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Editorial

Recent increase in the number of submitted manuscrip­
ts allows us to present a little wider spectrum of papers 
which we present to our readers in this issue. But we are 
still taking care of the balance between those contributions 
which are predominantly theoretical and those whose fo­
cus is more oriented toward applications. We have selected 
K. Ilornik’s paper concerning the still important problems 
of the neural networks learning and approximation as the 
first in this issue. The sequence of theoretical oriented pa­
per follows by the contribution prepared by O.Kufudaki 
and J.Hořejš, presenting a new approach to the design of 
back-propagation learning algorithms for one - dimensio­
nal layered neural networks. The third paper included in 
this part of our Journal was written by M.Herrmann and 
H.English and deals with the problems of heteroassoda­
tive memories of the modified Hopfield structure type. 
P.C.Kainen address some very interesting questions about 
neural networks heuristics and K. Hlaváčková concerns her

interest in mapping algorithms. The last three papers deal 
with some more practical problems: H. Beran address the 
applications of time-delay neural networks, A.D. Goltsev 
the problems of picture segmentation and D. Fatton some 
problems of training.

As in all the previous issues, we include here the conti­
nuation of J. Ilorejs’s tutorial on neural network paradig­
ms.

We continue also in presenting information on interes­
ting scientific conferences, symposium and other meetings 
and also on interesting books. We also include a selection 
of references concerning neural networks, neurocomputing 
and mass-parallel systems, selected from the Scientific In­
formation System of the Institute of Computer and Infor­
mation Science of the Czechoslovak Academy of Sciences, 
Prague.

M. Novak

FUNCTIONAL APPROXIMATION AND LEARNING 
IN ARTIFICIAL NEURAL NETWORKS

Kurt Hornik}

Abstract:
We discuss the potential of using artificial neural 

networks in problems of functional approximation 
and learning (estimation). It is argued that an ana­
lysis of this potential should be based on a rigorous 
theory rather than on the findings of particular si­
mulation experiments. We survey some of the re­
sults which have already been established, discuss 
their relevance and indicate directions in which we 
think further research wiU be necessary.

1. Introduction

Within the last few years, artificial neural networks 
(ANN’s) have received quite rapidly growing amounts of

* Kurt Hornik
Institut für Statistik und Wahrscheinlichkeitstheorie 
Technische Universität Wien, Vienna, Austria

both academic and commercial interest, to a large extent 
due to the fact that they promised to be a universal and 
easy-to use means o f ’’ learning” relations and interactions 
in complex nonlinear systems for which similar means of 
understanding and modeling had previously been unavai­
lable. With the aid of the popular generalized delta rule 
for adjusting the variable networks connections strengths 
to data sets, researchers and practitioners have applied 
ANN’s to a huge number of problems in various fields. 
However, today it seems that the period of more or less 
uncontrolled experimentation is slowly coming to an end, 
and that a certain amount of the initial enthusiasm has 
already disappeared and been replaced by a continuously 
growing demand for a better-structured and increasable 
scientific approach to ANN’s which in particular should 
make clear what the real advantages of this new techno­
logy are.

In fact, the functional ’’ learning” capabilities of ANN’s 
can conveniently be analyzed in a rigorous mathematical 
framework. For simplicity, let us restrict our attention to
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feedback-free architectures in which information is pro­
cessed in only one direction. Then clearly, for each fixed 
set of interconnection strengths, the network implements 
a rule for computing values at, say, / output units, given 
values at, say, k input units, or in other words, a mapping 
from R k to R l. Attempting to ” learn” a function /  from 
l l k to n l means to use a collection of input-target patter­
ns to determine a suitable feedforward network architec­
ture and adjust the network weights in a way that the 
mapping implemented by the thus trained network is close 
to / .  In other words, learning is a data-based rule for fin­
ding approximators to functions. (The distinction between 
mere approximation and learning has sometimes been ne­
glected in the neural network literature. Clearly, a system 
can simultaneously possess extraordinary approximation 
and very limited learning capabilities, e.g. because it is so 
complicated that, an algorithmic fine-tuning to a specific 
problem is virtually impossible).

How closeness between functions is measured depends 
significantly on the specific problem to be dealt with. In 
many applications, it is necessary to have the network 
perform simultaneously well on all input samples taken 
from some compact input set X  in R k. In this case, clo­
seness is measured by the uniform distance between func­
tions on Ar, i.e.

Pu,x(f,9) =  sup |/(x) -  g(x)\.
r £ X

In other applications, we think of the inputs as random 
variables with common distribution fa and are interested 
in the average distance, where the average is taken with 
respect to the ’’ input environment measure” ¡a. In these 
cases, closeness can e.g. be measured by the Lp(p) distan­
ces

P p A f ’ 9) jJ n k
\f(x) -  g{x)\pdp(x)

Up

1 <p  < oo, the most popular choice being p =  2 corres­
ponding to mean square error. In decision-making pro­
blems as in classification or pattern recognition where to 
each input pattern there corresponds one of finitely many 
possible actions, it may be desired to make the probabili­
ty of incorrect decision small, which leads to the closeness 
measure

p t A h g )  =  p \x e Rk "■ f ( x ) /
more generally, one could consider the expected loss re­

sulting from incorrect decisions.
OF course, there are many more ways of measuring clo­

seness of functions. For a more detailed account on this 
issue, cf.e.g. [3] and in particular. White [47, 48].

Which closeness measure is actually employed in a spe­
cific problem usually depends on the researcher’s or prac­
titioner’s attitudes and preferences and is thus much more 
the result of a highly prejudiced choice than of a gene­
rally valid rule. (Of course, a measure can be infeasible 
in certain application; e.g. if the effect of avoidably in­
correct medical treatment could be lethal, ’’ average” clo­
seness measures are clearly ruled out). Mostly based on

the fact that it does not suppress significant differences on 
possibly large subsets of the input space by assigning little 
importance to them, it is often argued that the uniform 
distance is always to be preferred to average measures as 
Pp̂ t ) see e.g. [30]. Contrary to that, we think that although 
the uniform distance is of considerable theoretical impor­
tance (if the input space X  is compact, uniform closeness 
implies closeness as measured by pPtfl ), its practical im­
portance is significantly reduced by the fact that it usually 
entails unrealistically large requirements for network size 
and learning time, and definitely does not scale well, to 
say the least, with even moderately large problem sizes.

However, the subjectiveness in the choice of the close­
ness measure must not he mistaken as something unscien­
tific. It simply reflects the fact that the user himself must 
judge the relevance of certain features to his problem and 
in particular, he must decide how the performance of a 
specific approximation or learning system is to be mea­
sured. In the context of pure approximation, this can be 
done by suitably trading off the complexity of the appro­
ximating system, e.g. quantified by the number of hidden 
neurons it utilizes for internal representation, to the accu­
racy of approximation it yields. In the sampling context of 
actual learning, one additionally has to take into account 
the number of training patterns necessary to guarantee a 
certain degree of approximation and/or generalization, as 
well as the computational requirements which arise during 
the training period. Hence, the user has to measure the 
performance of a learning system on a certain task relative 
to the ’’ costs” of structural, sampling, and computational 
complexity.

Assuming that such a performance measure has been 
specified, one can start to compare the capabilities of 
feed forward network architectures to those of different 
methods of functional approximation and learning, as e.g. 
kernel smoothing or regression methods based on wavelets 
or more traditional systems such as polynomials, trigono­
metric polynomials, and splines.

It is therefore of fundamental importance to rigorous­
ly clarify in which functional learning tasks of practical 
interest, and in what sense, ANN’s outperform their com­
petitors. For these problems, they should become accepted 
as a powerful tool in applications and successfully be em­
ployed there; on the other hand, their use in problems to 
which other systems are better suited should come to an 
end within more of less soon. It should not be necessary to 
point out that such an analysis, as refined and challenging 
as it may be, has to be carried out systematically and 
cannot be based on the results of individual simulation 
experiments.

It is the aim of this presentation to contribute to this 
analysis, partially by providing several important results 
which have already been obtained, and partially by exhi­
biting problems of current interest and indicating possible 
directions of future research. It is not attempted to give a 
complete survey of all available results on approximation 
and learning capabilities of feedforward networks.
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2. Approximation

2.1. Existence of Approximators

network with a continuum of hidden units which all have 
the same integrable and nonzero activation function xj>. 
More precisely, let

Probably until five years ago it seems to have been more 
or less commonly believed that in their famous book on 
Perceptrvns, [40] had demonstrated that multilayer per- 
ceptrons of the type introduced by [39] were fundamen­
tally incapable of performing certain computational tasks. 
Although the results of Minsky and Papert only apply 
to certain special classes of perceptions - and one nowa­
days feels that this fact should immediately have become 
obvious to researchers - they nevertheless appear to have 
been the cause of a substantial reduction of neural network 
research intensity for more than a decade.

When finally researchers started to train simple 
feedforward architectures by the generalized delta ru­
le (’’ error back-propagation algorithm” ; [41], they were 
rather surprised by their success on basic learning pro­
blems, and they became interested again in the investiga­
tion of the computational capabilities of sufficiently com­
plex multilayer feedforward networks.

A first result in this direction was obtained by [16] who 
used a theorem initially due to the famous Russian mathe­
matician [27] to establish that, upon suitably choosing the 
activation functions, an arbitrary continuous function /  
can exactly be represented over compact subsets A' of lZk 
by a finite neural network. More precisely, assume for sim­
plicity that A' =  [0, 1]* and / =  1, and let be the
components of the input vector x . Kolmogorov’s result, as 
later on refined by [38] and [43], implies that there exist 
continuous one-variable functions <f> and xpj, j  =  0 , ,  2k, 
and a universal constant A such that /  can be represented 
as

2 k k

/ ( * )  =  ] [ > ( £  Vx e  [o. i]<
j=0 i= 1

/(a )  =  (270“ * /  e~iax f (x )dx
J n k

be the Fourier transform of /  (in what follows, ’ denotes 
transpose such that a'x is the dot product of a and r), and 
pick a nonzero real number A such that xp(X) 7̂  0; such 
A exists because if xp is nonzero, its Fourier transform 
cannot vanish identically o n X \  {()}. Then

f ( x )

where

xp(a'x - f  u))K\(a,uj)dadu,

M í ) U )  =  s ( ! Í C / M ) .
'  2tt̂ (A) '

However, the most popular activation functions, like the 
logistic or arctangent squasher or the Heaviside function, 
are not integrable. Therefore, it appeared at first glance 
that the Irie-Miyake integral representation was of limi­
ted practical interest, and its potential value was seriously 
underestimated.

For what follows, it will be convenient to introduce some 
notations. For compact subsets X  of TZk, C (X )  is the spa­
ce of all continuous functions on A". A set Q of functions on 
X  is dense (with respect to the uniform distance pu,x)  if 
for all /  in C(X)  and t > 0 there is a function g =  gf,  e in 
Q such that pu,x ( f  , d) < £ • Similarly, if p is a finite measu­
re on TZk and 1 < p <  oo, Lp(p) is the space of all (Borel 
measurable) functions for which j  nk\f(x)\pdp(x) < oo, 
and a set functions Q is dense in Lp(p) (with respect to 
Pp,fi) if for all /  in Lp{p) and e > 0 there is a function 
9 = g ( f x )  in 0  such that pp^ ( f yg) < e.

Finally, for functions x¡¡ defined on V, , let

The functions xpj are monotonically increasing satisfy a 
Lipschitz condition with exponent log (2)/log(2k + 2), and 
are universal for the given dimension k\ only <f> depends on 
/. However, the above representation cannot directly be 
used in functional learning because it is by no means clear 
how <p should be parameterized to allow for adjusting to a 
specific / ,  see in particular [15]. As has recently been poin­
ted out by [32], cf. also [31, 33], the techniques which have 
been used for deriving the above representation can also 
be employed to give a rather elementary proof that for an 
arbitrary sigmoidal function xp, continuous functions can 
be approximated arbitrarily well (with respect to uniform 
distance) by sufficiently large feedforward networks with 
two layers of hidden units which all have the same acti­
vation function xp. (A function xp : % [0,1] is called
sigmoidal Iimi_ _ 0O xj>(t) =  0 and /imt_+OoV’ (0  — T if 
addition xp is nondecreasing, it is called a squasher ).

Another early result has been given by [24] who showed 
that integrable functions /  which the Fourier inversion 
formula holds can be represented by a single hidden layer

n
Ajfc(V»;n) =  |<7 : U k -* 71 : g(x) =  y ^J3jxp(a,jx +  ta,-)}

i=i
and

OO
= U N k{xp\n)\

n =  l

then Mk(xp] n) and A4 (V)) are the sets of all functions 
implemented by a single hidden layer feed forward network 
with k linear input units, n respectively an arbitrarily large 
number of hidden units with activation bias, and a single 
linear output unit. This architecture clearly constitutes 
a fundamental building block for more general multilayer 
multi output feedforward networks.

Equipped with this terminology, the fundamental ques­
tion which functions can, to any desired degree of accu­
racy, be approximated by sufficiently complex ANN’s can 
now be answered by determining in which function spaces 
A4('</’) is dense.

N N W  5 /91 , 257-266 Horniki Functional Approximation and Learning



The first results of that kind were given in [13] for the 
particular case of ip equal to the so-called cosine squasher. 
Quite unexpectedly, very general results were then obtai­
ned, independently and almost simultaneously, by [8], [12], 
and [21], who proved that for arbitrary compact subsets 
X  of 7vfc, A/fc(V») is dense in C (X ), provided that ip is 
squashing [21], continuous and squashing [12], or conti­
nuous and sigmoidal [8]. Similar results were obtained for 
Lp(/t) approximation for the case of compactly supported 
input environment measures // .

Let us briefly sketch the ideas behind the respective pr­
oofs,

Hornik, Stinchcombe &l White show that for arbitra­
ry squashing ip, the cosine function can be approximated 
by elements of Af\(ip) uniformly compact subsets of V, . 
Their results then readily follow from well-known results 
on approximation capabilities of the trigonometric system.
A similar argument was given in [17].

Funahashi observes that if i/’ is squashing and 7 ^ 0, 
then the function t 1— * (ip(t) — ip(t — 7)) is nonzero and 
integrable and can thus be used in the Irie-Miyake formu­
la, The desired results on denseness of A^(V’ ) can then be 
obtained rather straightforwardly by providing Riemann 
sum approximations for the corresponding integrals. The 
same idea was uset lateron in [22] to establish, for sufficien­
tly smooth and ’’ /-finite” activation functions ip, Sobolev- 
space denseness properties of A/fc( )̂> > e- capabilities of 
approximation with respect to closeness measures between 
smooth functions which also take into account how close 
their derivatives are, up to some order. Such smooth app­
roximation results are of considerable importance in appli­
cations, e.g. in robotics (smooth movements, see e.g. [26], 
signal processing (determining the Lyapounov exponent 
of a chaotic time series, see e.g. [10]), and econometrics 
(elasticities of certain functions arising in the theory of 
the firm and the consumer); for more details, see [22]).

Cybenko applies powerful results from functional ana­
lysis - certain Riesz representation theorems for conti­
nuous linear functional and the Hahn-Banach theorem - 
to conclude that if .N\ OP) is not dense in C(X)  respecti­
vely Lp(ji), there exists a nonzero, signed finite measure a 
on 'JZk (actually, a is concentrated on X respectively the 
support of /i) such that the function L^a, given by

L^a(a,u) =  / ip(a'x -f ui)dcr(x)
J :Rk

vanishes for all a in and u> in 1Z. Hence, if a bounded 
function ip is called discriminatory if no nonzero signed 
finite measure a can exist for which Ly,a(a,u) =  0 for all 
a and u>, then establishing the desired results on approxi­
mation capabilities o[Xik(ip) is equivalent to showing that 
ip is discriminatory, which Cybenko proves for the case of 
sigmoidal ip.

This elegant approach has been the source of even 
further generalizations of the basic approximation theo­
rems.[19] shows that all nonconstant bounded functions are 
discriminatory; hence in fact, for arbitrary nonconstant 
and bounded Vf and arbitrary finite measures n,Mk(fp) is

dense in Lp(/i), and if in addition, ip is continuous, then 
A/fctV1) is dense in C(X)  for arbitrary compact subsets X  
of TZk. Therefore, it is not the choice of a. specific acti­
vation function, but rather the multilayer feedforward ar­
chitecture itself which creates the potential of a universal 
learning system. Similarly general results can be obtained 
for smooth approximation capabilities. Apart from their 
apparent generality, the main importance of the theorems 
in [19] is the fact that they are the only currently avai­
lable general results for Lp(p) approximation capabilities 
of A*(V0 for the cases where p is not compactly suppor­
ted, which occurs e.g. if the input patterns are normally 
distributed.

