

The decay time of this function, a At can be called 
the retardation time. In Sect. 4 we shall also show the 
physical meaning of At as the adaptation time of the 
auditory nerve and neuron-like units. The meaning of 
As,, follows from the following considerations. There 
exist three limit values of this function

Asij(t) = <
for AQ{t) 
for AQ(t)  
for AQ(t) >

(AÇ,(t)) , 
<AÇ(t)) , 
(AÇ,(t)) .

We see that this function describes whether some­
thing happened in the /-th neuron relatively to the j -th 
neuron. In this way the neurons “communicate”, in­
teract with other neurons and with themselves. The 
idea of choosing just this function is coming from 
some abstract ideas of vision perception and recogni­
tion. We believe this idea to be rather general and ap­
plicable in the neuron-like systems. We have also seen 
that these interconnections or synapses are not sym­
metric ones in the indexes / and j.

The sigmoid-like function cr(.) in (2.5a) is defined 
as

“architecture” features of the NP4 model. These con­
sist of
—- 3 frequency filter-like units,
— 1 spikes-like generator unit with n outputs,
— 1 time generator unit with n outputs,
— n neuron-like units of the fully connected neural 

network in which each neuron-like unit has,
— 1 direct external input from the particular spikes 

and time generator (see 2.5b),
— (n -  1) cross inputs.

The NP4 model network makes analysis of the 
speech signal in the time domain. It performs infor­
mation-like processing and not energy-like process­
ing. This processing is differential in time but the re­
sult of this processing given by the output activity of 
neurons is integral in time. The parameters of the 
model are self adjusted which is very important for 
the so called generalization problem (see Sect. 4). The 
optimal number of neuron-like units we will discuss 
also in Sect. 4. Not mentioned here is the problem of 
the timing control or the problem of the determination 
of the beginning and the end of the word. We pro­
posed one possible neural net approach to this prob­
lem in [16]. However, in this paper we will not discuss 
this problem in detail and it will be supposed that the 
time of beginning and end, tB resp. were sufficient­
ly precisely determined.

REMARK

As we have just shown, the behavior and the de­
scription of the NP4 net is a little complex but still de­
terministic. The best indication of this is the possibili­
ty to express the whole network by exactly one equa­
tion of the analytical form (2.5a). This is consistent 
with the common deterministic trend in neural net 
theories (see [5]). The probabilistic ideas are incorpo­
rated only in the framework of classical probability 
theory or classical physics. Thus we can ask what will 
be happened if we incorporate the ideas of quantum 
theory, for example the principle of nondistinguishing 
of neuron states, into already existing neural theories. 
A more general question can be as follows. Does the 
quantum theory play any important or even funda­
mental role in the neuro-business? Or vice-versa. 
Does the neuro-business play any important or even 
fundamental role in the quantum theory?

3. The learning and classification method

0 if x <0
<r(x) = i

[ x if x >0

As we will see this leads in practice to the a(x) = x. 

At the end of this section we summarize the main

NNW 4/91, 227—243

In the previous section we have shown that the NP4 
produces n real values which represent output activi­
ties of neural assembly of n neurons. It means that the 
original speech sound (scalar) signal is finally trans­
formed into the n — component real valued vector 
Tj(t) e R".

Final representation of the single word is then given
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by evolved neural activity of the assumed assembly at 
the end of a word given by final vector x e R".

At this stage there remain two chronic problems to 
be solved. The first one is to design the learning me­
chanism for producing of the prototypes of assumed 
single words. The second one is to propose an ade­
quate classification mechanism of vector patterns to 
the one of the prototype class pattern (from the 
learned prototype pattern set).

However, both mechanisms function in the human 
simultaneously, although the main learning process 
takes place in the first years of age. So, adults usually 
use an effectively elaborated prototype word set, 
which is adjusted in fine details during time, only. In 
this paper we deal with the similar situation, when we 
model both mechanisms in the frame of single neural 
net structure — Probabilistic Neural Net (PNN). In­
stead of dealing directly with prototype class patterns 
belonging to particular key words, this schema works 
implicitly with complete distribution sets of the proto­
type patterns (given by sets of pattern realizations be­
longing to a particular class word).

In the following part of this section we briefly dis­
cuss the main features of a PNN learning and classifi­
cation method which we think to be proper for our 
problem.

3,! The probabilistic neural net

Let us assume pattern vectors where k denotes 
word class and j  is assigned to the particular /-th com­
ponent output vectors from the NP4 model.

In the framework of the so called Bayesian philoso­
phy we can write for the cost of classifying pattern in­
to class k (assuming the statistical distribution into 
classes 1 ,2 ,..,, M)

C(x, k) = V P(l\ x ) L  (M ), (3.1)
/- i

where P(l\x)  is the conditional probability of pattern 
v belonging to class / and L(k, I) is the unit cost of 
one decision expressing the miss classification of 
a pattern ,x to the class k when it was actually from /. 
For the equally significant patterns we can write L(k,  
l) as

L ( k J ) = \ - S u .  (3.2)

The conditional probability P(I\x) can be ex­
pressed as

P(l  I a ) - p(x  | /) P ( l ) , (3.3)

where P(l) is the probability that any observed pat­
tern is really belonging to the class /. A p(x  \ I) is then 
the probability distribution of the pattern vectors of 
the class /. Now following Specht [6], we assume that 
this probability distribution can be expressed by the 
multivariate gaussian distribution as
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P(x 1 /)
1___ 1

(2/r)"/2 a N'

X  exp [ -  ( x -  xIjY / 2 a ] ,
./' = !

(3.4)

which means that we estimate the probability distribu­
tion or probability density function from the so called 
training patterns x IJ, n is the dimensionality of the pat­
terns and (j is the “dispersion” of the distribution with 
the meaning of a smoothing parameter. With the help 
of this distribution we can define the discriminant 
function Dk (x) as

1
/;>,(*) = - X  R ( i ) L (M ) —

(3.5)

X  exp [ -  (x “ xij)2/2 <7 ].

Because in the classification are important only 
relative costs we can drop all the factors in (3.5) which 
are common to all classes. Then (3.5) we can redefine
as

D, (x) =
M

Z  R( l )L(k , l )
/= 1

1
N,

Ni

X exp [ -  (xx'J -  xV J) /2 c r].
/= i

(3.6)

The basic case of this discrimination function is de­
fined by the condition (3.2), then we obtain from (3.6)

1 Nl
Dk(x)= P ( k ) - ~  X  exP

(3.7)
[~ (x x * '-* V ') /2 < r2]

Now we can propose the multilayer neural network 
modeling of the discriminant function (3.7) according 
to [6], illustrated in fig. 4. In this neural net, the so 
called Probabilistic Neural Net or PNN, the values 
flow from the input layer to the middle layer. Every 
middle node is assigned to one training pattern, xki 
and the weights from the input layer to this node are 
equal to the components of this training pattern vec­
tor. The weight from the bias-node is proportional to 
the squared euclidean norm of the particular training 
pattern. The middle nodes have the nonlinearity of 
the type

exp T(-)/cr ].

The weights from the middle layer to the summing
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layer are equal to one and every sum node is assigned 
to the one of the classes by the way that the every mid­
dle node is connected only to the sum node of its 
class. The weights from the sum node to the first layer 
of the MAX NET are equal to P(k ) / Nk and the MAX- 
NET produces the index of the sum node with maxi­
mum value or the index of the recognized class, the 
word.

INPUT MIDDLE SUMMATION MAXNET
LAYER LAYER LAYER

Figure 4

We have just described the learning and recognition 
of the PNN. It can be seen that the training is easy 
(without any iterations), instantaneous and can be 
very easily adopted to the time-varying pattern statis­
tics, [6]. Further, as Specht, [6] has mentioned the 
PNN can asymptotically approach any probability 
density function under some general conditions. This 
can be done simply by the changing of the smoothing 
parameter a. The second advantage of this net is the 
speed gain relative to the back-propagation percep- 
tron (for example in practice this gain is about 200 000 
for the same or better performance of the nets in 
a question).

3.2 Speech Recognition System — NP5

In this section we want to summarize the above pro­
posed approaches into one coherent picture of the un­
ique speech processing and recognition system.

The NP4 model here represents the lower prepro­
cessing stages of the speech signal recognition.

The PNN makes final processing of the complex 
neuronal activity resulting from the preceding prepro­
cessing and represents high skill level operations such 
as learning and classification.

Both main modules NP4, PNN create a single artifi­
cial neural network speech recognition system, which 
will be referred in what follows as NP5.

This system can be implemented into any higher 
structured network system and can function in 
a small, flexible and compact arrangement in the situ­
ations of the segment-like, the whole word-like, and 
the syntax including processing. The principal system 
solution of NP5 (NP4 + PNN), is illustrated in fig. 5

Figure 5

where MIC denotes the microphone input control — 
it adjusts a maximum of the speech sound intensity. 
BEM is the pattern memory for the BEW (begin and 
end of a word time control) processing, SYM is the 
syntax matrix memory, STM is the short-time pattern 
memory, in this memory are memorized the “current” 
patterns. LTM is the long-time pattern memory for the 
patterns “far” in the past; it is suitable as the prepara­
tion mode of the NP5. The remaining notations are 
clear from fig. 5. We believe that the whole system can 
be realizable on the small European format as the au­
tonomous system or together with the host system.

At the end of this part we briefly discuss an imple­
mentation of some syntactic structures into our sys­
tem. This can be done in two ways. The first one, the 
so called explicit implementation can be defined by 
the reinterpretation of (3.7). Thus we postulate the ex­
istence of the syntax or lexical matrix S  (k, I) of the 
system of classes, words. Now the interpretation of 
the first term in (3.7) is the conditional probability of 
occurrance of the pattern from class A: when the previ­
ous pattern was classified as belonging to the class /. 
We postulate that the syntax matrix is proportional to 
this conditional probability. Then the discriminant 
function can be redefined as

d[(x)  = S (k, /) dk(x) , (3.8)

where dk (x) is defined in (3.7). For this it is necessary 
to have a knowledge about the artificial or natural 
syntax of the language system in a question. The sec­
ond way to do this is the using of the Kohonen self-or­
ganizing feature map instead of the PNN. This way 
we call the implicit syntax implementation. We have 
done some preliminary experiments with the last one 
and we consider this approach to be useful.