It is quite natural to ask whether there exist activa­
tion functions which are discriminatory from a suitable 
compact subset A of7Zk+1, i.e., for which no nonzero, sig­
ned finite measure a can exist for which Ly}cr{a,u) — 0 
for all (a,tu) in A. As a generalization of the above de­
finition, such functions could be called A-discriminatory. 
This question is of considerable practical relevance because 
for such ip,Nk{ip) possesses universal approximation capa­
bilities with uniformly bounded input-to-hidden weights. 
[44] showed that if 1/) is a sufficiently kinky finite poly­
nomial spline, or superanalytic at a point, then it is also 
A-discrirmnatory whenever A contains a sphere with suffi­
ciently large radius; they also point out the cosine function 
does not have this property. In fact, they have recently 
succeeded in proving the quite remarkable fact that the 
logistic function is A-discriminatory whenever A has no­
nempty interior [45].

Remark. The results on universal approximation capa­
bilities of Mk{ip) do not mean that a single hidden layer 
is sufficient for computational task ANN’s could possib­
ly perform. In fact, in engineering applications, it is very 
often necessary to approximately invert a noninvertible 
function / .  As has recently been shown by [42], this can­
not be accomplished by functions in A4 ('0 ), no matter 
which ip is actually used, but is easily done by a network 
with two layers of hidden units with Heaviside activation 
function.

2.2 Rates of Approximation

Of course, the above results on universal approximation 
capabilities on multilayer feedforward networks do not at 
all imply that these networks are particularly well-suited 
to issues of functional approximation, not does the fact 
that the theorems are valid for more or less any possib­
le activation function ip mean that all such ip are suited 
equally well to these issues. What is really of interest, in 
particular to allow for comparison with competing func­
tion classes which possess universal approximation capa­
bilities, is the question how ’’ easily” , quantified e.g. by the 
number of hidden units or the number of adjustable inter­
connection strengths, a certain accuracy of approximation 
can be achieved. Therefore, it is of fundamental importan-

Hornik: Functional Approximation and Learning
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ce to identify the rates of approximation which are being 
achieved by ANN’s.

Unfortunately, this appears to be a quite challenging 
and difficult task. Although clearly any constructive pro­
of of denseness of A/¿(VO ls some function space T  (with 
respect to some closeness measure p) can also be used 
to produce upper bounds for the rates of approximation 
of elements of T  by functions in A4 (^;n ), these bounds 
usually turn out to be discouragingly large. In our opinion, 
this is due to the fact that thus far, all constructive proofs 
have actually been ” artificial” in the sense that approxi­
mators to /  are not constructed directly from / ,  but rather 
with the aid of another system of approximators to / .

Let us illustrate this point in more detail. As already 
mentioned, the method used in [21] for establishing dense­
ness of A/fcfVO consists in first approximating by functions 
in Mk (cos), i.e. by trigonometric functions, and then con­
structing approximators in Afi(psi) to the cosine function. 
(Their proofs are sometimes referred to as nonconstructive 
because they more or less artificially employ the Stone- 
Weierstrass theorem to establish denseness of A/*(cos). 
However, this can also be obtained directly by explicit­
ly approximating by suitable trigonometric polynomials). 
[12] and [22] construct Riemann sum approximations to 
the Irie-Miyake integral representation, in which the sole 
purpose of the integration with respect to tu is to cancel 
out the original V' terms and replace them by cosine terms, 
with the effect that the thus obtained rates of approxima­
tion are necessarily of worse order than those which can 
be obtained by directly discretizing the Fourier inversion 
formula (i.e., by initially using the cosine as activation fun­
ction). A similar situation occurs if the Radon transform 
representation introduced in [7] is discretized as suggested 
in [18]. Constructive proofs based on network architectures, 
with two hidden layers usually proceed by first providing 
approximators to indicators of cubes respectively intersec­
tions of hyperplanes, i.e. by approximately implementing 
hidden units with X3FI activation rules, see e.g. [50] and 
[32].

Summing up, as all methods which we are currently awa­
re of for constructing approximators by ANN’s with sig­
moidal, squashing, or integrable activation functions rely 
on the use of other approximating systems, such as ANN’s 
which use the cosine as activation function or hidden units 
with Yl O  activation rules, it is clearly very natural to ask 
what the benefits of not immediately using these ’’ other” 
systems might possibly be. It is by no means clear in which 
sense (if any) ANN’s based on e.g. logistic or arctangent 
activation functions should be superior to ” Fourier networ­
ks” based on the cosine as activation function; to us, the 
careful investigation of this question should be one of the 
most important research topics of the next few years. (Of 
course, the results of [44], [45] show that the cosine cannot 
provide approximations with uniformly bounded input-to- 
hidden weights which the logistic function can; however, 
it is totally unclear how ’’ nice” such approximations are, 
and which rates they can achieve).

Quite surprisingly, it is sometimes possible to obtain

’’ good” bounds for rates of approximation without expli­
citly constructing good approximators. [25] shows that if 
in a Hilbert space H , an element /  of H is contained in 
the closure of the convex hull of a bounded subset G of / / ,  
then the minimal distance between /  and Gn, the space 
of all convex combinations of at most n points in G, can 
be bounded as

min || /  -  g ||//< 7/\/n,
J E Cf n

where |j . ||// denotes the usual Hilbert space norm and 
7 = supfleG || g ||// Therefore, in order to apply this result 
to neural network approximation, we arrive at the problem 
of determining whether a function can be approximated 
arbitrarily well by elements in the convex hull of a boun­
ded subset of Afk(ip), e.g. sets of the form {/3ip(a'x + w )} 
with 0 bounded in absolute value. This question could 
even be investigated at a very general level similar to Cy- 
henko’s setting for proving existence of (unconstrained) 
ANN approximators, using the fact that a closed convex 
subset and a point not contained in it can be separated by 
a hyperplane; however, this general approach has thus far 
been more or less untractable.

Relying heavily on Fourier analysis, [5] has recently 
applied Jones’s result to obtain the following theorem. 
Let J-c be the set of all continuous and integrable real­
valued functions whose Fourier transform /  satisfies cj
fn>’ \af ( a)\ 5s c> an<J ^ an arbitrary sigmoidal func­
tion. Then for every /  6 7*c, every r > 0 and n > 1, every 
finite measure p on 7Zk and every 7 > 2rc, there exists a 
linear combination of the form

n
gn{x) =  /?o +  Pji'(a'jx +  Wj) 

i =l
such that

/  ! /(* )  -  gr>{*)\2dp{x) <  l~ p (B r),
J Br n

where Br — {x £ H k : |x| < r}. The coefficients in the 
approximating element gn may actually be restricted to 
satisfy 0o —- / ( 0) and Y^j=i l/?j! -  2rc-

Barron’s idea is to use the Fourier inversion theorem to 
obtain the representation

/( * )  -  /(U) =  » / , „ (e“ ‘* -  l)e i“’«| /(a )|d«

where the phase oj(a), defined by /(a )  — \f(a)\e'wW  ¡s 
a continuous function of a, and Aj is the probability mea­
sure on 7Zk with density \af{a)\/cj. This shows that the 
mapping x 1—-> f (x )  — / ( 0) is the limit of convex com­
binations of the functions 0gKiW(t), evaluated at t ~  u'x 
with |w| =  1, where |/?| < c and for k ^  0,£*iU,(Q = 
c.os(/cf T¿j ) — cos(ix/))//c. By then cleverly constructing sui­
table functions in M\ (V’) which approximate gKiU, unifor­
mly over [— r, r], the result can be established.
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Clearly, the above method again is artificially construc­
tive in the sense we have already explained, and again it is 
more than natural to ask why we should want to use some 
sigmoidal ip rather than the cosine as activation function. 
In fact, for the latter choice, we could more directly write

/ ( * )  =  K eia'Teiu)̂ \f(a)\da
I n k

cos(a'x ■+ uj(a))|/(a)|(ia 
■R*

to obtain the same n“ 1/i2 order of approximation for the 
much larger class of continuous and integrable functions 
with integrable Fourier transform, cf. [25].

Functional approximation by feedforward neural ne­
tworks is very closely related to a statistical technique 
called Projection Pursuit (PP), see in particular the ex­
cellent survey paper of [23]. PP uses model functions of 
the form

n

y=i
where the uj are unit vectors in 7Zk and the <pj arbit­

rary functions on %. Clearly, all elements of A/jb(V') are 
of the above form, and in fact, Mk{i>) can be thought of 
as a more or less conveniently parameterized basis for the 
class of PP model functions. PP was introduced by [11] 
in a sampling context as an attempt to cope with one of 
the problems usually encountered in the statistical analy­
sis of (even only moderately) high-dimensional data sets, 
commonly referred to as the ’’ curse of dimensionality” : 
for regression techniques based on classical approximating 
systems, the number of parameters to be fitted explodes 
with the dimension of the problem, and the methods ba­
sed on local smoothing (e.g. nearest neighbor methods) 
require very large samples, because otherwise, small ne­
ighborhoods of points of interest do not contain enough 
data points. Because they can reconstruct a function from 
its projections along directions of maximal variation, the­
re is some hope that PP techniques could overcome these 
difficulties.

However, as in most cases best PP approximators can­
not be written down explicitly, it has proved to be very 
hard to substantiate these expectations. An extensive 
comparison of kernel smoothing and PP approximation 
for k — 2 and the standard gaussian input environment 
measure has been carried out by [9].

By choosing the ridge functions <pj to be of the form 
0 cos(nt+u)  one can, as outlined above, obtain L2(y) app­
roximation of order n-1 2̂ with 0(nk ) parameters for con­
tinuous and integrable functions with integrable Fourier 
transform [25]. Thus, for sufficiently regular functions / ,  
the curse of dimensionality can in fact be avoided. Howe­
ver, the effect of allowing for more general <pj, and in par­
ticular, how these should then be learned from samples, 
are far from being well-understood.

Let us summarize our considerations. Functional app­
roximation by elements of A/fc(V;) can avoid the curse of 
dimensionality, at least for L2(p) distances. Nevertheless, 
the approximation performance of networks based on sig­
moidal activation functions relative to Fourier networks 
still needs to be investigated thoroughly.

One possible approach might consist in finding ” ip- 
inversion theorems” of the form

/ ( * ) =  /  /  ip{a'x +  uj)dT]J(a,u>),
J RkJ n

where ijj is some signed measure on Ti**1 which can 
directly be computed from / .  In the light of the above 
mentioned results of [25], rjf should really be a finite sig­
ned measure, unlike what is the case in the Irie-Miyake 
integral representation, and could probably be compactly 
supported. This would also allow to obtain results on ra­
tes of L2(/i) approximation for gaussian input environment 
measures which have not been established thus far.

Another possibility could consist in providing represen­
tations

PjHajX + w j) =  [  K n{x ,y)f(y)dy ,
J Tld

where the kernels Ku approximate the delta function as 
n —+ oo. This might in particular allow for improving the 
existing bounds for rates of uniform approximation.

3. Learning

3.1 On-line Learning Methods

As we have already mentioned, we feel that the increase 
in using ANN’s in the context of functional learning may 
to a great extent be attributed to the fact that the BP 
algorithm seemed to provide the users with an easy-to-use 
method for network training, although its limitations were 
encountered soon, and a lot of additional features have 
meanwhile been suggested to improve on its performance.

Many on-line learning algorithms for training the adjus­
table network weights 0 (assuming for simplicity that the 
network architecture is kept fixed throughout learning) 
can compactly be written as

6t =  T  T)tQ(zt , 0 t_ i ) ,

where zt is the training pattern presented at time t (in 
supervised learning, Zt consists of two components, an in­
put x t and a target yt), is the learning rate employed 
at time t } and Q( . , .) is function characteristic of the al­
gorithm; in the case of BP,

Q(z,0) =  Vg(x,0)(y -  g(x, 9)),

where g(x,0) is the output of a network with weight 
configuration 6 from an input x , and 'Vg(x,9) is the matrix 
of the partial derivatives of g with respect to 9.
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In order to analyze the behavior of such algorithms, in 
particular for the case of large random training samples 
and sufficiently small learning rates, it is not too unreaso­
nable to expect that one can, by averaging over all training 
patterns, relate the algorithm to the ordinary differential 
equation (ODE)

e =  Q(0), Q(9) =  EQ(zt,6).

(The dot denotes the derivative with respect to time). 
In which sense such a replacement is possible, and which 
conclusions can be drawn concerning the on-line learning 
algorithm by analyzing its associated ODE, has been the 
subject of intensive research for the last few years. One 
proceeds by constructing so-called interpolated processes 
9(s), s > 0, obtained by either piece wise linear or pie­
cewise constant interpolation of the sequence of updates 
9t with interpolation intervals rjt , and then shows that the 
solution paths of the ODE are the limit points of the in­
terpolated processes (with respect to uniform convergence 
on bounded time intervals). This can be done e.g. if the 
t]t —+ 0 at a suitable rate and time is ’’ large” (the so-called 
stochastic approximation case), see e.g. [46], [47], [29], or 
if T]t ~  i] tends to zero (the case of constant, but very small 
learning rates), see [30].

Ideally, the asymptotic ODE should have one global­
ly attractive equilibrium 9*, which would then allow to 
infer that in some sense, the estimates generated by the 
algorithm are ’’ close” to the optimal 9*. However, contra­
ry to classical learning algorithms from engineering appli­
cations (as the adaptive least squares algorithm and its 
extensions), this situation is typically not encountered 
in ’’ new” neural network algorithms, for which a global 
asymptotic analysis of the associated ODE is extremely 
difficult; in particular, these ODE’s are usually charac­
terized by a multiplicity of equilibria, several of which are 
asymptotically stable.

In the case of BP, Q(9) =  — V E(9, where E{9) =  
E\yt g(xt , 0)|2/2  is the (theoretical) error function to 
be minimized. As then clearly E is nonincreasing along 
the solution paths of the ODE, it is very often concluded 
that 9 converges to the set of local minima of E, at least 
for random initial conditions with probability one. Howe­
ver, as has also been pointed out in [30], such a conclusion 
cannot be drawn unless we know that the level sets of the 
error function are compact subsets of the weight space, 
which is usually not the case in applications. (Of cour­
se, in order to prevent the estimates from diverging, one 
could confine them to some compactum, e.g. by truncating 
the entries of 9 if they appear too large. But this clearly 
generates new artificial equilibria in at least parts of the 
boundary of the set which one confines to). This situation 
is particularly annoying in situations where it is known 
that no local minima exist, as in supervised learning in 
linear networks with a bottleneck layer [1]. Similarly an­
noying difficulties can occur in situations where the ODE 
is not a gradient system, but it is known that the desired 
limit points of the algorithm are the only asymptotically 
stable equilibria of the ODE, as is the case for a very ge­

neral class of unsupervised feature extraction algorithms, 
see [20] and [30].

We feel that as the existing general results on ” ODE 
methods” , cf. e.g. [36], [35], [37], and [34], were really de­
veloped for use in classical engineering applications where 
the underlying dynamical system has a unique globally 
attractive equilibrium, they are thus not really well-suited 
to systems which do not have this property. Therefore, 
a rigorous and satisfactory analysis of the properties of 
some typical neural network on-line learning algorithms 
only be possible if the existing theory is substantially dee­
pened. Currently, results on actual implementations of the 
algorithms usually out perform the results of their theo­
retical analysis. This situation is particularly inconvenient 
because, as explained in the introduction, what we should 
really be interested in is not so much the fact that the 
estimates generated by the algorithms converge to desired 
optimal weight configurations as the number T  of training 
patterns tends to infinity, but rather at which rate this 
convergence occurs, i.e. how large T  has to be to achieve a 
certain degree of accuracy; such results clearly cannot be 
obtained if convergence itself cannot be established.

3.2 Off-line Learning Methods

It is trivial that algorithms which only try to optimally 
adjust the weights of some fixed network architecture, e.g. 
by minimizing mean square error, cannot learn arbitrary 
mappings. Such a task can only be accomplished if the 
network architecture e.g. the number n of hidden units, 
may also be adjusted and increased without bounds.