4. Results of the computer simulations

In the first part of this section we will explain our 
motivations and goals and will make a description of 
the experimental conditions. In the second part we 
present preliminary results on the NP4 and the NP5 
models.

The main goal of the following simulation experi-
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ments was to investigate the key properties of the pro­
posed model of the speech perception and recognition 
mechanisms. Especially the testing of the invariance 
properties (see Sect. 2) of the above mechanisms we 
consider as the most important and decisive for the 
design of the optimal and biologically plausible recog­
nition system. For this reason and our time & material 
limitations we preferred study of a very small set of 
class words, however recorded in a relatively great 
number of different realizations. To test the limit con­
dition properties we chose very near class words.

We used 5 words which differ only in one phoneti- 
cal distinctive feature: lama, lamu, lame, lami, lamo. 
We used the eight, 5 male and 3 female, speakers. We 
recorded 500 realizations of these words. Vocabulary 
of these words was denoted as TTV. We can charac­
terize this set bv the following parameters. The maxi­
mum of the absolute magnitude of the realizations 
ranged from about 3 Volts to 8 Volts. The time dura­
tion of the realizations in our vocabulary ranged from 
about 0.2 s to 0.7 s. The maximum of the pitch of the 
realizations has ranged from about 100 Hz to 350 Hz. 
The beginning and the end of word-realizations was 
determined by “hand" for the impossibility of manag­
ing this task by some automatic routine on our com­
puter configuration.

The acoustic preprocessor of our system consists of 
the following stages: a commercial microphone, with­
out any special properties, preamplifier, amplifier, 5 
KHz low-pass filter of the 3-rd order with the slope of 
the frequency characteristic equal to 24 dB/octave, 
12-bit analog to digital convertor with 10 KHz sam­
pling frequency. Further parts are described in Sect. 2.

In the numerical simulation we have approximated 
the derivation by the Stirling formula of the 6-th order

x(n)  = {[.vi ( n ) -- si (n -  6)] -  9 [si ( « - ! ) -
- si (/? -  5)] ^ 45 [si (n -  2) -  s\(n — 4)]} /60,

where v, (/) is the digitized speech signal and x (n)  is 
the Stirling approximation of the derivation with the 
frequency characteristic shown in fig. 6.

G A IN

2f/Fs
Figure 6
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4.1 Word clustering of the NP4 model

The goal of the first experiment was to test the clus­
tering properties of the NP4 model.

We used 100 realizations (20 realizations of every 
word) of the TTV for this purpose. As a similarity 
measure we used the euclidean distance

dk (x) = (x -  x ) 1 \

where x is the output vector from the NP4 to be tested 
and the xA is the mean arithmetic vector of the learning 
vectors for the A th class-word. The learning set is the 
same as the testing one.

We will now show results for different functional 
forms of the processing in Tab. T

In the left column we present particular functional 
forms of the processing, i.e. dynamical rules of the 
(auditory) neuron network of the type (2,5a).

We used the following parameter setup: the number 
of neurons is equal to 32, the adaptation time (or the 
window length, see Sect. 2), is equal to 12.8 ms and 
the retardation time is equal to 51.2 ms.

In the middle column are matching scores for un- 
normalized vectors and in the last column for normal­
ized ones (all divided by the total time duration of the 
given realization). The purpose of this experiment is 
to investigate experimentally the influence of different 
factors on the neural network dynamics.

In the first, second and fourth row we present func­
tional forms which have no network-like cooperative 
behavior (i.e. the dynamics of a particular neuron is 
not influenced by other neurons). We see from these 
results that processing without network-like coopera­
tive behavior has also some classification, clustering 
ability. Comparing the matching scores we see that ne­
twork-like processing not only “normalizes” vectors 
according to the time duration of the words, but it 
makes also some “homotopic” mapping which is local 
in time. For this compare the matching scores for nor­
malized and unnormalized vectors in the third and the 
last line.

A remarkable influence has also the weight factor 
Afij ( t ) in the external input AI,, which is due to the 
time duration generator (see third and fourth line).

Tab. 1

TYPE of' Processing U nnormalized Normalized

H (/ + At) = Tji(t) + Ajiiit) 30 % 20 %
il (t + At) - Tji (/) + AÇ, (1) 40 % 36 %
il {1 + At) ---- a V V' (0 As. (I) + AÇi(t) 50 % 44 %
V¡(t + At) - v (0 + AÇ (0 Afii(t) 60 % 63 %

Vi( t + At) - a £ ?// (0 Astj ( t) +
+ AÇ ( t ) Afh ( t )i_____________  __________

70 %

__
65 %

Our simulation experience shows that the matching
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scores become saturated for the NP4 with the number 
of neurons equal to 32. In the case of larger numbers 
of neurons we assume neurons to be correlated be­
cause the matching score for an increasing number of 
neurons is not increasing. The optimal value of the 
weight constant “a ” is equal to 1/32 which has a very 
natural interpretation, of the normalization by the 
number of neurons.

| MATCHING SCORE %

In fig. 7 wc present the adaptation-time dependence 
of the NP4. We see that the NP4 is functioning for the 
adaptation time about 1.6 ms, too. The maximum 
matching score is for the adaptation time equal to 17.6 
ms which is in agreement with the experimental facts 
obtained from a biological measurements, [16]. We 
think that this adaptation time is optimal only in the 
statistical sense, what means that during the process­
ing the length of the window is not constant but, for 
example, a gaussian distributed around this maximum 
value (17.6 ms). From the simulation results we can 
conclude that the NP4 does not depend on the retar­
dation time. Our experience with the NP4 tells us that 
for the generalization task (a transition from small set 
of words to a larger one) the optimal parameterization 
of the processing is in choosing of processing with no 
many fitting parameters (number of neurons, refracta- 
tion and retardation time we do not consider to be fit­
ting parameters), is obtained with self-adjusted pro­
cessing — without any parameters, constants, etc. and 
this is one of the goals of our approach in this paper.

4.2 Modifications of the network dynamics of the NP4

The proposed NP4 model enables some modifica­
tions or refinements which can improve it’s clustering 
abilities.

I. First we want to discuss the effect of assuming 
nontrivial forms of the “synapses” Asif. Up to now 
we have investigated two forms. The first one is 
the following trivial form

Asij (t) = a Si;,

where a is a constant and Sn is the kronecker symbol. 
This form corresponds to the situation when each neu­
ron interacts only with itself, the neurons are inde­
pendent. The results of simulation of this case are giv­
en in Tab. 1 (first, second and fourth row). The second 
form (the basic one), which is represented in (2.5d) 
corresponds to the set of mutually interacting neu­
rons. Again the simulation results are given in tab. I 
(third and fifth row). Now we introduce the so called 
smoothed form of the synapses by including the sig­
moid transformation

As,, —> tanh (As,y/F),

where Fis the smoothing parameter, “temperature”. 
The dependence of such modified NP4 matching 
scores on the temperature Fis in Tab. 2.

Tab. 2

T 10 6 10 10.25 0.5 1.0 2.0 4.0 10.0 102 10'

match 
score % 67 68 69 70 70 71 71 68 68 68

We can see that the smoothing parameter Fcontrols 
the “discussion” i.e. sharpness of the interaction be­
tween the neurons. For low temperatures we have 
lower matching scores (sharp, black and white discus­
sion) and for high temperatures we have also lower 
matching scores (soft, colorful discussion). Between 
these limit values exists some optimal temperature T 
where the matching score is maximal. In our case the 
obtained optimal value of Fis about 3. In this simula­
tion we used 32 neurons, refraction time was 12.8 ms 
and retardation time about 51.2 ms.

II. Next we investigate the effect of some frustration 
of the matrix of synapses. Let us assume the fol­
lowing modification of the synapses (half their 
number are nulled)

ASjj for j  < n/4 or />3«/4, 
0 elsewhere,

where n is the number of neurons and As is one of the 
assumed forms (trivial, basic or smoothed). The idea 
of this particular form came from the physiological 
measurements (see [16] point /7, [17]) which show us 
that the acoustic activity is suppressed during the ne­
gative portions of the stimulus signal below the spon­
taneous rate. The negative part of the stimulus signal 
corresponds in the NP4 model to the left part of the 
phase plane, see Fig. 3. The simulation results show 
that this type of frustration does not detoriate the re­
sulting matching scores, which are the same as in the 
previous cases (with the same set of parameters) i.e.
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about 71 %. Thus, from the pragmatic point of view 
we need only n2/ 2 of connections instead of n2.

III. Other natural modification of the network are of 
the functional form of the output neurons. In Sect. 
2 we presented the basic form of these neuron out­
puts as

í -V for x>0,
I 0 for v < 0.

We used this functional form also in the previous si­
mulation experiments. Now we introduce a sigmoid- 
like functional form

c t ( x )
(To

1 + e x  r

where r is the smoothing parameter and a, is the value 
of the maximum output activity (in our case equal to 
256). In Tab. 3 are presented matching scores of the 
above frustrated model, with refraction time 12.8 ms 
and retardation time about 51.2 ms. We see that sim­
ilarly as to the simulation of smoothed synapses there 
exists an optimal value of the smoothing parameter r 
for which the matching score is maximal. In our case 
it means improvement of about 5 % above the ob­
tained minimal matching score.

As in the case of synapses we can also consider the 
frustrated type of the output activity

cr(A-)
(To

! + €
0

for j  < n/4 or / >3 n/4, 

elsewhere.