In general, such methods can be thought of as trying 
to minimize some criterion function Q(g) over a suitab­
le collection Q of functions. Usually, Q(g) is a power of 
the distance between g and another function / ,  relative 
to some closeness measure. For example, an error function 
Q(g) =  E\y — g(x)\p equals the p — th power of the Lp(p) 
distance between g and a suitable function /  of the condi­
tional distribution of y given x , see e.g. [2] and White [48] 
(as usual, we write p for the distribution of a?); in parti­
cular, for the most prominent choices of p — 2 and p — 1, 
/  equals the conditional expectation of y given x and the 
conditional median of y given x , respectively.

However, in applications, Q(g) itself is usually not ex­
plicitly known, because the joint distribution of x and y is 
unknown, and instead we have to use an estimate Qr(g)  of 
Q(g) obtained from a sample x ti yit t =  1, . . .  ,T  . In the 
above example, we could e.g. take the empirical moment

T

Q r(g) ~  T “ 1 IV* ~ 9{xt) lp-
t=l

Clearly, unconstrained minimization of Qt over Q would 
now drastically overfit the sample and not allow for suffi­
ciently good generalization on previously unseen patterns 
(networks with enough hidden units can exactly interpo­
late the training sample). Therefore, one has to make sure 
that the function gT actually learned is sufficiently ” regu-
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lar” , which can be achieved either by nonparametrically 
smoothing natural interpolator estimates, by restricting 
the minimization to sufficiently ” small” bounded subsets 
Qt  of Q, or more generally, by trading off goodness-of- 
sample-fit achieved by g, as measured by Qy(g) , to the 
complexity of g, measured by a suitable function Cr(g), 
and actually obtaining an estimate cjt by minimizing the 
penalized criterion function

Qr(g)  +  ^Cr(g),

where A > 0 is a control parameter which weights the 
importance of in-sample-fit to complexity; restricting g to 
Qt  can be described by letting Cr{g)  =  0 if g is in Qt and 
oo otherwise. Notice that the same idea is employed for 
model selection in nested linear models.

Assume for simplicity that the problem of minimizing 
Q(g) over the closure of Q has a unique solution g*\ in our 
cases o f interest where Q(g) =  E\y-~g(x)\p =  (pp^ ( f ,g ) )p 
and Q =  A/jt(V0, this is always the case with g* == /  , as by 
the results of section 2, the closure of A/* (VO (with respect 
to pP:P) equals Lp(p). In these cases, rates of convergence 
of gT to g* can be obtained at a very general level, by com­
bining the errors incurred from approximating g* by fun­
ctions of certain complexity, and the error resulting from 
estimating these approximators from the sample. Such ge­
neral results with learning error bounds given in terms of 
the ” index of resolvability” have e.g. been given in [2], cf. 
also [6],

Combining these general methods with the results on 
(non-sample) rates of L'2(fi) approximation as discussed in 
section 2.2, [4] has recently given improved rates of conver­
gence for neural network functional learning using comple­
xity regularization. He shows that for sigmoidal ip, if n fa 
{Tlkllag(T)) ' l\  gT,n, is a function in A/j^Vsn) learned
from the sample by minimizing Qr{g) =  T ~l Ylt-i I2/t ~ 
g(xt)|2 over a suitable subset of Nk(ip;n), and if the un­
derlying /  lies in Tc for some c, then the expected mean 
square error can be bounded according to

E l B  ~ 9T'ni<X̂ 2d^ X  ̂ ~ c ° n s t ( f , c , r ) y j ^ ^ - .

The same rate of convergence can be obtained by choo­
sing n through some order selection procedure. Again, one 
might conjecture that a similar, if not better result, in par­
ticular for a larger class of functions / ,  could be obtained 
by training Fourier networks. This issue certainly deserves 
further investigation.

Methods which explicitly restrict the minimization to 
small bounded subsets of Q are usually called ” sie- 
ve methods” . [49] has established that if Qt equals 
A/jk( Vs nr,  M y), the collection of all functions in A/fc(Vb nr)  
for which all weights are less than M j  in absolute value, 
and both nj> and Mt tend to infinity at a suitable rate as 
T —* oo, then the L2(p) distance between the underlying 
/  in L2(/i) and the function gr learned from a sample

r r i

of size T  by minimizing Qr {g) =  T~ 1 Ylt=i IVt ~ »(**)|2

over A/jbiV') n T , Mt ) tends to zero as T —*■ oo. [14] estab­
lish similar results for Sobolev-space convergence, i.e, with 
respect to smooth closeness measures, provided that /  is 
sufficiently smooth. Rates of convergence have not been 
identified thus far; the recently obtained results on rates 
of (non-sample) approximation should prove to be most 
valuable for this purpose.
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Literature Survey

The literature on neuroscience increases last few years 
extremely fast. At present some estimations of more than 
20000 existing papers, conference and symposium talks, 
books and research reports are made. Evidently it is not 
possible to inform the readers about ail the interesting 
publications, which currently appear. However, we would 
like to use the existence of the computer oriented Scienti­
fic Information System of the Institute of Computer and 
Information Science in Prague for to present here almost 
regularly the short survey of the last year records of this 
base,

Of course, the readers are asked for to be so kind and 
inform the Editors or the Institute about any publication, 
which they recommend to insert in this literature survey.
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Abstract: A class of neural networks with nonsymmet­
rical connections is considered. The analysis of the dyna­
mical behavior shows that this type of neural network is 
characterized by a unique equilibrium point whose attrac­
tion domain is the entire space. Such properties do not 
depend on the shape of neuron nonlinearities.

Barnard E., Casasent D.: Invariance and Neural 
Nets
IEEE Transactions on Neural Networks Vol.2, 1991 No.5 
pp.498-508

Key words: neural networks; nets; invariance.
Abstract: Invariance with respect to certain transfor­

mations is one of the main tasks of pattern-re cognition sy­
stems. We study various techniques for obtaining this inva­
riance with neural net classifiers and identify the invariant- 
feature technique as the most suitable for current neural 
classifiers. A new formulation of invariance in terms of con­
straints on the feature values leads to a general method for 
transforming any given feature space so that it becomes 
invariant to specified transformations.

Barnard E,, Cole R .A., Vea M.P., Alieva F.A.: Pit­
ch Detection with a Neural-Net Classifier
IEEE Transactions on Signal Processing Vol.39, 1991 No.2 
pp.298-307

Abstract: The extens of generalization attainable with 
neural nets is first examined, and it is shown that a sui­
table choice of features is required to utilize this property.

Baum E.B.: Neural Net Algorithms That Learn in 
Polynomial Time from Examples and Queries
IEEE Transactions on Neural Networks Vol.2, 1991 No.l 
pp.5-19

Key weirds: neural networks.
Abstract: Back propagation and many other neural net 

algorithms use a data base of labeled examples to train 
neural networks,Here examples are pairs (x ,f(x )), where 
x is an input vector and t(x ) is the value of the target 
function for input x. We propose an algorithm which trains 
networks using examples and queries.
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PAB: PARAMETERS ADAPTING  
BACK-PROPAGATION

0. Kufudaki 1, J. Hořejš 2

Abstract:
A new method for back-propagation is sugges­

ted. It uses the parameterized transfer sigmoid 
function S(£,\,<r) — <t/(1  + exp( —A,£)) where £ is 
the net income, A the gain and a a scaling fac­
tor. Each neuron has its own A and a. Besides the 
weights, A and a are also automatically adapted 
by the steepest descent method. The algorithm 
performs considerably better than standard BP 
both in avoiding (apparent) local minima and in 
convergence speed. It was experimentally com­
pared to SuperS AB [6] with encouraging resul­
ts. Moreover, because the basic ideas of the two 
approaches are independent, they can be com­
bined to achieve even better performance. Esti­
mations for components of the gradient of error 
function E, {dE/dw, dE/dX, dE/dcr}, are given and 
confronted with experiments. Because a can in a 
sense theoretically substitute weights, consequen­
ces for the ” weightless” neural networks problem 
are commented on. In the introduction, historical 
motivation for the idea and possible explanation 
of distinguished properties of PAB are given; se­
ct. 1 and 2 thus can be omitted by those inter­
ested in BP applications only. On the other hand 
we draw the reader’s attention there to a combi­
natorial geometry result, which may be of interest 
for the further theory of multilayered networks in 
general.

Key words: speed-up of BP, local minima avoidance, para­
meterized transfer functions, weightless neural networks, 
the generalization problem

1. Historical motivation

We first met the back-propagation (BP) about 4 years 
ago. After succeeding with well-known examples like 
the symmetry problem, we tried to realize the identity

1 Dr.Olga Kufudaki
Institute of Information and Computer Science, Czechoslovak Academy 
of Sciences, 182 07 Prague 8, Pod vodárenskou věží 2, Czechoslovakia 

^Prof.Dr.Jiří Hořejš
Department of Computer Science, Charles University, 118 00 Prague 1, 
Malostranské nám. 25, Czechoslovakia

mapping to transfer the vertices of the 4-dimensional cu­
be over the 4 — 2 — 4 net, being prepared for the instance 
that due to the sigmoid transfer function of the usual form 
[1/(1 +  exp(—*))],the 0/1 vectors will not be mapped accu­
rately; but it, did not work at all. Only then did we notice 
the number of regions, dissected in a m — k — n net by n 
k-dimensional hyperplanes, and derived (see [3]) the for­
mula

( 1 )

limiting the number of possible different boolean vec­
tors passing through the net, especially when the identity 
mapping is to be realized (i.e. if in =  n and y =  x (see 
Fig.l for the case m =  n =  4, k — 2)). This formula, now 
often ascribed to [1], is however just a special case of the 
known equality from combinatorial geometry [2] (treated 
also in [5]):

( 2 )

giving (in general) the number of d-dimcnsional convex 
subspaces arising from the dissection of a k-dimensional 
space by n k-dimensional hyperplanes.

If we denote by z =  [z\} ...Zk\ the point in k-
dimensional space in the "upper part” of the net (if in­
put is the bottom and output the top one), corresponding 
to an input pattern x =  [aq, , . . ,  xm] in the lower part, 
then potentials (outputs before taking the final nonlinear 
transformation) of all output neurons y, (y =  [y i,. . . ,  yn]) 
are scaled distances from corresponding hyperplanes, the­
se being tangential to hyperspheres with center z and y, 
corresponding to the radius of the hypersphere. Because 
of nonlinear transforms in the hidden layer, the scales on 
the k axis may be mutually different (and varying in ti­
me as will be described in section 3), and it is better to 
speak about k-dimensional quadrics, which we call here 
hyperspheroids. This geometrical view enables us to see 
why more hidden neurons make an easier solution of the 
mapping problem: it is surely more probable to find (case 
k — 3) a common tangential plane to three randomly pla­
ced spheres than to find (case k — 2) a common tangential
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line to three generally positioned circles with radii prescri­
bed by expected outputs. For the simplest (classification- 
like) tasks we want that outputs of all output neurons 
tend to 0 or 1, and ail points z coming from the lower par­
ts when a particular pattern from the training set has been 
presented on the input, to be as far from the separating 
hyperplanes as possible (corresponding hyperspheroids ra­
dii being ’’ infinite” ). Thus the outputs of the mentioned 
points should have the largest possible value to be far away 
from the 0 on the first axis of the transfer function S (thus 
tending to ^  infinity). It follows that in such cases we can 
consider only full dimensional convex subspaces and set 
d =  k which shows how many different 0/1 correct out­
put vector responses we can maximally expect. For a net 
* — 2 -  4 we get the number 11.

It is seen that transfering all 16 of the vertices of a 
4-dimensional cube over the net 4 — 2 — 4 is an im­
possible task. If you try to do it, some of the 16 in­
puts necessarily lead to the same output. Actually, the­
re exist even such choices of the 11 vectors, for which 
the problem is unsolvable (using decadic codes, the set 
{1 ,2 ,3 ,4 ,5,7,8,9,10,12,15} is an example). Formula (2) 
gives only an upper bound. Believing, that the solution 
for this randomly chosen example exists and blaming an 
(apparent) local minimum for unsuccessful convergence , 
also had its positive effect; it stimulated further investiga­
tion of BP, see [12].

By the way, from (2) we can also derive some limitations 
on the appearance and number of input vectors mapped to 
identical outputs if we consider the three-valued ’’ logical” 
functions over {0,0.5,1} : output of a top-layer neuron 
equals 0.5 if and only if z lies on the hyperplane; thus for 
the case of Fig.l we can transfer vectors with no more than 
6 pairs of values 0.5; for higher dimensions of the upper­
most hidden layer you can similarly count the upper bound 
for the number of vectors having two or three 0.5’s and so 
on. All these considerations are not of course restricted 
to the given examples, but should attract researchers to 
potentials of combinatorial geometry in the study of NNs.

2. Orientation of hyperplanes

Moreover, which 11 out-of 16 mentioned vectors will 
be successfully transmitted over the net also depends on 
the orientation of the hyperplanes. If, for a given input 
pattern, z comes into the position depicted in Fig.2, whe­
re the numbers labeling hyperplanes correspond to par­
ticular output neurons, the resulting output vector will 
tend towards 1010. To get another output, say 1110, one 
of these 3 possibilities should happen:

(i) in further computation, z will cross one of the hyper­
planes, in this case that of number 2; if it stays finally in 
the positive halfspace with respect to (w.r.t.) hyperplane
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No 2 (of III), it will always produce 1 in the position of 
the second output neuron. If it is the hyperplane, which 
moves (to the dashed line, I), other results may become 
spoiled.

If this happens at the beginning of computation and the 
11 z's are nearby, the situation may still be saved by a big 
migration of z-points and hyperplanes. If most of them are 
however sufficiently far from the hyperplanes (irrespective 
of whether from the very beginning or near the end of 
the adaptation process), then troubles may arise, because 
some of the outputs are near zero or one and, as is well 
known,

Aw & y,(l -  y) (3)

(' means ’ is proportional to’) so that the adaptation 
ability of the upper part of the net decreases, and its lower 
part should try to remedy the situation;

(ii) some of the hyperplanes revert their orientation II; 
to do it within the mechanism of traditional BP, you can 
either diminish the normal vector to zero an then let it 
increase in the opposite direction or turn the whole hy­
perplane 180 degrees; because the first possibility leads to

proportional change of all of k their coordinates, both po­
ssibilities are improbable. Moreover as the distance of z 
from the hyperplane increases and corresponding outputs 
tend towards 0 or 1, (3) again intervenes so that drastic 
changes in the normal vectors are hardly to be expected. 
Taking finally into account the fact that

(iii) the mutual switch of one of more pairs across the 
hyperplane in the upper half of the net requires an analogi­
cal change of orientation of a hyperplane in the lower half 
of the net, we see that the quickest solution of the problem 
would be to revert the hyperplane orientation by some new 
mechanism. We have suggested such a mechanism: let the 
gain A (originally constantly I) of the transfer function 
change during the computation; if A changes its sign, the 
orientation of the corresponding hyperplane automatically 
reverts. This idea, based on a calculation of A\  similar to 
the calculation of Aw in standard BP, then evolved in the 
GAB [Gam Adapting BP] with a better chance of avoi­
ding unpleasant configurations, otherwise often leading to 
getting stuck. It should however be emphasized that GAB 
mostly solves the problem by somehow envisaging these si­
tuations even before they occur, so that actually changing 
the sign of A is not always necessary.
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3, The idea of PAB

GAB uses an imhomogeneous net in which every neuron 
has its own time-dependent A specifying the gain of S. Let 
us now generalize the idea of GAB still a bit more, taking 
the whole parameterized family of transfer functions, e.g.

S(£,A,<r) =  cr.(l/(l +  exp(-XO)  (4)

where A gives the slope of the sigmoid at point 0 (if we 
have A =  0, we get just a straight line (constant 0.5), while 
A tending to infinity derives from S the hard nonlinearity 
used in perceptrons) and specifies a scale in the vertical 
coordinate. In the thus-obtained PAB [Parameters Adap­
ting Back-propagation/, the mapping performed by the net 
depends not only on the weights (including thresholds), 
but also on all the A’s and a ’s.