For this form we obtained about a 70% matching 
score for the optimal value of the smoothing parame­
ter. Again it is to be noticed that in this case we use 
only n/2 neurons i.e. n2/ 4 synapses.

Tab. 3

r 1 12 128 144 160 176 192 208 224 240 256

match
score % 68 68 70 69 70 72 73 73 72 72

4,3 Influence of noise on the MM

Finally we present results of the simulations which re­
flect the noise invariance of the NP4 model. In this in­
vestigation we used the basic form of the synapses 
and output activities (with 32 non-frustrated neurons), 
refraction time 12. 8ms and retardation time about 
51.2 ms. Effect of the noise we simulated in the follo­
wing way

s(i) ~ z(i) + a( l -  2rand)z(i) + b(l -  2rand) 2048 ,
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where z(i) is the original speech signal in digital form, 
s(i) is noise poluted signal, rand is output of the pseu­
do uniform random generator from <0, 1 >, a is the 
level of the so called “correlated” noise and b is the 
level of the “uncorrelated” noise, 2048 is the maximal 
value of the signal for 12-bit analog to digital conver­
tor. The value of parameter a or h equal to 0.2 corre­
sponds to a 20 % level of noise.

We see that the best matching scores are for the null 
level of the uncorrelated noise and for 40 % correlated 
noise. Tab. 4. Results also demonstrate that excellent 
noise invariance of the NP4 performance takes places 
especially for correlated noise.

T a b .  4

a .  =  0 0.0 0.2 0.4 0.6 0.8

match
score

%
69 68 74 70 71

6 . - 6 0.0 0.2 0.4 0.6 0.8

match
score

%
70 61 51 54 56

4,4 NP5 recogniion results

Now we will present the results illustrating word re­
cognition abilities of the NP5 (NP4 + PNN) model.

We chose randomly the set of 100 words form the 
TTV set (i.e. 20 realizations for every word). These 
words were not the same as for the NP4 simulation ex­
periment. We used the remaining words of the TTV 
for the “learning” of the PNN. The results are intro­
duced in Tab. 5. We investigated here only learning 
and classification properties of the PNN which used 
the NP4 preprocessing with the two best network dy­
namics of the preceding experiment (see two last rows 
of Tab. /), only.

It can be seen that the most complex network dyna­
mics of the network-like form introduced in detail in 
the preceding section give superior results (see right 
column).

Presented results in the last row illustrate the gene­
ralizing abilities of the NP5, in the assumed case of 
the training pattern number of 400 and test pattern 
number of 100.

Tab. 5

TYPE of Processing:
71,(1 +  A t )  = r ¡ i ( t )  +  A Ç ; ( t ) A [ i , ( t )

r i , ( t  +  A t )  = «XpVOAy,//) + A ^ ( t ) A f i , ( t )

[Left
column]
(Right
column]

Classes: LAMA LA Mu LAME LAMI LAMO ALL

Matching 
scores (%) 
TRAIN+TEST : 92 96 97 98 91 93 98 99 90 95 94 96

TEST : 82 88 94 96 58 80 94 96 82 88 82 89
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It is obvious that the behavior of the PNN model 
can be adjusted and optimized especially in two ways. 
The first one discussed here is the choosing of the op­
timal lowest number of the realizations of every word 
class and subsequently the proper selection of the par­
ticular realizations. This influence is the topic of our 
current investigations.

The smoothing parameter <rof the PNN processing 
was found to give acceptable results for a wide range 
of values. Presented results are for the experimentally 
chosen optimal value.

Finally, we want to note that obtained results can 
be considered as preliminary ones.

5. DISCUSSION OF HUMAN 
PERCEPTION

In this section we want to discuss some topics we 
consider crucially important for the further elaborati­
on and improvement of the above proposed speech 
perception and recognition models.

The first part deals with the general lay-out of the 
biological and especially speech perception.

The other two parts will discuss the differences bet­
ween the parrot-like perception and human-like per­
ception and subsequently with the possible approa­
ches for the improvement of the models under consi­
deration.

5.1 The general lay-out of perception

Let us assume that we have two systems with some 
specific and distinct functions. The first system (A) is 
observed and the second one (B) observes. Because of 
this we must presume that these systems are separated 
at some level. This second assumption is necessary to 
define both systems but we must take into account so­
me kind of interaction between these systems because 
an isolated or closed system cannot be observed, [3]. 
Generally speaking,the system B is constructed to ob­
serve some features of the system A which presumes 
some preknowledge about the system A. Without this 
knowledge one does not know what to observe. An ex­
treme case of this in speech recognition is the situati­
on where we recognize only what we already know. 
We can define the perception as some kind of interac­
tion which exists between co-evolving or coupled sy­
stems, in contrast to the observation (in the proper 
sense) when the systems in consideration are suffici­
ently separated, see fig. 8. In this paper we construc­
ted the NP4 model just as the first approximation to 
the human perception understood as above.

The above outlined picture is in good agreement 
with the two following basic paradigms which play, in 
our view, a very important role in all considerations 
dealing with our topic:

PO — We think the perception phenomenon must be

Figure 8

consistent with the three postulates o f Kant or informa­
tion theory
1. Conservation o f information
2. Communicability o f information
3. Finite accessibility o f information
which follow from the information uncertainty relati­
on

A I - A E A t / h ,

where AI  is an amount of information transfer, At is 
the time duration necessary to transfer an amount of 
energy AE  and h is Planck’s constant, minimum of ac­
tion or elementary action, see [3]. We see that transfer 
of this elementary action leads to the information 
transfer AI  = 1.
PI — N. Chomsky paradigm: “Speech is the inborn, 
congenital biological ability of a human mind.’’
P2 — The fundamental paradigm o f comparative lingui­
stics: “All natural languages have the same descripti­
on capability, the potential to describe the outer, inner 
world and itself.”

Now we briefly discuss these two paradigms. First, 
we must mention that PI does not mean that social, 
cultural and historical background have no influence 
on the generation of the whole language structure. 
This paradigm only presumes that at the fundamental 
level the structure of language is predetermined by 
a biological one. There are many facts and experimen­
tal results which illustrate PI, for example the ability 
of small children to manipulate symbols or to recogni­
ze distinctive features, [7]. The second paradigm deals 
with the capability of a description and does not rela­
te the actual differences and advantages of the parti­
cular language relative to another one. For example, 
the difference in concepts of time in the English and 
the Hopi-language, or the geometrical language con­
cepts of the society living in plane-like country versus 
the concepts of the society living in mountain-like 
country is not relevant for P2, which reflects a potenti­
al for describing anything on the fundamental level.

5.1 The frequency selective NP4

As was shortly mentioned in Sect. 1 the above pro­
posed and investigated NP4 and NP5 models corre-
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spond more to the parrot-like perception mechanism. 
For the purpose of designing the models more consi­
stent with human-like physiology it will be useful to 
take inspiration from the differences between parrot­
like and human-like speech perception.

We know that the existence of a long (35 mm) coch­
lea for humans is essential for the cochlear frequency 
analysis processing. But we also know that birds, 
especially parrots, have some rudimentary cochlea 
which less than 3 mm. In such a small portion of the 
parrot cochlea cannot arise travelling waves and no 
frequency analysis based on these waves is possible. 
In the parrot ear there is no clear distinction between 
the inner and the outer hair cells,too. Nevertheless, 
the frequency range of the parrot ear is about 
(50 — 20 000) Hz and the frequency resolution is the 
same as for the human ear. As we all know, a parrot 
can produce all human speech sounds in a satisfacto­
ry manner and it is also able to imitate pitch intonati­
on with some perfection.

We will now discuss possible extrapolations of the 
(parrot-like) NP4 model to the human-like model of 
perception. From our point of view there exist two ba­
sic ways how to make this extrapolation. The first one 
deals with the just mentioned frequency selectivity of 
the human ear. The second one is principally different 
to the previous one. This approach deals with the so 
called inner symmetries of the phonemic system (see 
Sect. 2). We will discuss these ideas on the conceptual 
level in the following parts.

We can describe the first way of extrapolation as 
the explicit frequency selective NP4. In fig. 6 we po­
stulate the four frequency bands, say; (50 — 500) Hz, 
(500 1 500) Hz, (1 500—3 000) Hz and (3 000—5 000)
Hz. A larger number of frequency filters is not neces­
sary. For example, if we have used 20 or 100 filters 
then the outputs from these filters are approximately 
harmonic with the frequencies of the filters and we 
practically destroy useful information due to this 
transformation.

Thus we have 4 outputs from the “basilar membra­
ne" part and the “cochlear nucleus” part. For exam­
ple. if we use 32 neurons then for every frequency 
band we will have 8 neurons. It is stressed that these 
4-neuron sets are not independent but they communi­
cate, interact among themselves.

The second alternative can be called the implicit 
frequency selective NP4. We postulate the past-time 
dependent Fourier transformation of the low-pass fil­
tered signal .V, (t ) (see Sect. 2), as

F{cj. t)=  J .v, ( t ' ) A ( t -  (' )e w,'dtf
- co

= Re{F(co, t )] + i l m [F(co, /)] ,
(5.1)

where the window function A(.) is there to satisfy con­
vergence of the integral in (5.1). We must mention that
(5.1) is not the short-time Fourier transofrmation whe­

re the window function has a finite length. We define 
some smoothing procedure for F[(o, t)

G(co, 0 = J l ' (o)F t ) H ( c o, (o' )  8 (o ' ,

where the real function H(.) is the impulse characteri­
stic in the frequency domain of the smoothing filter. 
This filter is used to smooth rapidly oscillating com­
ponents of F(co, t). In the discrete time (and frequen­
cy) domain G(co, t) has about 10 000 harmonics for 
the sampling frequency of about 10 kHz and the time 
duration for about 1 second. To compress redundant 
information in G(co,t) we can use some analog to di­
gital convertors with a sampling rate chosen to com­
press number of frequency components from about 
10 000 to about 500. If all system components are phy­
sically causal then it can be proved, [8], that ReG(k, t) 
and JmG(k, /), the smoothed, compressed and discrete 
versions of (5. 1), are mutually Hilbert transformants. 
This is sufficient for our requirements of the intensity 
and noise invariance, mentioned in Sect. 2. Finally, 
these frequency components will serve as inputs into 
the module TOP.

In the frame of this approach we have very simply 
satisfied the requirements of the closing of the trajec­
tory, see Appendix A. The reason for this is simply in 
the real character of the function x,(r). Thus the so 
called Nyquist plot in the frequency domain is sym­
metric against the real axis and the trajectory of this 
plot which is given by the real and imaginary part of 
G(k, t) is the closed trajectory. Further parts of the 
processing, neural structures, we do not discuss in this 
paper.

We want also to note that this approach is in some 
way connected with the phase component relations

/(*, <) = (Ke‘[G(k, 0] + In, I - A. r)])'72,
<p(k, t) = arctg(Im[G(k, t)]/Re[G(k, t)]),

where l(k, t) is intensity and (p(k, t) is the phase of 
the given harmonics. Then we see that in this appro­
ach will arise very naturally the problem of the phase 
sensitivity of the ear. However, we will not discuss this 
issue in this paper.

5.2 The inner symmetries

We believe that the previous extrapolations of the 
NP4 are not essential for the distinction of the parrot­
like perception from human-like perception. We think 
that the essential difference between parrot-like and 
human-like perception lies in some structures (and re­
lated kinds of processing) of the nervous system. This 
structure manifests itself in the outer world by the so 
called inner symmetries of the phonemic system of the 
human language.

The phonemic symmetries are not something un­
usual. We use these symmetries in every-day life but
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we do not realize these facts. In this subsection we 
will try to describe the symmetries of the phonemic sy­
stem in conceptual fashion without rigor and precise 
mathematical machinery. This conceptual approach is 
suitable for its ability to perform an analysis of the 
events and principles which are in their nature fuzzy 
and redundant. Some technicalities we have introdu­
ced in Appendix B.

The phonemic symmetries manifest themselves in 
the properties of similarity, analogy, in the grouping 
of some phonemes to the various hierarchical structu­
res and in the linking of some phonemes to others ac­
cording to certain rules. The fundamental manifesta­
tion of this symmetry is the so called classification 
schema of the given language phonemic system. We 
have presented in fig. 9 the classification schema of 
the Slovak phonemic system.

Figure 9

This classification schema can be considered to be 
a heuristic principle, too. We can see that all phone­
mes are classified to the 5 multiplets according to cer­
tain features we will mention later. The first multiplet 
is the nonet (singlet + octet) of the vowel-like phone­
mes. The second one is also the nonet (singlet + octet) 
of the semi-vowel-like phonemes and the stop-like 
phonemes. The third one is the octet of the stop-like 
and the affricative-like phonemes. The fourth multi­
plet is the decouplet of the fricative-like phonemes. 
The last one is the set of the nasal-like consonant pho­
nemes.

At this point we must briefly mention what the pho­
neme “actually” is. In the theory of phonology the 
phoneme is interpreted as the smallest unit of phono­
logy. This concept arose out of the awareness that the 
precise phonetic realization of a particular sound of 
speech is not important as its function within the 
sound system of a particular language. The phonetic 
variants of the particular phoneme are called the alo- 
phones. The phoneme is understood as a generalized 
form of a particular sound by disregarding all nones­
sential (dialectal, ideolectal, redundant) variants of 
the particular sounds in a process of abstraction. This 
process can be expressed by the phonemic difference 
between a pair of words which differ in only one pho­
neme, for example, pes (a dog) — les (woods). Each 
language has its own arrangement of phonemes, its 
own phonemic structure.In practice the linguists use 
the so called distinctive features to classify phonemes 
to the particular classes. There exist many systems of 
distinctive features. For our purposes the appropriate 
one is the system of N. Chomsky and M. Halle, [4], in 
which these features have been placed into categories, 
classes such as

1. Major class features — this class is related to such 
features as vocalic-norivocalic, sonorant-nonsonorant, 
nasal-oral, etc.
2. Cavity class features — this class is related to such 
features as the point of articulation and shape of the 
oral cavity.
3. Manner of articulation features — relating to conti­
nuant-noncontinuant features
4. Source features — relating to such features as vo­
iced-voiceless, etc.
5. Prosodic features — relating to such features as 
stress, pitch, etc.

The last class of features we do not consider apriori 
as inner symmetry, on the contrary they are just 
speech transformations under which the recognition 
mechanism is invariant (see Sect. 2).

The classification to the multiplets is based on the 
major and manner of articulation features. The sub 
classification in the given multiplet is based on the ca­
vity features — horizontal lines and vertical lines on 
the source and cavity classes.First,consider non-nasal- 
like phonemes. In this case we have 4 horizontal lines 
to which we attribute the following cavity features:
upper line — (bilabial + labiodental + prealveolar) 
— front middle line — (alveolar + postalveolar + 
prepalatal) —- central
lower line — (palatal + postpalatal + prevelar) — 
back lowest line — (velar + postvelar + glottal) — 
glottal

Similarly to the standard classification whose attri­
butes are introduced above in brackets, our classifica­
tion is a matter of convention. But we think that our 
classification — front, central, back, glottal — has so­
me very interesting properties. The vertical lines in the 
First nonet describe the cavity features known in pho­
nology as high, middle and low according to position 
of tongue. The vertical lines in the remaining multi­
plets describe the voiced-voiceless relation, for exam­
ple (p —b, s—z ). The phonemes in the middle part of 
a given multiplet have no pairs of phonemes accor­
ding to the voiced-voiceless feature.

The last set of nasal-like phonemes contains three 
phonemes and for each phoneme belones an alopho- 
ne or phoneme which has no semantic support. Again, 
the classification is due to the cavity features — front, 
central, back.

A comparison of the classification of phonemes in­
troduced in fig. 8 with the classification of elementary 
particles — hadrons according to the SU(3) group and 
leptons, [9], tells us that there may exists some analogy 
between these two subjects. A mathematical treatment 
of this analogy from the point of view of perception 
and neural nets is discussed in Appendix B. This leads 
to some group theoretical description of our system of 
phonemes according to the given continuous Lie 
group SU(N) and its irreducible representations.

We do not think that the all ideas and speculations 
presented here are perfect in many details but we be-
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lieve that in some coherent,holistic view these ideas 
can be useful and, maybe, true.

Finally, one can ask in the words of N. Bohr and W. 
Pauli: “Are these ideas sufficiently crazy to be true?”

APPENDIX

A. The homotopic group as the group along 
the trajectories

In this part of the Appendix we introduce an ele­
mentary discussion about several notions from topolo­
gy related to the degree of the mapping between the 
two varieties. This concept underlies the understan­
ding of the invariant feature extraction mechanism of 
the NP4.

Let us first define the mapping/: X - Y. The varie­
ties are compact n — dimensional, oriented and the 
boundaries of X Tare null.The variety Tis connected. 
Then an integer number exists and this number is cal­
led the degree of the mapping /  In some elementary 
fashion this number describes how many times the Y 
covers the Tby the mapping/ In our case we have the 
two real-valued functions x ( t), y(/) from R]. We defi­
ne the trajectory in the complex plane as

z(t) = d(t) [.v(/) + />(/)] , (A. 1)

where parameter d, in general dependent on time, is 
called the parameter of deformation of the trajectory. 
For this moment we consider the parameter d to be in­
dependent of time. In this case we note the global de­
formations to be contrary to the local deformations 
where d is dependent on time. If the trajectory does 
not intersect the beginning of the coordinate system 
we can define the phase of the trajectory It
holds

<P(ta) = <pa, (P(th) = (ph, ta < t < th.

The trajectory can be intersected by itself, what means 
that

z(/2, d) = z(t}, d) for t2 # /3 .

The trajectory is called the closed trajectory when it 
holds that

z(ta, d) = z( th, d)

Because z is not equal to zero for ta < t < th then 
for every time i we can define the phase (p(t) as we 
had already mentioned, but only with the nonuniqui- 
ness of 2kn. To avoid this we can fix the initial phase 
(p(ta). The phase (pit) is a continuous function of time. 
We can define that the difference of the phases

A(p = <p(th) ~ <p(t„) = 2k n . (A.2)
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We call the integer number k the degree of the tra­
jectory z(t, d). The physical meaning of the degree of 
the trajectory is clear from the following considera­
tions and from figure Al. Let us first consider the ele­
mentary case of the closed trajectory

z(t, d) = c + d(cost + /sint), where 0<t <2n, (A.3)

We see that the trajectory is a circle with its center 
at the point c and a radius of d.

If d < cthen the beginning of the coordinate system 
is out of this circle and the degree is null.

If d = cthen the trajectory intersects this beginning 
and the degree is not defined.

If d > c then the degree is equal to one. I f  the para­
meter d is changing then we say that the trajectory 
(A.3) or (A. 1) is deformed. Note that due to the inte­
ger nature of the degree, this remains unchanged — 
invariant under the continuous deformation of trajec­
tory. Of course the deformed trajectory is not allowed 
to intersect the beginning of the coordinate system or 
the point where the phase of tra jectory cannot be defi­
ned.

Following the elementary geometrical ideas we can 
express the difference of the phases Acp defined in 
(A.2) in the integral form as

4pz=  J rf(arctg[y'(t)/x'(t)]) = J A(t)dl, (A.4)Z7T c L
where

M r )  = [y ' ( t )x 'V)  -  y"( i )x ' ( t ) ] / x ' \ t )  + y ' \ t ) ] w  

d i = [ x ' \ t )  + y 'KD)mdt
and

x' = dx / d t , y'  = dy / d t .