It. is important that the individual parameters can also 
be adapted automatically, interleaving in a suitable way 
the usual adaptation of w according to formulas, given by 
the gradient

dEfdwl  jti =  à2 i .y2 i .{\ ”  V2,i/tr2,i)-x2 ,i-*lj  (8 )

where w-\ ; is the weight coining from j  — th neuron of 
1 to i — th neuron of 2 and zx j is the output of j  — th 
neuron of 1.

Finally, for connections between 1 and 2 we have - in
the role of 8-i .:¡J

0E/dzl j  =  Y  h . i -w i . j . i -n .A 1 ~ y2 ,.•) (9)
with the sum taken over i — 1, . . . .  n in the layer 2 , j  is 

a selected neuron in 1 and for the rest of lower part:

dzl,j/dXl,j =  O j U  -  -1

( 1 0 )

( 1 1 )

dzl,j/Sw0,r,j =  n , j - ( l  -  z l (1 2 )

grad E = {dE/dcr, dE/8X,dE/dw} (5)

Note that S(£, X,a)/a =  5(£,A,1) arid 1, cr) =  
S(GA,cr).

We shall now compute the gradients for the net m—k—n , 
and distinguish again the upper part of the net (from layer 
1 to output layer 2) and the lower part (from the input 
layer 0 to first (and the only) hidden layer 1). However, 
the recursive part of the computations remains valid for 
any number of hidden units, except that indexing would 
be more complicated. Note that we took into account the 
fact that outputs of z ’s (=  outputs of neurons in layer 1) 
are composite functions of er, A and w. The effect on the 
reverting hyperplanes’ orientation occurs whenever A or a 
passes 0 from positive to negative value or vice versa.

Using the LMS criterion for global error given by the 
well known formula E =  1/2 ~ d)2, where y is the
actual output and d the desired one, the inner sum taken 
over all output neurons and the outer one taken over all 
members of the training set, we derive for a particular va­
lue of a, A and w (considering the others as constants in a 
given sweep) the following (the input vector x is submitted 
in layer 0 , f  are potentials of corresponding neurons before 
the S is applied):

For the upper part we have:

with j  =  1 , . . . ,  k, p =  0 , . . . ,  m. For fictive neurons si­
mulating thresholds (z0 and xo) we assume the constant 
value - 1.

Having the partial derivatives, we can set as usually, 

A<r ~  ~w.dE/da
AA ~  —¡i.dE/QX for some w,n,rj 
Aw ~  —Tj.dE/dw

(13)
or in more detail:

Aa2t ~  ~^S2 i.y2 i /a2jl i =  l , . . . , n

A°T,j ~  -*-dE/dzX r dz1 ./da1 . =
j  = l , . . . , k

aa2i1. ~ -  y2,i/a2,i)- 2̂,i * = 1. • • • >n

AAi ■fi.dE/dzij .dzy/d\Xj =  ~ n . 8 i j . z u .
ď — 1, . . . ,  fc (130

9E/da2 i =  82 i .y2 i/a2 i (i =  1 ,2 ,.. .,  n) (6)
Awlj ,i  - -V -h ,i-y2 ,, C1 ”  V2,i/ff2 ,i)-x2 ,i-zl j

where 82 i — y2 t — d% (difference between actual and 
desired value of output of neuron 2; note there is no danger 
of possible division by zero of the value of <r, because y is of 
the form (4) and this divided by a simply gives £(£, A, 1));

dE/d\2i  =  82 i .y2 i .(l -  t/2,i/<72,.)^21i (7)

where £2 ■ is the inner potential of neuron t;

Aw0,p.i -  ’ / O  j  - l ,  (I  -  z - i j o l j ) . A i , i .*o .p
j  =  X,. . .  ,k P = 0 ,  . . . , m

possibly including moreover the momentum terms (with 
coefficients 7r2, p2 and a, respectively).

Let us note that the derived relations hold not only 
for the family of sigmoid functions, but can be adapted 
for any differentiable parametric transfer function F =
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f  f  f ( t ,x )dtdx,  where t is a vector of parameters and x  =  
£ (w ,x) is a function giving the presynaptical activity of 
the neuron, while x =  F(x)  is its postsynaptical activity. 
Then for the upper part of the net,

AU k  -dE/dti  -  dE/OF.dF/dti =  J fd X,

Aw dE/dw =  dE/dF.dF/dxdx/dw

=  Si. J fdt.dx/dw

and similar formulas hold for the lower part (cf.[7]).

4. Estimation of gradients

To estimate values of the PAB parameters gradients, 
the following ratios are needed:

Aa/Atv*, AX/Aw*, Aw/Aw*,

where Aw* is the change of wj,- in the net with constant 
values of a =  A =  1. Similarly, the asterisk * here always 
refers to values in standard BP computations.

From (13’), it follows that in all parts of the parametric 
net, for equally valued <§,■ and A, :

a) \Ao-l/Awj i\ =  yl/(ai .K*.z*) -  yi(X)/K*.z* (14)

where k* =  y*.(1 -  y*) and y,(A) = y1/<ri .
Because y*, y,(A) as well as z*- all are within [0,1], we 

see that k1 G [0, 0.25] with maximum in y* =  0.5 and 
hence also k*,z* G [0,0.25]. Now let us see when (14) is 
grater than 1:

¡Act, | > |Awy | if and only if y*(A) > k *.z*

If y(A) G [0.25,1] then the right-side inequality holds, 
because n*.z* <  0.25. If however yi(A) < 0.25, then for 
corresponding y* we have k* <  0.19 and thus left-side 
inequality is always true, irrespective of values of ai and 
y,(A). It follows than dE/da >  dE/dw* .

b) |AA/Aw*| =  \ii.(Ji\.z* (15)

In this case

|AA| > |Aw*| if and only if |£i.<r,| > z/.

Because |̂ , -<r, | >  1 and usually |£,| >  1 as well as |£»| > 
Wij.Zj, it most frequently holds dE/dX > dE/dw*.

c) \Aw/Aw*\= \Xi(Ti\.Zi/Zj =  \Xi(Ti<Tj \,zj (X)/Zj (16)

In this case

|Au;[ > ¡Aw* | if and only if |A,<ritr_, |.Zj(A) > z*

which holds at least for every ¡A,<rj| > 1. This correspon­
ds to the fact that nets with harder nonlinearity usually 
converge faster, if at all (i.e. they may have stability pro­
blems). Using PAB, the A's can reach high values conti­
nuously without causing problems so big that the adaptive 
process can’t stabilize.

From (14), (15) and (16) we see why the gradients of 
PAB are often much higher then these of standard BP.

Assuming <r G (—s,s), A G (—k,k) and £ G (—r, r), 
for some numbers s ,r ,&, then from the easily seen facts 
y* =  (0,1), z* G (0,1), k* G [0,0.25] and for y* =  0.5 
(when max6,- =  0.5) we deduce the following restrictions 
on the values of gradients (for tj =  it =  fj, =  1):

Aw* G (-0.125,0.125)
A a G (-s ,s )
AX G (—s2r, s2r)
Aw G (—s2k, s2k),

(17)
where usually r k > s.
It is seen that most dramatic changes during adaptation 

should be expected in A, and w, in this order, which is in 
accordance with our experimental findings. Because the 
maximal value of a usually exceeds 1, its gradient can be 
according to (17) in order of magnitude greater than Aw*, 
which is most conservative.

These estimations give us a hint at how to choose the 
initial parameter values and ratios of learning and mo­
mentum rates. For the <x, the computations are especially 
sensitive if you approach some upper limit, after which the 
net immediately overflows); this can be explained by the 
fact that according to last formula of (17), Aw and A A 
depend on cr quadratically.

5. The assessment of PAB

The automatic and incessant modification of parame­
ters may perform not only hyperplane orientation reversal 
(which then sometimes manifests itself as a little ’’jump” 
from a positive to a negative value or vice versa), often ob­
served in our experiments, especially for A ([8] confirmed 
this effect), but finds under such a ’’ threat” , an often more 
elegant way how handle the situation. Generally, we found 
many times that it succeeded when the traditional form 
of BP failed or in other cases speeded up the convergence 
considerably.

Note that due to the arbitrary values of <r and A, the ran­
ge of values of output neurons is theoretically unlimited, 
preserving at the same time the top layer’s nonlinearity

Also, it is clear that there are other possibilities for 
further extension of the parameterization technique, like 
shifting the range of (4) by an additive or multiplicati­
ve number, either a constant or a value depending on a. 
From the geometrical point of view you can imagine that 
under parameterization, the hyperspheroids become more 
’’ plastic” and flexible.
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Finally note one important feature of a modification: it 
is not dependent on the factor mentioned in (3),

It was shown by extensive use over a span of 3 years 
that the special form of PAB, namely GAB, is a more 
powerful than standard BP in two respects: First, it will 
not get stuck in poor (apparent) local minima in many 
cases where the traditional BP does and, second, it is, as 
a rule, faster, The idea of GAB was implemented, applied, 
graphically demonstrated and systematically pursued by 
E.Pelikan [4], especially in his investigations and const­
ruction of a system for neural signal analysis NESP. Sima 
[8] and Fatton [12] also confirm the effect, PAB inheri­
ted and made more apparent these properties, having one 
more degree of freedom. No wonder then that it is yet 
better in many tasks, like those mentioned above (11 out 
o f 16 0/1 vectors). Its efficiency can be seen partially from 
the obligatory XOR test. In Table 1, the Global Error 
(further denoted as GE) and V], which is the sum of «ab­
solute differences over all patterns, are shown after 2000 
and 5000 iterations. The first row gives the results of the 
traditional BP together with the choice of learning step r] 
and momentum coefficient a. In the third row, automatic 
adaptation of A has been included (fi as in (13), p2 mo­
mentum coefficient) and in the fifth row, adaptation of <j 
was added (with coefficients ir and 7t2). Final values of A 
and cr for the topmost neuron are shown as well. During 
the computation they changed considerably.

The parameterized BP often behaves in a different way 
than the "normal” one does. The GE curve may seve­
ral times abruptly increase to relatively high values, then 
fall down below the level reached before the peak. The­
se oscillations are interleaved with longer periods of slow 
decrease. The rapid decrease of GE is observed namely in 
times of these "abruptions” (this might be compared to 
a sort of self-annealing, or relaxing after enough frustra­
tion leads to a revolting move) and is usually signalized by 
strange behavior of the parameters. Also, PAB is rather 
sensitive to the initial configuration setting. The values gi­
ven in the odd lines of the table correspond to the same 
random choice of weights, with all X's and cr's having the 
initial value 1, Changing both these values to 1.1 (even 
lines in the table), the ’’ abruption” effect occurs and the 
results improve. This is seen in Fig.3, where the GE graph 
for the case cr — A =  1.1 is shown. The curves ’’ Lambda” 
and ’’ Sigma” represent values of one selected neuron.

Setting initially all the cr's to 1.5, while retaining pre­
vious values of initial A's, the X's (!! - cf. discussion of (17))

increase enormously and the convergence process stabilizes 
at GE  =2.0. Note that the effect of initial values persists 
even if the parameters do not change at all (row 2 in the 
table, where the standard BP is used).

Graph b: LamMa-Slgma-1.1

Fig,3 Dependency of GE, Lambda and Sigma on No of
cycles

We have compared the results of PAB with those of Su- 
perSAB with self-adapting learning rates rj ([6]) on the 
motivational task of identity mapping of various quadrup­
lets of 0/1 inputs, where the danger of the convergence 
process is often encountered in the form of relatively good 
decrease of global error till reaching values slightly above 
1 or 2 (which usually means that the mapping behaves 
well except that it insists on one or two pattcrn/output 
neuron pairs producing complementary answers). As a ru­
le, SuperSA B reached (under the same randomly genera­
ted initial weights) the critical values near 1 or 2 more 
quickly, but then started to remain in one of its two mo­
des (increasing/decreasing the learning rates rj) for a long 
period, sometimes practically decreasing rj to 0. Then fur­
ther decrease of GE stopped. PAB approached the critical 
region more slowly, but often crossed it and continued with 
decrasing GE.

From these and other comparisons we deduced that Su- 
perSAB is pretty quick when moving over an error lands­
cape with relatively shallow valleys and low hills; PAB se­
ems better when there are deep holes around (with narrow 
paths out to escape apparent local minima). This gave us 
few ideas for further research. First, to consistently join

Lear .rate/ moment GE
2000 cycles

E A a GE
5000 cycles

E a a
rj =  0.7 a =  0.3 0.0044 0.13 1 1 0.00125 0.07 1 1

dtto 0.001 0.09 1.1 1.1 0.006 0.05 1.1 1.1
/i =  0.03 /i2 =  0.02 0.0012 0.07 1.6 1 0.00025 0.03 1.7 1

dtto 0.003 0.03 1.6 1.2 0.0001 0.02 1.1
7T =  0.0025 tt2 =  0.0002 0.0002 0.03 1.5 1.2 0.00006 0.01 1.6 1

dtto 0.0002 0.03 1.6 1.1 0.00001 0.008 2.6 1i

Tab. 1
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these two techniques. In fact we already used a mixture 
of both, but only r] was adapted during the computation 
in some examples. The possible objection to PAB, namely 
that of introducing other parameters to handle, weakens 
with the introduction of the SuperSAB technique.

Second, we want to use the idea of SuperSAB and other 
weapons against the growth of individual (pattern /  out­
put neuron) pairs of errors, fighting most intensively with 
the (always changing) worst pair. In other words, we would 
like to develop a ” Uniform BP” , in which the errors in all 
outputs (in all output neurons and for all patterns) will 
always be approximately the same. This may be another 
way tackling overfitting, which is otherwise often of selec­
tive nature: for some pattern/output neuron pairs results 
can be very accurate, while a few exceptions can still pro­
duce significant global error.

Remark. During his stay at Charles University, 
D.Fatton has contributed to a partial solution of these 
tasks; a note on his work is submitted [12].

Note also that if A or u =  0 for a relatively long time, 
the corresponding neuron is a candidate for the removal.

No matter what Table 1 indicates, we believe that the 
major practical contribution of PAB is not its speed, but 
its ability to adapt more easily to inhospitable landscapes.

Another phenomenon of PAB deserves attention. What 
seems at first sight surprising is that we were able to solve 
some problems only by adapting the parameters A and a, 
without any modification of weights (77 =  a =  0)! (e.g, a 
few 0/1 vectors from the introductory problem were trans­
mitted over the (same!) net w>th constant mutually equal 
weights with a good accuracy comparable with those given 
in Table 1 for traditional BP).

Thus we claim as a hypothesis that with the adaptive 
parameters A and a every neural net is equivalent to a net 
with fixed mutually equal weights.

If you take into account that any weight can be simu­
lated by an interneuron ” sitting” on the connection, with 
arbitrary output caused by proper increase of cr and/or 
changing its sign by converting the orientation of A, the 
claim need not be interpreted as a direct objection to con- 
nectionism (where adaptive weights play the crucial role), 
while still supporting the idea of weightless neurocompu­
ting [11]. It is one way of avoiding direct weight modi­
fication. Although this would generally cause an increa­
se of the number of neurons (afterwards perhaps being 
minimized by an analogy to various now often discussed 
techniques), some implementation aspects could give it so­
me sense, e.g. by avoiding 3-dimensional arrays of weights 
(which on some computers lead to poor memory utiliza­
tion).

6. Comments on generalization

There are plenty of modifications of BP, accelerating 
convergence, usually by giving the net more degrees of 
freedom (more parameters for timing it, or adding hidden 
neurons, say). They are potentially dangerous from the

point of view of generalization, as they admit more internal 
representations. This caution should also be taken into 
account when assessing the speed-up techniques and PAB 
is in this respect no exception.

On the other hand this does not mean that generaliza­
tion of such nets is necessarily worse; it depends on many 
factors including task, data and others. In [10], the authors 
performed studies on the influence of various choices of <x 
and A (they use the same transfer function (4) as we do, 
their parameters however are not adaptive during compu­
tation) and found out that their proper selection improves 
greatly generalization, relative to their task.

For dynamically changing parameters you could reach 
similar results under the assumption that you use satisfac­
torily converged set frozen in a more less stable configura­
tion, not during an oscillatory phase.

Also a Uniform BP might contribute to good genera­
lization by facing the danger of unjustified preference of 
some hidden laws before the others, all being biased by 
the same degree of fuzziness.