From these considerations we can conclude that the 
whole set of the trajectories in a question can be clas­
sified to the various classes due to their degree of the 
trajectory. These classes have different topological 
properties. In our model of perception we dealt with 
the quasi topological properties limited to a large deg­
ree values because we did not consider exactly the 
conditions of the closing of the trajectory.

All these concepts we have mentioned can be for­
mulated exactly by the notion as the set of classes of 
equivalence of the trajectories, the homotopic classes 
or homotopic invariance [10]. The set of classes of 
equivalence has the group properties in the case of 
closed trajectories. This group is called the fundamen­
tal or Poincare group of variety T in its point y — 
n{Y, y). The formulation of the fundamental theorem 
which describes our case can be the following:

I f / :  X — Tis the homotopic equivalence (or homo­
topic mapping) then for any point v from Xhomomor­
phism f* : p(X, x ) —>p(Y,f(x)) is an isomorphism.
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(The exact definitions of the concepts introduced abo­
ve are given in [10], again.) For this reason we have 
called the degree of the trajectory the homotopic inva­
riant of the mapping in question. We must mention 
that the degree of the mapping is not the only homoto­
pic invariant of the given mapping. The degree of the 
mapping is the only homotopic invariant in the case 
of the mapping of the «-dimensional compact, con­
nected variety in S", where S" is the «-dimensional unit 
sphere. All this can be formulated also for any «-di­
mensional topological space. In this case we call it 
a homotopic group instead of a Poincare group.

From the point of view of our neural net, the NP4, 
we can say that the neural net realizes the homotopic 
mapping/(x). This can be seen from the explicit form 
of the network and the simulation results which are gi­
ven in Sect. 5. The mapping/depends on x, or on the 
state of the neural net and also on the time t. It is a lo­
cal in time invariant mapping.

B. The gauge group as the group along the tra­
jectories

In the following last part we will present some preli­
minary ideas and proposals of the direct incorpora­
tion of inner symmetries into the human speech per­
ception and recognition model. As it was mentioned 
inthe above Discussion these symmetries are reflected 
in the symmetries of the phonemic system and we be­
lieve that they reflect one of the most important un­
derlying commonalities between human and parrot 
perception and recognition.

Our approach was strongly inspired by the forma­
lism of the Quantum gauge calibration field theory, 
where the symmetry principles are inherent and mani­
fested to a great extent.

Let us consider the 4-dimensional space-time mani­
fold X, this space is generated by the 4-vectors 
x = (ct, x). Further we will put the constant c, the ve­
locity of light, to be equal to 1. We postulate the map­
ping

/ :  X Y = f ( x ) ,

where Xis  the 4-dimensional vector space and Tis the 
4-dimensional vector space of the acoustic field. In ot­
her words we postulate that for every point from X  
esists just one point y from Y. The physical relevant 
quantity in our case is the 4-vector of the acoustical 
strength of the acoustical field which acts on the basi­
lar membrane or microphone membrane, [11].

Thus we can postulate the existence of the system 
of the fields of the patterns in the neuron system, in 
the brain, for which every point from the space X or Y 
is represented by the vector field i//(x). We postulate 
that this system of fields is gauge invariant and com­
ponents of *T(x) are grouped into multiplets which 
are transformed under the given irreducible represen­
tation of the Lie group G. We expressed the inner spa­

C d

ce symmetries just in this way and we assume that just 
these symmetries are present in our phonemic system, 
too.

Now we briefly specify some concepts of the Lie 
groups. First we introduce the concept of the Lie alge­
bra. Thus, let Fbe a commutative field. A Lie algebra 
over Fis a vector space L over Fequipped with a bili­
near multiplication

[, ] : L x  L-*  L
satisfying

[x, x] = 0 for x e L 
and the Jacobian identity 
[[x, y],z] + [[y, z],x] + [[z, x],y] = 0 for X, V,Z, £  L.

In field theory we are limited to N dimensional al­
gebras the basis of which are generated by N so called 
generators from L, (a = 1,2,. . ,,tV) for which hold 
the so called commutative relations as bilinear multi­
plications

[A m A ]  A  A  A  A  A//) A  • (A  • 5)

We presume in this formula, and in the following 
ones, the Einstein summation rule. Real numbers Cah 
are called the structure constants and they determine 
the whole structure of the Lie algebra L. Now the ele-
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ment o f the continuous group G for the given algebra 
described by (A.5) is defined as

U = exp ( -  icoa La) (A.6)

where a>(,(x) are some real numbers. The nontrivial ex­
pression (A.6) and its group properties follow from 
the Campbell-Hausdorf theorem. If any of the structu­
re constants is not equal to null then the group G is 
not abelian. For the case of N -■ 3 we have the SU(2) 
group which is the lowest dimensional non-abelian 
group. When we describe the generators in the matrix 
form we talk about a matrix representation of G. In 
field theory we are limited to the unitary and final-di­
mensional matrices.

Now we will briefly discuss the gauge transforma­
tions. We postulate the existence of the “lagrangian 
density” L0 of the neuronal-pattern system.The physi­
cal-information meaning of this lagrangian we will 
discuss later. Thus we have

Ln = /.„( y/, dr/ G) , (A.7)

where da ig = 0ig/6x,t and the gauge invariance means 
that

LfUig, dnUig) = L0{ (//, da \g) , (A.8)
where

U(x) = exp( -  ico(x))

is the element of the Lie group and co(x) is the ele­
ment of the Lie algebra under consideration. In this 
case we speak about the local gauge invariance. If 
U does not depend on .v we talk about the global gau­
ge invariance. Then

ig(x) U(x)ig(x) ,

dr> if / (x)—> U(x)(da ig(x)) + (3" U{x) y/(x) 
and for infinitesimal transformations we have

dig(x) “ -  ito(x) t//(x),

0 [3“ i// ( A')] = -  i OJ (x) 3" (// (x) -  i [da CO (x)] (// (x). 

We define the covariant derivative as

If' i//(x) -  [3f'+  igAa ( x ) ] y/(x), (A.9)

where the A" ( v). the elements of the Lie algebra, are 
defined as

An (x) = Aaa (x) La. (A. 10)

If we require the covariant derivative to be transfor­
med as ig(x) under the local gauge transformations 
then the fields A" (x) must be transformed as

or

In this way we have defined N  gauge fields, the so 
called Yang-Mills fields. Then it can be very easily 
shown that the substitution for the derivative in (A.8) 
by the covariant derivative makes the Lagrangian in­
variant relative to the local gauge transformations

L0(U W, I f  LV) = Mi//, Da (//).

The fields An (x) are interpreted as dynamical varia­
bles in the gauge field theory. For this we introduce 
the density of the free langrangian of the gauge fields 
as

(A. 12)

where

g "  = d"/  (x) -  d" A°a{x)-  X a 1' (X)

The proportionality constant g is interpreted as the 
coupling constant, together with Cabc it expresses a re­
lative weight of the particular fields. Thus we finally 
have the local gauge invariant and the Lorentz invari­
ant density of the agrangian

L =  - J  4 / W .+  ;). (A. 13)

Now we will discuss the variations of the fields Y 
along a some trajectories in the outer coordinate spa­
ce X  or Y. If we have the gauge fields (A. 10), then at 
every point of X the independent selection of the ori­
entation of the coordinate system in the inner space of 
the fields of the patterns exists. The gauge transforma­
tions of An are correlated with the change of the orien­
tation of the local inner system under the transition 
from point xto the point x+dx. The field t//(x) locally 
does not differ from U(x) i//(x) and the gauge trans­
formations of the Aa(x) also do not change the pro­
perties of the system in qeustion. For the Yang-Mills 
fields we require the so called parallel translation to 
be null

dx„ D"i(f(x) = dxn \ + igA" (x)) ij/(x) = 0(A.14)

Let us presume that <//(x) is translated in parallel 
under the trajectory P which is parameterized by the 
real parameter rfrom <0, 1). Then

x = x(r), Aa = Aa (x(r)), 
if/ = (// (x ( r))
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and

[da + ig Aa {t)) (//(*) = 0 (A. 15)

with the solution written as

(//( r) = T exp ( -  ig J d r f (dxn/ S r f) Aa (r))
0

V'(O),

(A, 15a)

where Tis “time-ordering” operator defined as

T[a( t )  b ( t r)] = a (r) 6 ( r ')  0 ( r -  r ')  ± 
± b ( t ' )  a ( r) 0  {rr -  r).

The upper sign holds for boson-like fields and the lo­
wer one for fermion-like fields. Then we can define 
for every trajectory Pthe matrix operator

/2 (/*) = T exp ( — ig J ¿/x„T"(x)). (A. 15b)
p

The physical meaning of this operator is to perform 
the gauge transformation of the y/(x (0)) to the y/(x 
(1)) along the trajectory

<//(x(l)) = /2(P) if/(x(0)), (A. 16)

where x(0) is the initial and x(l) the final point of the 
trajectory P.

We will now prove that for the closed trajectory C 
the Spur [/2(C)] is the gauge invariant quantity. We 
have for the gauge transformation of an arbitrary i//

\ff' O) = U(x) y/(x)
and from (A. 16)

)) = n ' ( P )  v ' ( x m ,
what leads to the

U(x(  1)) <//(x(l ) = Q ’ {P) U (x (0)) yi (x (0), 
U{x( \ ) )Q(P)  v/(x(0)) = /2 '(P ) U (x (0)) (x (0))

and finally we have

Qt  (/>)= U(x{ \ ) )Q{p)  U~' (x(0)).
It follows from this directly that

Spur [/2(C)] = gauge invariant. (A. 17)

The most important property of *P (C) is the follo­
wing one. If the i2(C)  is known for an arbitrary clo­
sed trajectory C then in /2(C) we have concentrated

all the physical information about the gauge fields 
and, what is very important, all of the redundant in­
formation is out of this quantity, [12].

Now we can return to the physical-information in­
terpretation of the “Lagrangian density” L given by 
(A. 13). Following the previous considerations and [13] 
we postulate that the pattern field i// is “perceived” or 
evaluated due to the least action principle

variation (L) = 0.

This principle is necessary to compress the informa­
tion rate so as to maximize the matching score of the 
given pattern by minimizing the pattern field excitati­
ons. The pattern prepared in this way will be topologi­
cally the most similar to the memorized pattern-proto­
type. From (A. 17) we can conclude that the pattern 
fields (or neurons) are excited only in the case when 
the two patterns of the acoustical field cannot be 
transformable through the given gauge group transfor­
mations. We believe that the most straightforward cor­
respondence between the neural nets and the gauge 
Fields can be seen in the lattice-like formalism of the 
Feynman path integrals, [14].

From the comparison of (A.4) and (A. 15b) we can 
conclude that the “parrot” case (A.4) is analogous to 
the “human” case, (A. 15b). We can interpret this cor­
respondence as the translation from “mechanical-li­
ke” processing to “field-like” processing.
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Neurocomputer Companies

Artificial neural networks extend in last few years from 
laboratories into commerce and industry. At present there 
are known several tenths of companies producing and seling 
the neuro-software and/or -hardware tools and services. In 
this section of our Journal we shall inform the readers sub­
stantially about the adresses of some of these companies.

Ward Systems Group, Inc.
228 West Patrick St.
Frederick MD 21701, USA 
Tel : (301) 662-7950

Association for Intelligent Systems Technology, Inc.
6310 Fly Road
E. Syracuse NY 13057, USA

TSA
1470 Wildrose Way 
Mountain View CA 94043, USA 
Tel.: 415/965-4561

Intelligence Ware
9800 S. Sepulveda Blvd,
Los Angeles CA 90045-5228, USA 
F ax .(213)417-8897

Concordia University , Centre for Mach. Int.

1455 de Maisonave. , Blvd, West 
Montreal, Quebec H3G 1M8, Canada

Hecht-Nielsen Neurocomputers
5501 Oberlin Drive 
San Diego. CA 92121-1718 
Tel.: (619) 546-8877 
Fax.:(619) 452-6524

H. P. Central Mailing Dept,
P. O. Box 529
1180 Amstelveen. Netherlands

H P. Comp.
3200 Hi 11 view Ave.
Palo Alto CA 94304, USA

Scientific Computers Limited
50 Victoria Road
RH15 9LW Burgess Hill , West Sussex, England 
Tel.: 01 1-44(444)65101 Telex:

Soft Center
NovaCast Expert Systems 
S-37200 Ronneby, Sweden 
Tel.: 01 1-46(457)718-30

Informagic, S. A.
Barcelona 0801 I. Spain SP 
Tel.; 011-34(3)254-6235

Electronic Associates Sari
25-27 Rue Ginoux
75 737 Paris Cedex 15, France
Tel.: 011-34(3)254-6235

The Numerical Algorithms Group Ltd.
NAG Central Office Mayfield House 
256 Banbury Road
OX2 7DE OXFORD, England, United Kingdom UK 
Tel.: +44 865 511245 Telex: 83345 NAG UK G

California Scientific Software
Grass Valley, California CA (800) 284 8112, USA

David Olmsted
411 Briargrove 
Si 1 del I LA 70458 
USA

NeuralWare
Penn Center West —■ Bldg IV. , Suite 227,
Pittsburg PA 15276 
USA

COMPAREX
Information Systeme GmbH 
Gottiieb-Daimler Str. 10,
D-6800 Mannheim I,
BRD

Floiting Point Systems Computing (FSP)
3601 S. W. , Murray Blvd.
Beaverton, Oregon QR-79005,
USA

Mimetics
6 Rue Lacepede 
Paris 75005 
France

Software A. G.
Veranstaltungen 
Hardt ring 100 
Darmstadt W 6100 
BRD

Software Tailors Company
1295 N Providence Rd , Suite B103 
Media, PA 19063,
USA

N e u r o c o m p u t e r C o m p a n i es NNW 4/91, 244



A NEURAL NETWORK SYSTEM FOR ACTIVE 
VISUAL PERCEPTION AND RECOGNITION

/. A. Rybak, A. V. Golovan, F. /. Gusakova, TV. /I. Shevtsova and
L. N. Podladchikova*)

Abstract
A method for parallel-sequential processing of grey- 

level images and their representation which is invariant 
to position, rotation, and scale, is developed. The meth­
od is based on the idea that an image is memorized and 
recognized by way of consecutive fixations of moving 
eyes on the most informative image fragments. The 
method provides the invariant representation of the im­
age in each fixation point and of spatial relations be­
tween the features extracted in neighboring fixations. 
The applications of the method to recognition of grey- 
level images are considered.

I. Introduction

It would be difficult to understand and to explain 
the remarkable features of living recognition systems 
on the basis of neurophysiological data only without 
findings of visual psychology and psychophysics. For 
the same reason, most of the classical neural network 
paradigms cannot be directly used for analysis and in­
variant recognition of grey-level visual images. So, on 
the one hand, it is necessary to develop adequate neu­
ral network models of preattentive vision including 
preprocessing visual information and extraction of 
primary features of visual images. Progress in this di­
rection has already taken place due to the remarkable 
research of S. Grossberg and E. Mingolla [4, 5],
J. Daugman [3], M. Porat and Y. Zeevi [7], J. Buch- 
mann and Chr. von der Malsburg [1], and some 
others. On the other hand, it is necessary to develop 
methods and algorithms for transformation of extract­
ed primary features of grey-level images into invariant 
features which can be used as input signals for classi­
cal neural networks. In this case the neural networks 
would successfully realize the functions of classifier 
and associative memory of visual images. An example 
of the successful application of a similar approach 
was given by S, Troxel, S. Rogers, and M. Kabrisky 
[8]. They used the transformation of the image into the 
magnitude of the Fourier transform with log radial 
and angle axis, \F(Lnr, <9)1, feature space, on the low-

*) I. A. Rybak, A. V. Golovan, V, I. Gusakova, N. A. Shevtsova, and L, N, 
Podladchikova
Institute of Neurocybernetics at Rostov State University 194/1 Stachka 
Avenue, Rostov-on-Don 344104, USSR
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er-level and the multilayer perceptron neural network 
using a back propagation algorithm on the upper-level 
of the recognizing system. But, it is interesting to find 
an adequate invariant transform and representation of 
the image on the basis of data and ideas of vision psy­
chophysiology.

It is widely known that in the process of visual per­
ception and image recognition human eyes move and 
consequently fixate on the most informative points of 
the image [9]. In accordance with the concept of Smart 
Sensing [2] (intelligent sensory perception), they ac­
tively accomplish a selective and problem-oriented 
collection of information from the visible world. The 
main principles of the Smart Sensing theory [2] are as 
follows:

(i) The eye is able to get exact information from 
a small area of the visual field only. The sharpness of 
perception decreases quickly from the fovea to the pe­
riphery of the retina. It provides the local processing 
in the areas of the fixation points and reduces the in­
formation processed in parallel.

(ii) The peripheral vision is of lower resolution but 
it excites and directs the gaze to shift to the next fixa­
tion point.

(iii) The high-level structures control eye move­
ments for collecting information which is necessary 
for verification of hypotheses formed and reformed in 
the process of image recognition.

In 1971, D. Noton and L. Stark [6] carried out re­
search devoted to comparing individual trajectories 
(“seanpaths”) of human eye movements in two 
phases: when an object was being memorized (learn­
ing phase) and when it was being recognized (recogni­
tion phase). They have shown that these seanpaths are 
topologically similar and have suggested that an indi­
vidual trajectory (a specific scanpath) is formed while 
the object is being viewed. As a result of this process, 
the object has been memorized and stored as an alter­
nating sequence of sensory and motor memory traces, 
recording alternately the feature of the object and the 
eye movement required to reach the next feature. 
When the object is being recognized (when a hypothe­
sis on the object is being verified), the reproduction of 
the successive eye movement memories and verifica­
tion of the successive feature memories take place.

To realize the ideas described above in a concrete 
model, it is necessary to also develop the following 
aspects: 1. to realize primary transforms imitating
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a decrease in the resolution o f visual Held perception 
from the fovea to the retinal periphery: 2. to choose 
the set ol primary features and to realize their extrac­
tion and encoding: 3. to develop algorithms for invar­
iant representation o f the image fragment in the fixa­
tion point and of spatial relations between the frag­
ments in neighbor fixation points; 4. to develop algo­
rithms of interactions between lower and higher levels 
ol the system in operation modes o f object memoriz­
ing, search, and recognition.

2. Primary Transform

The primary transform of an initial image / =  ¡.vj 
in the model developed forms the retinal image 
/ (n ) {.v,. (//)} in each /i-th fixation point. The posi­
tion of this point j o ( n ) )  and the resolution level
lo in)  in the round area rounding the point are consid­
ered as the initial parameters for the point. Three con­
centric circles with the center in the point ( i« (n ), 
j o (n ) )  divide the raster into four areas. The radii of 
the circles are

Ro(lo) = 3 . 2/" Figure 2. Retinal image in one Fixation point.

Ri(lo)  = 3.2'", (2.1)
Rr ( la) = 3 . 2''" '.

Within the central round area, the image is represent­
ed on the resolution level / =  loin).  Within the first 
ring area, ii is represented with lower resolution (on 
the next resolution level /=  loin)  + I). Within the 
second ring, it is represented on the resolution level 
/ = lo{ n) 2.