Finally, because PAB is (at present at least allegedly) 
able to eliminate weights, emphasizing the principle of lo­
cality where each neuron can express its own ” weight” (by 
the value of a) and its own decisive strength (by the va­
lue of A), it can also in a perspective contribute to the 
generalization problem along the lines indicated above.

This research is further developed in [13].
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NEURAL NETS AS HETERO AS S O CI ATI VE
MEMORIES

M,Herrmann, H.Englisch1

1. Introduction

The mathematical theory of neural networks is based 
mainly on the notion of a formal neuron introduced by 
McCulloch and Pitts [1], also known as a threshold logic 
unit (TLU) [2], which is able to perform a weighted sum 
over a set of inputs, to modify this sum nonlinearly, and 
to send the result to other neurons of the net. Some of the 
abilities of the brain such as recognition, learning or de­
cision processes can be modelled as collective phenomena 
of an artificial neural network, i.e. a number of connected 
formal neurons.

Here we consider the network mainly as a memory de­
vice. Whereas classical memories return the content of a 
memory unit according to some code number or address 
which has to be put in exactly, networks can serve as con­
tent addressable memories, i.e. they return the content 
of the memory from incomplete or vague, ” noisy” inputs. 
In the autoassociative case, the network produces an im­
proved version of the input. An autoassociative memory 
appears as a special case of a heteroassociative one, where 
the prototypes of the input and the corresponding output 
pattern, respectively, need not to be identical. This can be 
interpreted as finding the answer to a posed question.

The perceptron [3] which will be considered in the next 
section presents itself as a suggestive solution for a hete­
roassociative memory. By means of a counterexample we 
will illustrate that the perceptron cannot solve every mat­
ching problem. Though examples of this kind can be dealt 
with by using multilayred perceptrons [4] or committee 
networks [2], it is useful to take the ideas of the Hopfield 
model [5] into consideration (section 3), which we consider 
subject to the condition that regions of different retrieval 
quality are given. In this case, an improvement in capacity 
(in comparison to the original Hopfield model) is obtained. 
The last sections are devoted to a special case of our mo­
del, namely to bidirectional networks as Hopfield type he­
teroassociative memories. As the output of such a network 
the state after infinitely many time steps is considered. 
Due to the relation between bidirectional and unidirectio­
nal (autoassociative, Hopfield models), some interesting 
aspects of the convergence arise, which will be considered 
in section 5. Further, in section 6 we consider the strongly
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diluted approximation of the bidirectional model in order 
to determine optimal values for the external field.

2. The Perceptron

The perceptron [3] consists in simplified form of two 
layers. At the first layer of N0 neurons an input configu­
ration S(0) =  (5 ,(0 ),...  ,Sjvo(0)), where 5, (0) € { -1 ,1 } ,  
is given. Each of the N i neurons of the second layer is 
connected with every neuron of the first and appears as 
the output of a distinct TLU with identical input vectors
S(0):

N0
Sj( 1) -  s ign(Y 'j JijSj{0) +  hj\ i =  1 , . . . ,  JVi, (1)

j=i
where J,j is the weight of the connection between the 

j  — th neuron of first layer and the i — th neuron of the se­
cond one. By /i,, pixel dependent thresholds are included. 
For Nq — Ni the perceptron may be used as an auto­
associative memory, for Nq /  N\ as a heteroassociative 
memory only, and in particular for A) — 1 the percept­
ron (or simply the TLU) provides binary decisions for a 
’’ situation” represented by S(0). We remark that recogni­
tion as well as decision can be understood as a matter of 
classification, where there are in the former case as many 
classes as distinct memory contents and in the latter case 
as many classes as different decisions, and in particular 
for N i =  l there are two classes. The weights of the con­
nections Jij will be adjusted in order to obtain a certain 
relation between input and output of the network.

The function of the perceptron is easily elucidated if we 
think of any possible input as a vertex of the hypercube 
[—1, 1]N° in an Ao-dimensional space, which is called the 
pattern space (for N0 =  3 see fig.l).

Each TLU corresponds to a hyperplane (orthogonal to 
the weight vector Jj =  (Jn, . . . ,  Jin,)) , which divides the 
set of vertices into two parts. Depending on which side of 
the plane the input vectors is situated a different output 
5,(1) G { — 1,1} is obtained,

The parity function usually serves as an example of whe­
re the perceptron fails. It requires output values +1 or — 1 
if the number o f ” — 1” in the input is even or odd, respec­
tively. For Nq =  2 this corresponds to the XOR function 
(cf.[6]), where it is obvious that one cannot separate two
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diagonally opposite vertices of a square from the other 
ones by only one straight line.

Fig.l.: Three-dimensional pattern space

Moreover, the portion of binary functions or classifica­
tions defined for all elements of { — 1, 1}^° which are repre­
sentable by a perceptron vanishes for large N0. If, howe­
ver, only p =  aNo randomly chosen vertices are considered, 
then for a  < 2 [7] the perceptron will learn to classify them 
correctly with a probability close to 1. For latter result [7], 
the assumption was made that the points in the space of 
the input patterns are in general position. This means that 
for each K <  No there is no hyperplane of dimension K  
which contains K  -f 2 or more input points. Only recen­
tly it was shown [8] that randomly chosen vertices are in 
general position with probability 1 for any finite a an N 
tending to infinity, such that ctcrii =  2 is the critical value 
also for binary patterns.

As an illustration we will consider the example from 
fig. I. The maximal number of binary patterns which can 
be arranged in general position at a cube is 5 and there is 
(up to rotations) only one such configuration (represented 
in fig.l). Obviously, it is impossible to find exactly one 
plane separating the points (-1,-1,-1) and (1,1,1,) (i.e. the 
A ’s in fig.l.) from the points (-1,-1,1), (-1,1,-1), (1,-1 ,-l) 
(the 0 ’s in fig.l). This is the only one of the 16 possible 
decompositions of these five points into two sets which 
cannot be performed by a hyperplane.

Difficulties of this kind can be solved by using hidden 
units [4].

Another approach (or an interesting special case of ne­
tworks with hidden units), the committee network, is also 
based on the idea of the pattern space.

Instead of relying on only one TLU it seems useful to 
form a committee [2] of such units. Their outputs are

summed by a special vote-taking TLU that (put out) the 
majority decision of the committee.

The example of fig. 1. can be solved with a committee 
of two TLU’s. Each TLU can be chosen in such a way 
that the corresponding plane cuts off one A-vertex and is 
oriented in such a way that this vertex gets the value + 1. 
Thus, the A-vertices get one vote, therefore an output +1 
is obtained, whereas the other patterns (0 ) are situated 
on the negative sides of both of the planes. For fairness, 
the inputs of the third vote taking TLU are connected 
to the outputs of the other two by equal strengths. Thus 
A ’s lead to (+1) +  (—1) =  0 and to (— 1) -f (—1) = 
—2. A constant threshold h — 1, however, leads to an 
unambiguous decision of the committee.

3. Neural Nets with Regions of Different 
Retrieval Quality

Consider the autoassociative case for the perceptron,
i.e. Nq =z N\ — M  (rather than N  which denotes the total 
number of neurons throughout the paper). The improve­
ment of a noisy version S(0) of a vectors which has been 
stored in memory previously while running the network is 
measured by the retrieval quality defined as:

M
(2)

»=i

where t < 1. For independent £** and S(t), m^^t) will be 
close to zero. If both are identical then m*4̂ ) =  L

If an improvement of the input vector mM(l)  > m^O), 
is reached by application of equation ( 1), it is tempting to 
iterate this rule several times.

M
Si(t +  1) =  sign JijSj(t) +  / i , ( 0 ) ; 

i=i
i =  1, . . . ,  M\ t >  0. ( 1')

In the Hopfield model [5], the weight J,j are determined 
by the Hebb rule

Jit =  

Jii >

* ^  J

(3)
where ^  =  (£m« i, • ■ • ,£&); F =  1....... ..  are the ve­

ctors to be stored. The £miq are assumed to be indepen­
dent and identical distributed random variables with zero 
mean.

Temporarily we will apply ( 1’) only in a serial mode, i.e. 
for randomly or according to a certain rule chosen index i 
Si(t +  1) is calculated.

If the argument of the sign function is equal to zero and 
for any other neuron Sk, k i the state remains unaltered.
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Besides, the network can be simplified by using only one 
layer of neurons whose values change according to (T).

If the iteration procedure ( ! ’) converges for t —► oo (cf. 
below) then the limit state S(oo) is said to be the output 
of the network.

Convergence, i.e. the existence of a definite limit state, 
depends essentially on the weight Ja for the value of the 
i — th neuron at the time before, i.e. on the stability of 
the state of the neuron, and on the symmetry of the con­
nection matrix which is guaranteed by (3). It is obvious 
that for large Ja the self-interaction term in (T) domina­
tes the other ones, whereas for a negative self-interaction 
the opposite sign is prefered at time t +  1. It turned out 
that Ja > 0 (as in eq. (3)) is sufficient for the convergence 
of the dynamics (1’) in the serial mode [9].

It has been shown [10] that a vector with m(0) < 0.97 is 
improved by iteration of (T ) if the ratio a of the number 
p of stored vectors arid the number M  of neurons does not 
exceed a critical value which is close to 0.14. It should be 
remarked that a temporary improvement occurs also for 
higher a but this does not effect the retrieval quality of 
S(oo) [11].

In the following paragraphs, we consider the input ve­
ctor being composed of several regions or non-overlapping 
receptive fields each containing a different amount of infor­
mation on the vector £** which is to be retrieved. The addi­
tional knowledge given in this way will us enable to focus 
attention on the important parts by a suitable weighting 
of the input vector S(0).

This situation is reminiscent to the one striking some 
parts of the surroundings with higher, but other parts with 
lower, accuracy.

The different reliability of different regions is expressed 
by the partial retrieval quality (4), i.e. overlap with one of 
the stored items within the corresponding part.

Let the input vector S(0) be a noisy version of the stored 
item ^ . It splits into n parts of length Nk, where k = 
0 , . . . ,  n—1. The k—th part is situated between the neurons 
with number Ak_\-\-1 and Ak, k =  0 , . . . ,  n — 1. Ak is given
by E L o =  N-, hence An_ x = YlkZo Nk =  N - Further, 
we set A-\ =  0. The partial retrieval quality in the k — th 
region is defined as

AT -Ak-x+1
(4)

Then the total retrieval quality (2) is a weighted sum of 
the partial retrieval qualities.

n —1 Ak

E
*=0 j = A k- i  +  l

Si(i +  1) =  s i g n ( j T a k J.y5y(f)), (6)

which, obviously, becomes for n =  1 the dynamics (T ) 
of the original Hopfield model [5], since the constant a\ is 
in efficacious due to the sign function. We remark that all 
considerations in the following are exact for t = 0 in the 
Hopfield model and for t > 1 in the strongly diluted mo­
del [12, 13], which can also be extended to a network with 
regions of different retrieval quality. In diluted models, the 
weights Jsj are given by (3) (or (10)) with probability C/N 
and Jij =  0 with probability 1 — C/N , where C 2t“ 2 is re­
quired to be small in comparison to N, but large compared 
to 1. The symmetry — Jji is destroyed by the dilution.

Apparently, these features are more similar to the pro­
perties of the brain than those of the original Hopfield mo­
del since natural neurons exhibit a rather low connectivity, 
but the mathematically favorite effect of uncorrelatedness 
would not allow for meaningful processing.

The retrieval quality mJ(l)  for an input £(0), being a 
perturbation of £l , can be calculated from

S<(1) =
* -0  j = Ak- 1+1

E i r ^ i 0)))
H=2

n—l N

sign +  ajfcßt),
k = 0

(7)
where m,t(0) is the retrieval quality of the 1 —st pattern 

restricted to the k — th part of 5(0). R =  Efc-o akRk is,
after normalization by the reciprocal of nS
a standardized Gaussian random variable. Therefore, we
can write m! (l) -  if E i l i  ^

m1(l)  =  e r f  ^
\f*Y % Zoa2 JEl 

k N
)• ( 8)

where erf (x )  =  exp(—x'2)dx. From the Cauchy-
Schwarz inequality for the weighted scalar product 
((ak), (mk)) ~  E£=o ak j f m k , the optimal value ak = 
cmfc(0) is obtained, where c can be set equal to 1.

In order to interpret this result, we rewrite equation (8):

n — 1

k=0

N t
N ™£(o) (5) m ‘ (i) (9)

For each region we introduce a dynamic variable ak, ex­
pressing the attention paid to it ak is to be given as a 
function of mk. Thus, the process of recognition is descri­
bed by the rule

The (weighted) quadratic mean as in equation (7) can 
better overcome the noise term Rk than the arithme­
tic mean which is performed in the ordinary case, where 
ak — 4- for all k. The factor of the improvement of m (l)
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in our model upon the ordinary case is plotted in fig. 2. 
for some special parameters. For the special case n = 2 
with mo(0) > 0 and m|(Q) =  0 the argument of the erf-  
function in (9) is improved by a factor of between 1 (for 
No < N j )  and 1 (for N0 Ni ) at the first

Fig 2.: Factor of improvement of m( 1) from eq.(9) upon 
rriHopfieidi 1) vs, Nq/N\ for n =  2, mo(0) =  1, mi(0) =  0,
0.025, 0.05, 0.1, 0.2, 0.3 (from top to bottom), a =  .14.

time step compared with the ordinary case. For regions 
of equal size a factor of up to \/2 can be obtained.

4. The Bidirectional Associative Memory

A more recent approach [14] to heteroassociative me­
mories consists in a kind of unification of the ideas of the 
perceptron with that of the Hopfild model. The bidirectio­
nal associative memory (BAM) consists (like a perceptron) 
of an input layer and an output layer of neurons which are 
mutually connected, but (like in the Hopfield model) the 
out put of the network is used as the input for the next time 
step, where the information flows in opposite direction.

Bidirectional networks are especially useful for optical 
implementations of neural networks, where devices with 
up to 1012 interconnections have been proposed [15].

Thus, we are interested for the above case (mo(0) > 0 
and m } (0) =  0) in the unknown second part of the vector 
S =  (£,r/), where we may obtain a connection matrix M 
given by a analogue of the Hebb rule.

= ^ Eif if <10>
It stores correlations between the slots of the vectors
, r/yi; /j, =  1 , . . . ,p .  Let No and Ni be the dimensions 

of and , respectively, with N0 +  N1 = N, then M is 
an (NoxN^-matrix. For No = N] and = rf  for all p 
(10) is simply the Hebb rule. Otherwise our network may 
serve as a heteroassociative memory and is equivalent to

the bidirectional associative memory (BAM) [14] which 
can also be understood as a Hopfield model with a special 
connection matrix

where Nj) +  N 2 of the N 2 connections have been wiped 
out. As stated in [13, 16] the introduction of nonlinear 
synapses (instead of (10)) in the BAM improves the infor­
mation capacity. Besides, the modification of the synapses 
does not influence the bidirectional stability.

5. Convergence of the B A M

Since the matrix (11) is a symmetric one and has a zero 
diagonal, it fulfils the conditions for convergence [9] of the 
serial Hopfield model, i.e. the network provides a stable 
pair (S(°)(oo), oo)) from the possibly noisy version of 
the input vector (£*\0 ), where the first operations cal­
culate only elements of the S^-part. If we would like to 
correctly introduce an unambiguous state, we have to deal 
with ternary neurons (cf. [17]).

The parallel or synchronous mode is of more interest 
for applications, but there the sufficient condition [9] for 
convergence in the Hopfield model sharpens to «/,-,• > fj-, 
which the matrix (10) does not fulfill. In [14] it was shown, 
with the help of a Lyapunov function, that by running 
the network several times a so-called bidirectionally stable 
pair {(S(°)(oo), O); (O, S ^^oo))} wil be reached and that 
this is the case for any matrix M. But the proof in [9] 
implies immediately this bidirectional stability: The serial 
mode applied alternatively to every S(°)-unit once and to 
every S^-unit once leads to the same result as the parallel 
mode, due to the block structure of the matrix (J,j) to the 
same result as the parallel mode, due to the block structure 
of the matrix (J,y). Thus, convergence holds for the matrix 
( 10), too.

These ideas can be applied to the original Hopfield mo­
del, again. With the help of a sightly more complicated 
Lyapunov function [13] one can show that in those cases 
where the parallel dynamics do not converge, limit cycles 
with period 2 occur instead of a definite fixed point. Now, 
there is a way to understand this behaviour from another 
point of view. If the matrix (10) is a Hebb type, then also 
only bistable limit cycles can occur. The Lyapunov func­
tion in [13] for the parallel Hopfield model is nothing other 
than the simple serial Lyapunov function of a BAM.