To represent some part o f the image / =  |.v j  
((/'./) e /)) on the resolution level / the recurrent 
procedure o f computation o f the Gauss convolution 
in each point o f the part D has been used:

V  o  -i v*1 * (2 2)/ . w /></(/•' /X/ »
/'• 11

V  i/ ii
i—t ur<m •' /’</ ’
/’• <t

where G/11/(, = -e x p  { -  v 2 [(p ~ i )2 + (q ~ y')2] } . (2.3)

it is the coefficient (it > 0) and /. / and p. q are the 
coordinates of image pixels.

Thus, the retinal image in the /i-th fixation point 
/ ' ( « )  = {.v'/ (n)| is formed from I  = [x^] in the 
following way:

yi/-"«!• j(• pn(n) <  Ro( lo ) ,

x \ ) * ‘ 11 if Ro {In) < pu (n ) < R\ ( l o ) , 
vi A" »1-2» jf /?, ( If, ) < p . ( || ) < R : (lo) ,

if P„( iO>  R ( lo) ,

(2.4)

where x n is the averaged intensity of /  ~ j.v„j and

p„ {n ) = ■/(/ -  io ( / / ) )2 + (/ -  jo ( n ))'. (2.3)

hi =a
Ci _
a

yi/i•'»/

Figure I . lest image.
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(marked by the cross sign) for the initial test image 
(Fig. I). Fig. 3 shows that a few fixation points seem to 
be sufficient for image recognition.

3. Extraction of Primary Features

{a = 0, 1 ,2 ,... ,  15). The parameters m (t and n„ de­
pend on the neuron orientation tuning a:

m n = r/(/) cos (2jm/ \ 6), 

n(t = d(l) sin (2ncc/\6),
(3.3)

As primary features (image elements) we have con­
sidered the oriented edge segments extracted with dif­
ferent resolutions depending on their positions in the 
retinal image. Although it seems more prospective and 
adequate to extract primary image elements by the use 
of the Gabor transform [I, 3, 7], for the present we 
have used a slightly modified algorithm of S. Gross- 
berg and his colleagues [5]. Orientation tuning of 
a neuron is determined by its receptive field which is 
formed as the difference of two Gauss convolutions 
with spatially shifted centers.

The magnitude of the input signal to a neuron (/',/) 
tuned to the edge segment orientation a is calculated 
in the following way:

g ;;s„), <3.d
/’■ <l

exp { - r  [(/; -  / -  m uy  + (q -  j  -  m n )2]} ,

(3.2)

exp { -  y: [(/? -  / + m riy  + (q - j  + m„)2J} .

The step of orientation tuning of a neuron was 22.5° 
and it was taken to be the unit of angle measure

where
U  r t / i j a  

^  pqiin

F ig u r e  J . U n i t e d  r e s u l t  o f  p r i m a r y  t r a n s f o r m s  o f  t h e  t e s t  i m a g e  in  11 f i ­

x a t io n  p o in t s .
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where d(l) defines the Gauss convolution center dis­
tances from the center of the receptive field (/, /') and 
depends on the resolution level / at the point (/,./') of 
the retinal image / ' = {*',(«)}:

d(l) = max (21 -, I ) (3.4)

Sixteen neurons corresponding to each point /, /, but 
tuned to different edge orientations (different direc­
tions of brightness gradients) interacted competitively 
owing to the strong reciprocal inhibiting connections. 
The interactions between the neurons are described as 
follows:

C j isCl
 ̂ j . U ijtt - (-)ijrt ^ija ^  /  . Z ijk h ,5 U1 A = 0

Z,/r, = f[U,/ri], « = 0, 1,2.......15
(3.5)

where U „„, Z ijfl and Y(/„ designate respectively the 
membrane potential, output and input signals of the 
neuron (/, /) tuned to the orientation a ; B is the coeffi­
cient characterizing the reciprocal inhibitory interac­
tions (B > I); h is the threshold, and r is the time 
constant. f[U] is the nonlinear function

f[U] =
U if U > 0, 
0 if U < 0 . (3.6)

The solution of the system passes to the state of equi­
librium in which either all Z = 0 (if all Y„„ < h) or 
only one Z ijn = Y l/a -  h > 0 when nr = i//, (for which 
Y ijn is maximum), and the others Z ijn = 0 if nr =/= if/,. In 
the first case, it is considered that there is no oriented 
edge segments in the point (/,/). In the second case, it 
is considered that there is the edge segment in the 
point with the orientation nr = if/, and with the corre­
sponding contrast value as Z nn.

In each fixation, the oriented edge segments are ex­
tracted in the fixation point (io(n), jo(n)) (the basic 
edge segment) and in 48 context points lying on inter­
sections of 16 radiating lines differing 22.5° and of 
three concentric circles with exponentially increasing 
radii 2/", 2/,,+ \  and 2/"+: (Fig. 4). The oriented edge seg­
ments corresponding to the first (the smallest) circle 
are extracted with the same resolution as the basic 
one. The resolutions lo(n) which the other edge seg­
ments were extracted with were determined by their 
position in the /'(« ) = |jc'7(/i )}. The basic edge seg­
ment and context edge segments for one fixation 
point (the same as in Fig. 2) are shown in Fig. 5 as the 
doubled white and black segments whose lengths are 
greater the lower the resolution.
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F ig u r e  4 . P o s i t i o n s  o f  th e  b a s i c  e d g e  s e g m e n t  a n d  c o n t e x t  e d g e  

s e g m e n t s  in  f i x a t i o n  p o in t .

4. Invariant Representation of the Image

iant with respect to position, rotation, and size. Be­
sides, it is appropriate to the application of a classical 
neural network classifier for memorizing, storing and 
recognition of image fragments.

It is most natural and suitable that the next fixation 
point be chosen from the set of context points. In our 
model, in the memorizing mode, the choice of each 
next fixation point could be accomplished by a super­
visor or automatically. In the latter case the choice is 
defined by the contrast values of the segments. The in­
variant encoding of image fragments in fixation points 
is a necessary but insufficient condition for invariant 
representation of the whole image. In addition, it is 
necessary to encode invariant spatial relations be­
tween neighboring fragments of a scanpath. In the 
model, it is provided by encoding the position of the 
basic edge segment in the next (« + l)-th fixation 
point in the coordinate system (X'OY) joint with the 
basic edge segment in the previous n-th fixation point 
(by parameters A(//„(// + 1) and A</>„( + 1)) and by en­
coding the relative change of resolution levels when 
the “gaze” is shifted from one fixation point 
(Alo(n + 1)) to another (the position of the next fixa­
tion point is marked in Fig. 6 by a circle). The parame­
ters A(//„(/? + I), A</?„(« + 1), and Alo(n + 1) are:

A  if / ( n  +  1 )  =  m o d l f J( i//„  ( / ?  +  I )  -  y / ( n )  4- 1 6 ) ,

A<p„(n + 1) = <pf («), (4.2)
Alo(n + 1) = lo(n + 1) -  lo(n),

Each context segment can be invariantly encoded in 
a given fixation point by the relative orientation t//, the 
relative angle position <p, and the relative decrease of 
the resolution level A (see in Fig. 4). These parameters 
for each context segment are calculated in the follow­
ing way

(// = m o d (t//A -  I//„ +16),

tp = modi6 (<pk -  (//„ + 4),
A = / -  /o, (4.1)

<p. <// € ¡0, I, 2,. . ., 15},
A £ |0, 1, 2},

w here </A and (//,, are the orientations of the basic seg­
ment and the corresponding context one. <pk is the 
angle position of the context segment in the coordi­
nate system XOY, and / is the resolution level on 
which the context segment is extracted.

In this case, the image can be invariantly represent­
ed in each fixation point by the points on the surfaces 
of three tori each of which is formed by cyclic chang­
ing t// and tp and corresponds to the definite value A. 
This representation is shown in Fig. 6 (for the same fi­
xation point as in Fig. 5) as the black points in three 
coordinate systems on the evolvents of three tori (the 
abscissa and ordinate axes are the t// and tp axes, re­
spectively. Such representation of a grey-level im- 
agage (or its fragment) in each fixation point is invar­

where <p*(n) is the relative angle position of the con­
text point (in the coordinate system joint with the /i-th

Figure 5. The extracted basic and context segments in one fixation
point.
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Figure 6. Invariant representation of one fragment (the same as in 
Fig. 5) as the black points in three coordinate systems on the evolvents

of three tori.

fixation point) which is chosen as the next fixation 
point.

5. Object Memorizing, Search, 
and Recognition

The functional schema of the model of a visual neu­
rocomputer is shown in Fig. 7. The model is to func­
tion in the following manner. In the mode of object 
memorizing, the image is processed in consecutively

chosen points of fixation. In Fig. 8a. b the intermedi­
ate and final stages of sequential viewing of the object 
in the mode of memorizing are shown. In each fixa­
tion point, the set of oriented edge segments (the basic 
and several context ones) is extracted from the image 
fragment Then, the set is transformed into the form of 
three invariant patterns (as in Fig. 6). These patterns 
are memorized in the Neural Network playing the role 
of the Associative Memory for Fragment Storing. As 
a result of the memorizing mode, the fragments have 
been memorized in the Neural Network, and invariant 
relations between neighboring fragments have been 
memorized in the Motor Memory. In the mode of ob­
ject search, the raster is scanned until a fragment simi­
lar to some memorized fragment of some object is 
found in some fixation point. When such a fragment 
is found, a hypothesis on the object is generated and 
the system turns to recognition. In the mode of recog­
nition, consecutive fixations (controlled from the Mo­
tor Memory) and a consecutive verification of similar­
ity of fragments (processed in the fixation points and 
represented in the invariant form) with the fragments 
stored in the Recognizing Neural Network take place. 
(A scanpath of viewing in the recognition mode ought 
to consequently reproduce the scanpath of viewing in 
the memorized mode). If a series of coincidences oc­
curs, the decision is made that the object has been re­
cognized. If it does not, the system turns to the mode 
of object search.
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Figure <V. Intermediate (at and Final >h) stages of sequential viewing of
the image.
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TUTORIAL

A VIEW ON NEURAL NETWORKS 
PARADIGMS DEVELOPMENT

(Part 4)

/. Hofejs*)

Here we continue in the tutorial paper concerning the 
neural network paradigm, which first part was published 
in the Neural Network World, No. 1, 1991.

d) Dimension reduction.