Additionally, as the Hopfield model can be considered 
as a set of perceptrons with only one output neuron, the 
bidirectional network is related to the committee network
[12]: Each slot of the output can be understood as being 
produced by a committee of neurons. The weights of the 
first layer are the rows of the matrix M  and the weights 
of the vote-taking TLU have to be chosen as the columns 
of M if an improved version of the input is to obtained.
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6. The Optimal Threshold for the BAM

For mi(0) =  0 the formula (6) leads to a trivial result 
for the parameter a*, but the retrieval quality depends 
essentially on the difference between Nq and N\. The loss 
of information at the larger of both sides can be overco­
me by the introduction of stability terms [18], i.e. weights 
/¿0(t) and h\(t) for the state of the network at the time 
before. Hence, they lead to a partial conservation of the in­
formation, especially while passing the larger of both sides 
(let / i i ( - l )  =  0):

5 p )(2i +  1) =  s> jn (f3 M i>Sj0)(2<) +  i .i (2 i-  1)S!0)(1));
j~ 1

i — 1, . . . ,  Ni,

Ni
Si0)(2t +  2) =  s i g n ( ^ M f iSii l\2t +  1) +  h0(2t)S^°\o));

j  = 1,.. .,N0
( 1 2 )

In the context of the strongly diluted model, we obtain 
for the retrieval qualities of both layers

m\(2t +  1)

ml(2t -f 2) =

l+rn1(2f - l ) cr^^m^2Q+ft1(2« - l ) j  [ 

1—mi(2«— l )cr^^mS(2Q~h1(2<— 1)  ̂

l+mo(2t) crj- ̂  m\(2t + l)+h0(2t)  ̂+

(13)

We obtain as optimal values for the sequences h\{2t +  1) 
and ha(2t -f- 2) in the parallel mode for random, indepen­
dent, identical distributed patterns with expectation value 
zero

hi(2t +  1) —

ho(2t +  2) —

ai / 1 + mj (0) \
m0(2t) g V l - m i ( 0 ) / ’

Q° lnr/"1 + m ° (Q)>l 
m i(2 t  +  1) * \ 1  — m o (0 ) / ’

(14)

respectively, where ao =  p/Nq, aq — p/N\ correspond 
to the parameter a and mo, mi are the retrieval qualities 
according to (4) of the Ŝ 2) state vector, respectively.

Fig. 3 shows the improvement reached by optimal local 
fields. In the strongly diluted version of the original model 
the retrieval quality vanishes for a > acra, whereas local 
fields at least keep the initial retrieval quality. For medium 
a, an improvement of m0(oo) as well as of mi(oo) is visible. 
The output retrieval quality, however, will tend to zero as 
a —* oo due to the information loss in each single step. The 
two diagrams of fig. 3 show the influence of differences in

size between both sides. Leading to an improvement for 
different (a) as well as equal (b) sides in each case

a)

b)

Fig. 3.: Retrieval quality as a function of a for a) 
Nq/N\ =  0.1 and b) Nq/N\ =  1. BAM with (full curves) 
and without (dashed curves) local fields. Upper curves re­
present m)Q\ lower ones m^l). For b) the dashed curves 
coincide. The initial overlap ism^°^(0) =  0.8 (dotted line).
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the local fields can, however, not completely overcome the 
worse retrieval for great differences in size.

7. Conclusion

Several approaches to heteroassociative memory based 
on networks of formal neurons have been discussed. Parti­
cular attention was paid to the usage of a Hopfieid neural 
network as a heteroassociative memory. Such a modifica­
tion of the original model as is presented here is known 
as the bidirectional associative memory. Comparing the 
conditions for convergence in the Hopfieid model and the 
BAM it is easily shown that the convergence of the serial 
Hopfieid model implies the bidirectional stability of the 
BAM. From this - vice versa - we find immediately that 
in the parallel Hopfieid model only cycles of length of less 
than two can occur.

We analyzed the BAM from a more general point of view 
which has as a simple attention mechanism its own inter­
est. In the strongly diluted approximation we demonstra­
ted the positive effect of local input-dependent thresholds 
for the BAM.
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Book Review

Neural Networks 
(Computers with Intuition)

S. Brunal, B. Lautup

World Scientific 1990,
ISBN 0971-50-939-3

This marvelous popularization book goes far beyond 
the scope of its title. In 9 Chapters [Profession: Compu­
ter, The Brain’ s Wetware, Knowledge, Information Pro­
cessing, Computer Architecture, Binary Neural Networ­
ks, Perceptron, Computo, Ergo Sum?] the reader will find 
a lot of interesting facts and views about the Universe 
surrounding us as well as its map within us, philosophical

reflections, witty parables, excursions to history and ex­
citing remarks. You can expect everything: from XOR to 
free will problem.

Although intended as an amusing reading for laymen, it 
is probable that even a specialist will find there a simplified 
yet correct description of what his colleague searches for 
in a lab next door.

The second half of the booklet covers - in the same 
fashion - Hopfieid and multilayered networks, without any 
formulas but still giving a good understanding of the 
authors were able to introduce some techniques even with 
problems of proper input coding, description of learning 
the hyphenation problem etc.

Annotated selected bibliography and an index conclude 
the book.

Prof. Dr. Jifi Horejs 
Department of Computer Science, 

Charles University, Prague
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ON PARALLEL HEURISTICS

Paul C. Kainen1

Abstract:
We consider parallel heuristics based on mathe­

matical knowledge. Several examples are surveyed 
from optimization and problem solving with em­
phasis on how an abstract insight leads to efficient 
calculation. In some cases the resulting methods 
are error-tolerant and are problem-size indepen­
dent. We give instances in visual perception in arti­
ficial, mathematically defined environments which 
suggest that heuristics may be utilized in some ty­
pes of biological computation, and an experiment 
to test this idea is proposed.

I. Introduction

The word ’’ heuristics” (from Greek heure - to find) is 
used by psychologists and computer scientists to denote 
random searching guided by educated guesses. Heuristics, 
as compared with deterministic algorithms, have a distin­
ctly biological (rather than mechanical) feel. To the extent 
that a heuristic is an educated guess, it can embody the 
education represented by an organism’s genetic, somatic 
or neural memory as well as nondeterministic aspects of 
living choice. When these choices are approximately inde­
pendent, they may be carried out in parallel.

For references to heuristics e.c. see, on the pure mathe­
matics end, Polya [35], [36]. There are countless examples 
in engineering -  recently, for instance, [27], [28], [9], [1], 
[7] and [10]. Heuristics are often employed by experts to 
solve difficult problems. This amounts to an a priori de­
cision to ignore most of the variables with efforts focused 
on the critical few. Here wisdom consists in knowing the 
small core of important factors.

Such techniques have been used in machine-aided calcu­
lation from the beginning (e.g. in Monte Carlo methods). 
As early as 1957 Simon and Newell embedded heuristics 
in a computer program called Logic Theorist, which could 
prove theorems from Principia Mathematica (in one ca­
se Logic Theorist gave a more elegant proof than the one 
used by Russell and Whitehead).

Our chief criterion for heuristics is that some mathe­
matical computation is involved which allows a short cut 
in the abstract structure so that an entire class of con­
crete calculations can be avoided. Not only are heuristics

^Paul C. Kainen
Industrial Math 3044 N St, NW Washington, D.C. 20007

invaluable in optimization and problem solving, but we 
believe they also may play a key role in some biological 
computations. These methods tend to be noise-immune 
and naturally parallel.

Our thesis that empirical efficiency and abstract shor­
tcuts are strongly related is supported by examples from 
computer science and mathematics in sections 2 and 3. In 
section 4 psychophysics is considered, primarily in terms 
of phenomena in visual perception requiring mathematical 
computation. Section 5 proposes an experiment to test a 
heuristic theory of perception. Section 6 is a discussion of 
approximate independence. The references follow.

2. Combinatiorial Search

The difference between a deterministic algorithm and a 
heuristic is that the heuristic will usually work very fast 
(but may not always do so!) while the deterministic al­
gorithm must always provide an answer but may take lon­
ger. A deterministic algorithm is supposedly 100% certain. 
This means that there is a mathematical proof showing 
how the steps of the deterministic algorithm are carrying 
out a theoretically rigorous data transformation. A heuris­
tic, on the other hand, may have only a probabilistic cer­
tainty of approximate optimality.

On deeper reflection, however, these alternative approa­
ches are actually much closer than it may seem at first. 
Aside from the possibility of errors in the mathematical 
proofs (or inconsistencies or inaccuracies in the constrai­
ning axioms and laws of the system) there is unavoidable 
presence of error in the data.

For instance, the well-known Kruskal minimal total- 
length spanning tree MST algorithm finds such a tree in a 
graph (when one exists) by ’’ greedily” adding edges, shor­
test first, unless a cycle would result. This assumes that 
the length of all edges are known exactly (or at least up 
to ordinal certainty). If edges actually have uncertain len­
gth, then we could choose incorrect (non-shortest) edges 
in applying the algorithm to our data and so the resulting 
spanning tree could be non-minimal.

Nonetheless, we would heuristically expect the resulting 
total tree length to be stable since small errors only affect 
the order of the shortest edges and so have negligible im­
pact on the MST.

Binpacking is a particularly clear instance of efficient 
computation by heuristics.
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Suppose given a list L of weights (each between 0 and
1); it is required to load them into the smallest possible 
number of "bins” (each of capacity 1). Needless to say, the 
computation of the absolute minimum number of bins is 
NP-hard [12; p. 124-127]; of course the sum of the weights 
is a lower bound. Nonetheless, a simple good-guess pro­
cedure called ” FFD” turns out to be (1) probably within 
11/9 of best possible even in the worst case of a list con­
structed to be difficult; (2) as the length of the list goes 
to infinity, asymptotic to the best with probability 1; (3) 
actually optimal 75% of the time simulations for lists of 
length 105 (see Bentley et al [3]).

The FI D procedure merely puts the weights in decrea­
sing order and then places each weight into the first bin in 
which it fits without exceeding the weight limit of 1. That 
this common sense approach works so incredibly well is 
typical of good heuristics. Moreover, FFD can be easily 
adapted to a parallel processor solution even when the 
data is on-line.

Heuristics can perform better than expected, but we 
suspect that frequently such exceptionally effective com­
putation occurs as a result of underlying mathematical 
facts though their rigorous statement and proof may not 
be known. For instance, the Dantzig simplex method has 
such seemingly gratuitous power.

3. Intelligent Problem-Solving

In this section, computation problems are presented 
which can be solved through search based on abstract prin­
ciples. Intelligence is involved in selecting the appropriate
abstraction.

Exam ple 1 . M easuring by coffee spoons. Consider 
the notion o f a ” preserved quantity” .

Suppose one has a container of coffee and one of milk. 
What happens when you first dilute the coffee with a litt­
le milk, then take some of the resulting mixture and put 
it back into the milk? When the amounts exchanged are 
equal, the respective concentrations of coffee and milk de­
pend on the initial volumes. After the dual exchange, the 
total volume of liquid in each container is preserved so, at 
each container, exports equal imports. Hence, both impor­
ts are so dilution ratio is inversely proportional to volume 
ratio. Note that ’’ perfect mixing” is not needed.

When the volumes of coffee and milk are identical, it 
follows that the resulting dilutions must be equal.

A parallel computer might use this approach to compare 
two unknown processing element populations by making 
a pair of random transfers and then sampling in parallel 
to see which population is more concentrated.

Physical models, such as above, may help to explain the 
’’ implicit parallelism” of Holland’s genetic [15], simulated 
annealing [14], [11],[24] and Hopfield networks [16], [17]. 
We think that a full theory of heuristics will relate all of 
these ideas in the context of geometric probability (as in, 
e.g., Solomon [40]).

Example 2. (P.A.M. Dirac) Less can be more. Expanding 
the mathematical structure which describes a physical pro­
blem can greatly simplify the solution. A popular puzzle 
involves successive divisions of a pile of coconuts subject 
to modularity conditions (remainder of 1 on division by 
6). Each of 6 pirates takes 1 / 6th of the coconuts, one after 
the other in order of rank (or ferocity!). Then all 6 divide 
the remainder equally. At each division, there is precisely 
one coconut left over which is given to a monkey. What is 
the least positive number N of coconuts for which such a 
process is feasible?

Dirac noticed that the procedure could be defined for 
negative N as well and that clearly -5 coconuts would then 
work! For each of the first division, a pirate ’’ takes” -1 
coconuts from the pile; that is he gives the pile one of his 
own! This now goes to the monkey and leaves the pile with 
-5 again. At the last division, all 6 of them ’’ take” their 
share, that is, they collectively add 6 to the -5 which leaves 
one for the monkey, as required.

But if N =  —5 works, this solves the original positive 
integer problem too. For if N is any solution, surely JVq-67 
is also a solution (check that the modularity condition still 
holds at each division). Hence the minimum solution is 
-~5-f-67 . Calling -1 coconut an ” anti-coconut” , the reader 
may better appreciate Dirac’s theoretical prediction of the 
anti-electron.

Extending the domain can facilitate parallelism. For ex­
ample, real numbers are usually represented within a com­
puter using floating point notation. But Schroeder [38] has 
pointed out the advantages of more sophisticated number- 
theoretic techniques which, in addition to permitting ope­
rators to act simultaneously on all of the components of a 
representation (without worrying about ’’ carry bits” ), also 
lead to error-free computation.

Example 3. (A. Renyi) W hen  is ignorance bliss?
If one has absolutely no information regarding a random 

graph process, then one may as well regard the process as 
uniformly random. Let V be any sequence of n labeled 
vertices. Define a random process TREE which produces 
with equal likelihood any of the nn~'2 distinct labeled trees 
on V. Recall that for any graph a vertex is called an end 
point if it is adjacent to exactly one other vertex in the 
graph.

Theorem  (Renyi). For any h > 0 there is an integer, N, 
such that when n > N if v is chosen uniformly at random 
in V and T is an outcome of TREE, then [Pr (v is an end 
point of T) — e-1 | < h. Here, e =  2 .718 ..., and in fact 
the convergence is very fast. Thus, a random vertex in a 
random tree has a chance of about e~l of being an end 
point.

Now suppose one were asked to exhibit an end point for 
some given tree T. If T  is small, of course this is trivial, 
But if T. (i.e., n) is very large, then the deterministic so­
lution for this problem requires accessing a huge amount 
of data, and in fact it can be shown [45] that the smallest 
deterministic algorithm requires on average log n steps. 
This algorithm starts at a random vertex in the random
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tree and takes a ’’ walk” until, since there are no cycles in 
such a tree, the walk ends at an end point of the tree.

But Renyi’s Theorem says that k random guesses would 
have a probability of (1 — e_1)fc of all being wrong (sam­
pling without replacement). Thus, for any h > 0 there 
exists K such that, for k > K,  k random guesses have 
probability < h of not finding an end point. This is in­
dependent of n. Even 10 random guesses almost surely 
suffice for any random tree.

Note that the heuristic is not only infinitely faster but 
it is also more robust. Suppose data describing the tree 
contains an extra edge. If the deterministic algorithm is 
unlucky enough to use this edge, then it would never es­
cape from the resulting cycle. However, the heuristic pro­
cedure uses less information (it is not trying to follow a 
path in the graph) and so a few extra edges (or even a lot 
of them) don’t significantly affect its rapid convergence.

To be fair we should mention that if the tree on n verti­
ces happens to be a path, the guessing heuristic needs on 
the order of n tries -  but then so does the deterministic 
algorithm. Due to their minimal requirements for informa­
tion, heuristics lend themselves to parallel and decentra­
lized implementation, without the need to pass auxiliary 
variables among the elements of a decomposition. In this 
example, processor could independently seek an endpoint.