There is still another use of training a net m-k-n to 
the identity mapping. In the net 6-2-1, taught by BP to 
recognize symmetry (see Fig. 6), 17 weights were adap­
ted (2 x6 + 2 drawn in the Figure + 3 thresholds which 
are in BP treated as weights from fictive neurons). 
Thus, the weight space was 17-dimensional and it 
would be of course interesting to have an idea, how 
the trajectory of 17-dimensional vectors 
wO -  >wl -  > w2 — > . . .  looks like during the pro­
cess of adaptation. Using methods of descriptive geo­
metry in 17-dimensional space is of course hardly 
thinkable. To get at least some visualization, the nets 
17-2-17 and 17-3-17 were constructed by Pelikan* and 
the weights from the above 6-2-1 problem, as they ha­
ve arisen during adaptation of that (symmetry) pro­
blem were used as the training set for our 17-*-17 nets, 
which were taught the identity mapping; i.e. T=  {[wO, 
wO], [wl, wl], [w2, w2],. .. .} After this training success­
fully ended, we were able at least to draw 2- and 3-di- 
mensional „neural“ projections of the 17-dimensional 
trajectory. You can see them on Fig. 24ab and observe 
moments, where changes (both in magnitude and in 
direction) were interesting.

e) “Instant expert systems“

A simple rule oriented expert system, say a medical 
diagnostic system, can be expressed in a form of laye­
red graph as in Fig.25.

At the bottom there is a layer of symptoms 
(51,.. . ,Sm), which can be established by a doctor 
and/or patient (subjective feelings, laboratory fin­
dings etc). In the next layer there are probable diagno­
sis (D1 ,... ,Dk) and in the output layer, recommen­
ded therapy (71,. . . ,Tri) is indicated. Medical experts 
then evaluate numerically „weights“ (measures of cer­
tainty or credibility) by which the system can conclu­
de that from established facts other ones follow. From 
Fig. 25 we see e.g. that presence of symptoms 51, 52,

*) Prof. Dr. Jiří Hořejš, Department of Computer Science, Charles Universi­
ty, 118 00 Prague 1, Malostranské nám. 25, Czechoslovakia
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53 leads to a conclusion that diagnosis D\ is very pro­
bable (symptom 51 contributing to the hypothesis by 
positive influence 3, 52 by 1). Yet from the two thera­
pies 71 and 72, which may cure the disease (with the 
same expectations if diagnosis 7)1 alone is taken into 
account, because of expert evaluation 2 in both cases), 
the symptom 53 (indicating e.g. allergy on some medi­
cation required by 71) prefers 72.

As seen, the graph does not form a CMN; first, ex­
perts seem not to have enough evidence on the direct 
influence of 53 on the diagnosis D1 per se (and other 
connections are missing too), second there are some 
conclusions which by-pass the diagnosis level leading 
directly to the therapy level (dashed lines). Moreover 
various experts often differ in their influences estima­
tions and in complex cases expert systems are prone 
to other misunderstandings and problems as well.

NNs can principally offer another solution. It is 
possible to recalculate the BP algorithm so that it co­
vers some by-passes and sparse weight vectors. Also,
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ii seems that many times it leads to a somewhat better 
solution introducing a true completely multilayered 
net with several hidden layers not reflecting on the 
fact that unlike the system from Fig. 25 we will not be 
always able to say which knowledge a given neuron 
and/or weight in hidden layers represents in medical 
tor the task dependent) terminology.

The problem of precise knowledge representation in 
NNs is well understood only in some parts of some 
nets; see g) below. What is important is that we alwa­
ys do know what the inputs and outputs of single neu­
rons and weights of connections attached to them in 
not hidden layers mean. Thus it' we are concerned 
only with the relationship between symptoms and the­
rapy and can perhaps miss a statement of diagnosis, 
we can use the above BP techniques and form a huge 
training set from a hospital database and let the BP to 
extract the necessary knowledge. Also possible is to 
extend the output vectors and include there the dia­
gnosis components.

While these approaches are theoretically all right, in 
practice we can of course encounter many troubles. 
For simple expert systems we found that their efficien­
cy as compared with some diagnostic expert systems 
is about the same. However the problem of explanato­
ry funetion of NNs, explaining why and how the final 
verdict has been concluded (which is usual and relati­
vely simple to implement in rule based expert sy­
stems) are more difficult if we have no good names 
for the hidden layer neurons. Yet some explanations 
may be sometimes offered, as seen from the following 
example.

Sima* developed a general expert-like system EX- 
PSYS on the basis of multilayered net, admitting by­
passes and including a technique for estimating „cre­
dibility“ of implications between input nodes infor­

mation and output ones, and dealing successfully with 
incomplete information, which permits the expert sim­
ply to admit that he/she does not know. The system is 
expert-oriented in that way they coding and decoding 
input/output information is automatically translated 
from the expert language to the language of NNs [eve­
ry expert statement is mapped on appropriate number 
of neurons and back]. The training set is expressed in 
terms of the expert language and implementation 
techniques are for him/her hidden. Moreover, EX- 
PS YS enables to provide a sort of explanatory facility, 
indicating those components of input expert descripti­
on which give most significant reasons for the given 
answers. This is a consequence of the fact, that Sima 
uses the whole interval [-1,1] (with the nonlinear 
transfer admitting these values), where, roughly 
speaking, YES is represented by t, NO by —1, while 
DON'T KNOW by the whole interval [- 1,1], (In fact 
the user can create any number of choices by introdu­
cing enumeration type). A sort of interval arithemetic 
then propagates through the net, distinguishing excita­
tion contributions from inhibitory ones as well as their 
ratio.

The power of the system has been demonstrated on 
a 16-25-20-8 net for diagnosis of protection warnings 
in atomic energy plants (for the cooling system of re­
actor VVER 410 V-213 to be specific). Starting from 
80 original members of T, he subsequently added (af­
ter consultation with an expert) another 32; after­
wards the net reached global error minimum near 0 (6 
hours on a VAX) and good generalization ability as 
was proved on a test set Q of about 300 members, 
where more than 80% of answers were accepted (with 
a feeling of surprise) by an expert, disappointed by 
previous experience with classical expert systems.

There are two well-known and instructive „histori­
cal“ examples of NNs applications, which should be 
not missed here.

1) NETTALK

As one of the first convincing application of BP, 
Sejnowski developed a system for transforming an 
English written text into a sequence of pronounced 
sounds —- he taught the net to talk. The translation 
was context dependent, because the same letters are 
often pronounced in a different way depending on 
a large piece of text (and thus the meaning of the 
words). A rather large input text was chosen and 
a window moving over it always read 7 consecutive 
letters assigning to the letter in central (4th) position an 
appropriate code for its spoken counterpart. For each 
letter in the input, the code 1 out-of 29 was used, gi­
ving thus the total number of neurons in the input 
layer 203. Each (and the only) phoneme in the output 
layer was coded by I out-of 26 neurons. The hidden 
layer consisted of 80 neurons. The net 283-80-26 
which has just found (or was taught) that the proper 
transform for ,,c“ in a given context is [german] „A:“, is 
shown in Fig, 26.
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It should be noted that many attempts are now fol­
lowed to pursue the inverse task; to transform the spo­
ken language into its written form (e.g. the Kohonen’s 
project of phonetic typewriter). These and similar 
complex tasks use also NNs, but in connection with 
other techniques. This is a general characteristic of to­
days research & development: in many problems, 
NNs are important but not the only tools used.
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Fig. 26

g) Representation in genealogy trees.

Hinton presented an example of two families (an 
English and an Italian one) and relationship between 
their members (“is a son“, „is an aunt“, „is a wife“ 
etc) [in form of two genealogy trees]. A multilayered 
net, which adapts its weights whenever a pair „person 
1 — relationship“ is submitted on the input, while the 
teacher completes the triple by a „person 2“ (being in 
a stated relationship with person 1) on the output. See 
Fig. 27.

PERSON!  2

PERSON J R E L A T I O N S H I P
Fig. 27

The training set T consisted of 100 out of 104 possi­
ble triples and the remaining cases were correctly ge­
neralized (Q having 4 members of form „person 1 
relationship“). The net even found that a particular 
person has two aunts (2 out of 24 neurons of „person 
2“ layer became active). Because (names of) persons 
are coded again by 1 out-of 24 (number of persons in 
the game) and similarly for the relationship, the gene­
ralization abilities can hardly be of a numerical inter­
polation nature.

So the net really had to „understand“ the inner ru­
les which it was taught. In fact, Hinton has been able 
to discover how some knowledge of the net is internal­
ly represented. It was found that some of the neurons 
developed an ability to represent some general featu­
res of the relationship involved, although there were 
no explicit information in this direction delivered to 
it. It turned out that e.g. the first neuron in the imme­
diately upper level encodes nationality (having con­
verged to the positive values for Englishmen and ne­
gative ones for Italians), next three neurons encode 
generation level etc. Thus besides the known and for­
merly illustrated concepts of „knowledge extraction“, 
we have here moreover a clear demonstration of inter­
nal „knowledge representation“.

Because of the dominant role of the BP, we will 
include in the further section some additional 
(slightly more advanced) exposition; it is aimed at 
those readers who found previous few chapters exci­
ting enough to experiment with the program of sect. 
7A, encountered problems in applications on more 
sophisticated tasks and are even keen to pass from 
metaphors to real work, suggesting further techniques, 
explanations, improvements and programming. The 
section is therefore exceptional also by introducing 
some references immediately in the text.

(Continuation)
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