4. A  Look at Psychophysics

When they are guided by mathematical structure, 
heuristics can throw away most of the information because 
it is irrelevant. This seems to us very much like the beha­
vior of the human visual system. For example, a pixelized 
photograph can often be more easily recognized when one 
squints at the image, thereby blurring it to obscure the 
irrelevant detail of the irregular black and white digital 
checkerboard in order to respond to the statistical pattern 
of light and dark density. The computational efficiency of 
vision has long been studied as part of the mathematical 
psychology of perception otherwise known as ’’ psychophy­
sics” . See, e.g., [2], [6], [32],

Many years ago N. Bernstein [4] and, independently, G. 
Johannson [20] showed that subjects (of the experiments) 
could describe complex bodily movements based only on 
the trace made by small lights attached to performers 
who were otherwise entirely invisible. Individual perfor­
mers could be identified from the characteristic nature of 
their traces. (This should not be surprising to anyone who 
has recognized an approaching person from the rhythm of 
the foot steps).

In this section we shall give four other examples in which 
pattern perception appears to occur accurately based so­
lely on mathematical information. We believe that the 
psychophysics of these perceptual phenomena is heuris­
tic. The speed and ’’ effortless” nature of the perception 
strongly suggest parallel computation.

Exam ple 1. (L. Glass) Take a random pattern of opaque

spots on a transparency and superimpose another copy 
with the same center but a small rotation. The subject 
immediately perceives a family of concentric moire circ­
les. As the rotation is increased, circles disappear (largest 
first) until all correlation is lost and a random field of twi­
ce the original density appears. Similarly, expansion and 
contraction appear as explosions and implosions. See [13], 
[43].

Example 2. (B. Julesz) This experiment also involves 
random dot patterns but here it is the statistics of their 
distribution which are compared. In normal stereoscopic 
vision, both eyes focus on a common object. The left and 
right view have the same key ’’ landmarks” appearing in 
slightly shifted parallax with respect to one another and 
background.

In the Julesz variant the subject is shown a left/ right 
artificial image pair (normally created by computer but 
a TTL-version has been proposed). Each image consists 
of an array of variable blob shapes called ’’ textons” each 
element of which can be modulated as to geometric type, 
position and orientation. By controlling the statistical dis­
tribution of the pair, it is possible to cause the subject to 
experience the perception if an ’’ abstract” mathematical 
object as a 3-dimensional figure in space, that is, as a vir­
tual stereogram. For instance, cubes, tori and hyperbolic 
surfaces are shown in Vol. VII: Perception, Handbook of 
Sensory Physiology, See [21], [18], [37], [33]. Some effort, 
may be necessary to fuse the stereo pair.

Example 3. (E.II.Land) The human sense of color so­
mehow retains remarkable fidelity under extreme distor­
tions of lighting quality; this can be seen even without 
contextual clues. There are two different illustrations of 
the effect.

Suppose a scene is photographed twice on black and 
white film with one picture taken through a red filter and 
one through a green filter. Slides are made and the red- 
filtered black and white film is projected back through a 
red filter but the green filtered black and white is projected 
without a filter, as shades of gray. Scenes with context, like 
a table with bowls of fruit, are immediately perceived in 
’’ natural” color.

In a different manifestation of psychophysical color 
constancy, the subject sees a ” Mondrian-painting-like” 
assemblage of small overlapping rectangles with specified 
Munsell values (hue, saturation and intensity). Even when 
the assemblage is illuminated by two narrow-band light 
sources (e.g.,lasers), the subject is able to identify the un­
derlying Munsell value of a rectangle. See [29],

Example 4. (J .A.Lissajous) A beam of light which is de­
flected by two vibrating mirrors will trace a repeating geo­
metric figure, called a Lissajous figure, when the rates of 
oscillation of the mirrors is in a fixed whole-number ratio 
-  for instance, the 2 to 3 figure is shown in Fig.l.

When the frequencies are identical, then the relative 
phase of the two oscillations determines the figure which 
the subject observes (Fig.2).

The only psychophysics involved so far is just persisten-
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ce o f vision; one continues to see the trace of the bright 
spot after it has moved on. The shape seen is the geometry 
scanned.

Fig. 1

But as soon as there is any distortion in the perfect 
frequency ratio of the oscillators, Lissajous noted that the 
perceived figure appears to take on a 3-dimensional quali­
ty as though a wire-frame structure were rotation in spa­
ce. Furthermore, mechanical impedance or other factors 
which affect the internal dynamics of the mirror cause a 
distortion in the figure but not a change of topology. See 
Figs. 1 and 2.

Fig. 2

Now psychophysics is involved since the actual trace 
is a quasi-periodic, non-closed figure but it is perceived 
through a kind of ” envelope” as a moving closed figure. 
The shape seen is not what a photograph would show 
but represents a strong closure effect. For instance, when 
the two frequencies start equal and at tt/2  (’’ quadrature” ) 
phase then as one oscillator varies slightly in frequency 
the initial circle seems to be embedded in 3-space and to 
be rotating about an axis at x /4 or —tt/ 4 depending on 
which frequency is larger. See [23].

A cou stic  pattern  recognition. The above examples 
all relate to vision but certainly analogous mathematical 
analysis is performed within the sense of hearing. For ex­
ample, (see [38], p. 22) when two tones at frequencies fl 
and f2 are simultaneously presented, a subject may hear 
the ’’ greatest common divisor” frequency, yet the tone 
heard changes smoothly with small changes in fl and f2. 
This is just like the Lissajous phenomenon, and may also 
be involved in echolocation by bats [41].

5. Is the visual perception of connectivity 
achieved heuristically?

The perception of connectivity has been proposed as a 
basic element of Gestalt visual perception. How difficult is 
such a computation from an information-theoretic stand­
point?

It can be shown that if one is only allowed to ask about 
the existence of one edge at a time, the problem of deter­
mining whether or not a graph on n vertices is connected 
requires n(n~  l) /2  questions in the worst case. (See Bollo- 
bas [5],

But nevertheless connectivity appears to be ’’ effortless­
ly” perceivable. Contrast this to map coloring problem 
(MCP) where even experts proceed slowly and sequential­
ly. The MCP is quite difficult and has to be done step by 
step, possibly with backtracking. (See, e.g., [39]).

There are many perceptual tasks which appear to be 
inherently sequential (like the MCP); for instance, looking 
for the letter ” w” in a paragraph. On the other hand, 
detecting that a line of type is incorrectly set an angle to 
its fellows is effortless and immediate.

Perceptual solution of combinatorial and geometric pro­
blems fits a heuristic model. For example, the famous ’’ tra­
veling salesman” problem (to find a shortest total-length 
cycle through a set of N cities in the plane) has no known 
algorithmic solution which does not grow exponentially 
with N. Human ability to obtain reasonably good tries 
needs to be explained. For an interesting approach, see 
Durbin and Willshaw [8],

To find a heuristic for determining connectivity, we pro­
pose using the theory of random graphs due to P. Erdoes 
and A. Renyi (see, e.g., Spencer [42]). The following is a 
typical result of the theory:
Theorem . If G is a random graph on n vertices where each 
edge occurs with some uniform independent probability 
p = p(n), then there is a threshold for connectivity at 
p = log n/n (logarithm base e).

Given a large random graph, one could quickly test it for 
connectivity by taking a sample of the possible vertex pairs 
and determining what percentage are edges of the graph. 
If the percentage is significantly greater than log n/n, then 
the graph is almost surely connected.

Note that sampling heuristics of this sort are ideally 
parallizable. Many vertex pairs can be checked simulta­
neously and independently. The resulting edge density es­
timate tells us almost surely a great deal about the graph: 
connectivity, planarity, etc. (see [42]).

It would be quite feasible to measure psychophysically 
how the speed and accuracy of visual perception of test a 
theory of heuristic perception.

A good way to study any computational procedure is to 
examine its failure cases. Suppose subjects are presented 
with the image of a disconnected graph where the statistics 
of edge density, if the graph had been randomly generated 
without precondition, would ’’ guarantee” connectedness. 
If subjects perceive the graph to be connected, then they 
could not be using any sort o f internal deterministic al­
gorithm, but would seen to be using a heuristic based on 
the Erdoes-Renyi theory.

6. Approximate Independence

In dividing a problem into separate pieces for a set of pa­
rallel processors, we would prefer not to need any commu-
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nication between the processing elements. Heuristics ba­
sed on random sampling often have the desirable property 
that the outcome of each sample is nearly independent of 
the others, and such heuristics will thus be well-suited to 
parallel implementation.

The mathematical issues involved in generalized statisti­
cal independence are far from resolved, but the practicality 
of the concept has already found substantial application in 
communication networks. For example, Kleinrock [25] no­
tes that in packet-switching networks, the message length 
distribution at distinct nodes are approximately indepen­
dent.

Approximate independence is the assumption under­
lying many heuristics. We have argued elsewhere ([22], 
[39]) that this assumption is physically reasonable. At 
the present time, theory is not adequate to explain the 
overwhelming success of heuristics based on approxima­
te independence. For instance, something more than luck 
must have been involved in the successful performance 
of such arguments in predicting convergence time for the 
computer reduction techniques used by Appel, Haken and 
Koch in their solution of the Four Color Problem. (See 
[39]).

Classically (see Kolmogorov [26], p, 10]), a set of events 
are mutually independent when the probability of the in­
tersection of any non-empty subset is the product of the 
probabilities of its members. Recent nonstandard models 
take a different approach -  see, e.g., [34]. Independence 
certainly fails when there is some causal link between the 
events (when it rains, the probability that the street is wet 
increases). Yet when the causal links become sufficiently 
weak, the whole corpus of physics and engineering shows 
that we may effectively assume independence. For instan­
ce, the theory of Maxwell-Bolzmann statistics uses such 
an argument (see, e.g., [44], p. 164).

A simple but useful example of approximate indepen­
dence occurs for gas thermodynamics. Although indivi­
dual molecules do not move independently of one another, 
since there are about 102,J of them in a cubic centimeter 
of gas, the chance that any particular two interact strong­
ly is essentially zero. (Of course there is also always the 
very weak force of gravity). Assuming independence, one 
can derive the gas laws relating temperature, pressure and 
volume.

The theory of chaos might be quite helpful in justifying 
approximate independence. If molecular kinetics cannot 
be exactly computed because of the continual influence 
of other particles (through collisions, EM fields, gravity 
or whatever) then the chains of exact causation, which 
are required to prevent independence, themselves become 
highly improbable.

One way to insure approximate independence is to add 
random noise (as in simulated annealing). Adding noise 
can be cooled below zero [C].

A clear example of approximate independence was 
found by D. Matula [30]. Let G be a random graph with 
n vertices and edge probability p. Fix k a non-negative 
integer and let T  be the set of all k-element vertex se­

ts in G. Obviously, for S € P ,P (G (S )  is not complete) 
=  1 — pb(k>2) t where b(k,f2) is the binomial coefficient. 
The events {G'(S') is not complete S £ ? }  are not inde­
pendent but they are approximately so when k -C n. A 
rigorous argument somewhat like that for the Chebyshev 
inequality guarantees that for those values of k for v/hich 
(/ _  pHk<2)y(n<k) acts like an 0 — 1 variable, the result is 
nearly identical to P (G has no k-element compete sub­
graph). The only ” bad” values for k make b(n, k)pb̂ k,'2  ̂
approximately equal to 1 so in general the chance that 
any such k exists is zero (see McDiarmid [31] or [42] for 
the details). Thus, the random variable which measures 
the number of vertices in the largest complete subgraph 
has a very nearly Dirac delta distribution!
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ON SOME VARIANTS OF ADAPTIVE RULES
OF FEATURE MAPS

K. Hlaváčková1

Abstract:
Several learning variants of self-organization in 

a map-type neural network are demonstrated. Al­
gorithms based on terms of neighbourhood are dis­
cussed, A new conception of neighbourhood - the 
ordering neighbourhood - is introduced.

1. Introduction

The self-organizing map neural network was developed 
by Teuvo Kohonen during the period 1979-1982 [8-16]. 
His work was strongly inspired by the pioneering self­
organizing map studies of von der Malsburg [18].

Historically, the self-organizing map was one of the most 
important neural networks discovered before the major 
expansion of neurocomputing in the second half of the 
1980’s.

This work deals with several versions of the self­
organizing learning algorithm. The second section explains 
basic definitions, the third describes Kohonen’s learning 
rule and includes an original discussion about it. The mi­
nimal spanning tree algorithm is discussed in the fourth 
section; the idea being Kohonen’s, Kangas’s and Laak- 
sonen’s [7]. Finally, the new concept of an ordering ne­
ighbourhood is proposed in the fifth section.

2. A  Map Type Neural Network

Let us describe the model of the neural network that 
is called a map (topological map, feature map), A map 
is a two-layered network: the first layer represents n in­
put units (neurons); let the input vector be denoted x — 
(x i , . . . ,  xn). The domain x of is called the input space.

The second layer represents output units and is called 
the, (neuron)  field. Let the number of output units be m. 
There may be given edges among them that are called the 
topology of the network. The space where the neuron field 
is located is called the output space.

This space, in contrast to other types of neural networks, 
is identical with weight space - the domain of reference 
vectors u>,-. Every unit from the first layer is connected

* Katerina Hlaváčková
Institute of Computer Science, Czechoslovak Academy of Sciences, 
P.O.Box 5, 18207 Prague 8, Czechoslovakia

with every unit from the second one. If we consider a given 
topology of the network, the a map maps reference vectors 
in time into the output space, so it is ’’ mapping” output 
over time with respect to the topology.

IN P U T

Fig. U

Example of a map with n input units and a neuron field 
in a two-dimensional output space.

In contrast, to maps, other neural networks do not consi­
der the mutual space relations of units in the field, and spa­
ce coordinates of the output have no relation to the input 
space. We will call those network ’’ maps with a zero-order 
topology” .

In neural networks of the map type, the units in the 
field reply to the input signals as if the “curved coordinate 
system” ( which reflects topological changes over time ) 
was drawn over the field of neurons with a given topology.

If the dimension of the coordinate system over the field 
of neurons is s, then we say the network map has an s- 
order topology.

Remark:

Input and output (weight) spaces usually have the same 
dimension n. We can generally take the output space to be 
a subspace of an s-dimensional space, where s > n and s is 
a natural number. The network is then an n-dimensional 
map with an s-order topology.

As a neural network, the map has two phases the adap­
tive phase (learning) and the active phase. In the adaptive 
phase the map ’’ learns” given input patterns according to
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given rules. In the active phase that follows, the map pro­
vides the output (reply) to the input (question). The map 
has the same rules for both phases (in contrast to some 
neural networks, for example the Hopfield network).

3. Learning Methods in Maps

3.1. Competitive Learning

Competitive learning is an adaptive process, when the 
neurons of the neural network are ’’ tuned” according to 
input values. The basic principle of competitive learning 
ensues from work on several problems in mathematical 
statistics, especially cluster analysis.

The basic idea is the following:
Let x(t) € 7vu be a sequence of samples of vectors, where 

t is the time coordinate, and a set of variable reference 
vectors

This criterion assigns a competition winner to each x 
and we call it ’’ the competitive criterion” and the learning 
process using this criterion competitive learning.

The average discretization error with respect to a given 
power r (r natural number) is defined by the functional

E(yU(x)) =  J H U “  Uc(x) Hr dPU)> (2)

where p(x) is the probability density function taken as 
a measure on X .

Kohonen [8-11] introduced the so-called adaptive rule of 
the (VQ) method

ULc ( i  + 1) = «¿<.(0 + a (0[*(0 -«¿c(0]
t¡¿¿(t + 1) =  Wj(t) fo r  i f-- c ,

(3)
where a(t) is a suitable monotonically decreasing se­

quence of scalar coefficients satisfying

{^ • (O K -iO e ft " , * =  i ,2 , . . . ,  At).

Assume that the tu,-(0) have been initialized (for instan­
ce by random selection ). Competitive learning means: if 
input x (t) is simultaneously compared with each w^t) at 
each successive instant c f time (taken here to be integer 
t =  1,2, 3,. ..) then the best-matching w^t) is to be adap­
ted to match x{t) even more closely.

If the comparison is based on some distance function 
d(x, HU )> iLe adaptation must be such that if w( is the best­
matching reference vector, then ¿(¡r,!^ ) decreases and all 
the other reference vectors wi} i ^ c are without change.In 
this way the different reference vectors tend to be ’’ tuned” 
to different domains of the input x. If the distribution of 
the input is according to the probability density function 
p(x), then w, (i =  1 ,...)  tend to describe ’’ clusters” .

The first work on competitive learning follows from I he 
method that we will now describe .

3.2. Vector Quantization (VQ) Method

Vector Quantization is a classic method that produces 
an approximation of a continuous function using a fini­
te number of ’’ reference” vectors [4,17]. We will use this 
method for a continuous probability density function. Fir­
st, we will describe this method according to Kohonen 
[ 11].

Assume that is a compact subset of 7Zn the Euclidean 
space, and let a vector variable x(t) £ 7Zn have the proba­
bility density function p(x) on X (t is the time coordinate). 
Let reference vectors w, , i =  1,2 , . . . , £  be located in X  
and let £ be approximated by the closest reference vector 
w€t c — c(x) obtained from the criterion:

\\^~UU 11= . min i l U - m ,  |j), (1)i = l,. ,k

where || . j| is the Euclidean norm (|| x || =
( E l U n o 2) 1' 2)-

0 < a(Q < 1, lim a(t) =  0, S a (t) =  oo. i ~+00 ^¿=1
Kohonen took as a corresponding function in VQ 

method the function

V(mLc(x)) =  J  II * -  ™c(x) II M * )-  (4)

The equations (3) are the simplest description of com­
petitive learning.

Although successful in application [13, 16], this method 
still lacks a deeper theoretical analysis.

Our following theorem could show the theoretical bac­
kground, which the adaptive rule might have-been be in­
spired by.

Theorem 3.2.1.:

Let wc =  ULcit) be the closest reference vector to 
x =  x(t) in the sense of the criterion (1). Let a function E 
( some given ’’ error function” ) have continuous first par­
tial derivatives. Let {o ( i) } ,  t =  0 ,1 ,2 ,... be a sequence 
satisfying:

OO
0 < a(t) <  1, lim n(t) =  0, S a (t) =  oo.t—MX)

t- 1
Then the optimizing process expressed by the equation

T 1) == wc(t,) +  a(t) grad Efwc) 

produces a sequence of vectors wc(t) such that

EiiUcii +  1)) < E(wc(t)).

This sequence is either finite and its last member w* is 
a stationary point (i.e. grad E(w*) =  0) or it is infinite 
and each of its limit points is a stationary point.
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Proof:

This statement is a consequence of the theorem about 
the convergence of Cauchy’s steepest-descent gradient 
method for function E^w,.) [20, p.29j. As it has continuous 
partial derivatives in the compact set X , the statement 
holds.

Remarks:

1) Function (2)’s first partial derivatives are not gene­
rally continuous. For this reason, describing the stationary 
points of (3) is theoretically difficult.

2) Approximation of a probability density function de­
pends on the choice of residual error of convergence al­
gorithm and on the r-power

3) The speed of the convergence of the algorithm given 
by rule (3) is given by the speed of the gradient method 
(3) and depends on the choice of the parametric function 
a (t) in (3). As a variant of the the method (and in general 
for all competitive learning), - another iterative minimi­
zing method of (2) can be chosen, for instance the method 
of conjugate gradients. Comparing these two methods, the 
convergence speed of the steepest-descent gradient method 
is quadratically lower then the speed of the conjugate gra­
dients method.

3.3. The Self-Organizing Map Algorithm

The principal idea of self-organization is that if input 
signals are given by the probability density function, then 
weight (reference) vectors try to imitate it (Kohonen [11]).

In the previous part, we introduced the adaptive rule, 
which did not consider space relations among units. Units 
behaved independently. So the order in which their indices 
were assigned to the ranges of input vectors was more or 
less random and depended on the initial values ie,(0).

In 1973, von der Malsburg [18] published his work on 
computer simulations, where he demonstrated local or­
dering of units into small subsets that correspond roughly 
to the so-called columns of the cortex. The units in a small 
subset were ’’ tuned” more closely than were the more re­
mote units.

Amari [1] constructed a corresponding system of diffe­
rential equations for two-dimensional continuous vector 
variables. These works are of great theoretical importance 
because they deal with a self-organizing tendency,

Kohonen, as early as 1981, experimented with various 
architectures and systems of equations and introduced the 
description of a process that seems to be general for the 
creation of globally self-organizing maps, whose algorithm 
we present here.

Assume a map whose output layer is a two-dimensional 
neuron field as in Figure 2.

The arrangement of the neuron field (that is the topo­
logy) can be hexagonal, rectangular, octagonal, etc. (i.e. a 
unit in the field is connected with six, four or eight of its

nearest neighbours, respectively; Figure 1 shows the last 
example.

«¿T W.2
o o o o
o o o o
0 o o . .

uu

Fig. 2

Let x =  (xi, X2 , • ■ ■, xn) E 7vn be an input vector and 
let it be connected in parallel with all units in the field 
(the second layer).

Let the weight vector of the j  — th unit be Wj =  
( w j ! , . . . ,  w j n ) e  T Z n .

It is important in these maps that units in the field 
are not altered independently by themselves but as sets 
of topologically connected units where similar changes are 
made. Changes of every unit in the field (or, more accura­
tely, of its weight vector) will tend to be smoothed out in 
the long run.

In biologically inspired neural network models,learning 
of neighbouring cells can be implemented using various 
kinds of lateral feedback connections and other lateral in­
teractions.

Now we shall explain a conception of these interactions 
(which are the mutual interaction of units in the field) for 
an arbitrary topology of the network by introducing the 
concept of a neighbourhood set Nc of a unit c.

The neighbourhood set of unit c Nc is defined as a set 
of units (or their indices) in the field whose distance from 
unit c (in the sense of the shortest path in the graph given 
by the topology) is at most the predefined radius.

At each learning step, all units within Nc are adapted 
but units outside Nc are without change. This neighbour­
hood is around the unit c, whose weight coordinates are 
the closest to the vector x in the space. Thus, c is deter­
mined from

\\x-M c ||= min{|| x — Wj ||}, (5)
j

where x, Wj E lZn 
and ]| . || is a norm in Rn.

Unit c is called the winner of the competition. The mag­
nitude of the radius of Nc can be time-variable.

Remark:

During his experiments, Kohonen [11] found that it is 
advantageous to let a radius of neighbourhood be rather 
large in the beginning (for instance covering half of the 
units in the field) and then shrink it monotonically with 
time. The reason (briefly said) is that a wide initial ne­
ighbourhood, corresponding to a course placement in the 
space in the learning process, first induces a coarse global 
ordering in the re, values. It is also possible that it can be
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Nc — {c }  in the end, which would mean that only the win­
ner is adapted and the self-organizing process is reduced 
to simple competitive learning (see equations (3)).

The adaptive rule can he written:

Wj(t +1)  = wjt) + a(/)[x(/) -  Wj(t)] for j  £ Nc(t) 
+ 1) -  Wj(t) for j  g Nc(t),

(6)

and similar to (3), the monotonically decreasing sequence 
a (t) must satisfy

OO
0 < a{t) <  1, lim (t) =  0, y -' a (t) =  oo.t—*00 t—4

t= 1

3.4. A Variantion of the Algorithm with Normali­
zation

The following is another variant of the algorithm. By 
normalizing the input vector x before applying the al­
gorithm and weights during the algorithm, it can improve 
numerical accuracy because the reference vectors have the 
same dynamic range as the weights have. But the norma­
lization will not affect, the idea of the algorithm.

In [11], Kohonen introduced an algorithm which norma­
lizes the reference vectors at each step. The normalization, 
unfortunately, slows down the learning algorithm signifi­
cantly. Let x be the input vector and «¿¿((3) be normalized 
initial weight vectors, which means members of [0, l]n. In 
[0, l]n, define a norm by the scalar product

Remarks:

1) The system of two types of equations can be ex­
pressed by the system of one type of equations:

ULj(t +  1) =  Wj(t) +  hcj(t)[x -

where hcj ( t ) =  a(t) if j  £ Nc(t), and 
hcj ( t ) =  0 otherwise.

(*. y) =  z 1 y

(8)
and then || x ||= (x, x).

The criterion of the winner in the learning algorithm is 
replaced by the criterion

(* (0 . «!«(<)) =  m ax{(x (/),u ;•(*))}, (9)j
The definition o f hcj and of a neighbourhood set is more 

general; a biological lateral interaction often has the shape 
of a ” bell curve” . If we note the coordinates of the unit c 
as wc and coordinates of the unit i as we can use a 
function

hd =  h0ex p {-  II uu ~ UU l|2 /p2), (7)

and the adaptive rules are

w , (ť  +  1 )  =
- j l  ’  il u L j ( t )  y

Wj(t + 1)

i f j e N c(t) (10)

otherwise;

where || . || is a norm in 7Zn, and hD = h0(t) and p =  p{t) 
are suitable decreasing functions of time.

2) Rule (6) is applied to a set of vectors with indices in 
Nc(t). There is an interesting question whether a function 
minimized by (6) exists and if so, how it depends on set

It seems (Kohonen [8]) that the general type of local in­
teractions is the type where the closest neighbouring units 
reinforce (excite) each other, whereas the distant weaken 
each other (inhibit). The more mutually distant units in­
fluence each other more weakly, mostly in an excitative 
way.

This form of local interaction is often expressed by the 
so called ” function of a mexican hat” (thanks to its sha­
pe in the three-dimensional space). The use of this func­
tion in the model of self-organization was inspired by some 
physiological model. We will simplify local interactions by 
using the neighbourhood set.

3) After large enough number of iterations if Nj =  { j } 
for all j , the algorithm producces a map with zero order 
topology (there are no connections among units in the 
field).

An important question is under what conditions will the 
algorithm produce a map with zero-order topology (after 
a sufficient number of iterations, of cource).

0 < /?(f) <  oo; for example ¡3{t) =  100/t.

In the following Proposition, we show a relationship of 
this method to the method described in paragraph 3.3.

Proposition 3.4.1.:

a) If the input vector x and initial weight vectors uq-(O) 
are normalized, then the criteria (9) and (1) are equivalent.

b) After introduction of normalization for w_j(t +  1), 
j  =  1 ,2 ,... from the adaptive rule (6) after every step. 
This rule is equivalent to (10).

Proof:

a) According to the definition (8),

|| x -W j  11= (x -W j, x -w A  =  (x, ^ - (x ^ w A -iw A ^ x )^

If || Wj 11=11 x j|= 1, then || x — Wj ||= 2 — 2(x, Wj) and 
looking for a min || x — Wj || is equivalent to looking for a
max(x, Wj ) over j  =  1 ,2 ....

b) Assign (5{t) =  in (10) for j  :£ Nc(t):

% (* +  !)  =  +  1
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=  1 ~  +  « (% (< )}

=  1 +  «(<)[*(*) -  3"i(<)]}•

After normalization we get the adaptive rule (6).

4. The Spanning Tree Neighbourhood

In this part of the paper, we will consider a neuron field 
to be a set of vertices in the graph and their topology 
(their mutual arrangement) to be edges in an undirected 
graph. A new approach to the neighbourhood was origi­
nally introduced in [7].

The local neighbourhood is defined ” dynamically” 
during the learning. The neighbourhood is defined accor­
ding to the mutual magnitude of vector differences among 
the vectors w-. The minimal spanning tree (MST) al­
gorithm assigns the edges between two vertices so that 
all vertices in the graph are connected, the connection do­
es not create a cycle and the total sum of lengths of the 
edges is minimal.
Here, the lengths of the edges are defined to be Euclidean 
norms of the vector differences between the corresponding 
reference vectors.

Let Hc(t) be a minimal spanning tree in the complete 
graph of the vertex set jVc(i). The neighbourhood set at 
time t +  1 N*(t 1) is then defined as a set of vertices of 
Nc(t 1) which are connected to the unit c via a path in 
Hc(t) passing vertices from Nc(t) only.

As in the original learning algorithm, there is a wide 
neighbourhood set around each unit here, and this means 
considering more vertices of the field including the unit 
and the edges between them according to the topology 
of the field; the MST algorithm is then applied to this 
neighbourhood. The neighbourhood Nc(t) ( and therefore 
also N*(t) ) shrinks during the learning process.

Remark:

According to [7] weights are changed very ” smoothly” 
over time in some neighbourhoods (thanks to the para­
meter a (t)) and therefore it is not necessary to compute 
a minimal spanning tree at each step of learning for the 
input vector x(t). Kohonen experimentally found that it 
suffices to compute a new minimal spanning tree every 10 
to 100 learning steps [7].

On the basis of ideas from [7] we introduce the following 
algorithm:

Let t be a variable for discrete time values t — 0 ,1 ,2 ,... 
Let z be the maximum number of iterations of the al­
gorithm.

1. Let x(<) be an input vector and Wj (0) initial weight 
vectors.
Let the neighbourhood N j(t) be initialized for every j  
(units in the field) and every t =  0 ,1 ,.. .  z.
Let f := 1;

2. Assign x := £(f), where x is the variable for the input 
vector.

3. Compute the distance dj =  d(x,W j(t)) for every index 
j  in the neuron field;

4. dc := min dj, j  =  1 ,2 ,...

5. Let Hc(t) be a minimal spanning tree of the complete 
graph on the vertex set Nc(t) in the sense of the sum of 
distances over a graph,
where a distance of edges from E is given by the function

/  : E — + R+

fd m M iU ljii)})  =|| ||,

where w{(t) are weight vectors in time t, {tn,(f), u ^ f) }  
is an (undirected) edge from E, and |j . || denotes the 
Euclidean norm.
Let be defined as before.

6. Adapt the weights

Wj (i +  1) := Wj (t) +  a(<)[x -  wj (t)] j  G N *(<)
Wj t + l )  — Wj(t) j  K  (t)

7 .  t : = t  +  l

8. If t < z, go to step 2.

9. End.

Examples of neighbourhood sets of the neuron c in the 
minimal spanning tree topology (According to [7].)

Remarks:

1) |7V* (t)| < |iVc(<)| and so the adaptation rule in Step 6 
is used for at most as many units as in set Nc(t).

2) The originators of the idea of the MST-algorithm are 
Kangas, Kohonen and Laaksonen [7], who experimented 
with this algorithm on the computer. But so far no work
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has been published which studies this algorithm theoreti­
cally with the aim of approximating the probability densi­
ty function. There also have not been published any com­
parisons with other topologies in the light of this question.

5. The Ordering Neighbourhood

In the following we introduce a new adaptive rule.
Let a neuron field with its topology be given in the output 
space. We considered the concept of the neighbourhood 
of a unit in various ways. But in general, the closeness of 
index values in the neighbourhood of some unit in some 
topology in the field need not preserve the closeness of 
weight vectors corresponding to those indices during the 
iterative run. It depends on how the unit field is indexed 
and what the initial weights «¿¿(0) are.

The adaptive rule works on every unit in the neighbour­
hood of a chosen unit to bring their weight vectors near the 
weight vector of this unit in due time. It can happen that 
some weight vectors ” closer” than the weight vectors insi­
de the neighbourhood can lie outside the neighbourhood. 
We will try to improve this situation with another con­
ception of a neighbourhood. We want the best-matching 
neighbourhood both in indices and in weight vectors. We 
will use information that has not been used before. During 
the searching of the weight with minimal distance from 
the vector x we went through all weights, but only the 
best-matching weight was considered and the others were 
forgotten and the others were forgotten.

However, now we arrange them in an increasing (accor­
ding to the distance from the vector x sequence and we 
will define the closeness for corresponding neurons in the 
field in this way.

We change the neighbourhood dynamically by assigning 
the units with the closest weights to it.

We now show this learning algorithm in a more detailed 
form than in the algorithms so far.

5 . 1 .  O r d e r i n g  n e i g h b o u r h o o d  l e a r n i n g  a l g o r i t h m  
( O N - a l g o r i t  h m )

Assume [0, l]n to be the input space of the vector x (t). 
Assume the neuron field with indices { ] , . . . ,  rn} to be loca­
ted in the Cartesian power of some interval in 7Zn , denote 
it K n, Assume [0, l]n to be a subset of K n. Let rq ,... , rm 
be corresponding n-dimensional indices of weight vectors 
in K n. A neighbourhood set is taken as an index set.

The learning algorithm:

L Assign random values to the initial weights

yjij (0) :=  u, u € K i — 1 , . . . ,  n

j  — 1 »•••, »Ti­
bet q(t) be the number of units in Nj(t) in time t for 

every j  — 1 ,...  rn in the unit field.(A decreasing sequence 
of sets in time.) Let z denote the number of iterations of 
the algorithm.

i := 1;
2. Get the input x (t)

3. Compute

n
dr, =  d(x(t),W rj(t)) =  ^ ( ^ ( ¿ )  -  wr,i(t))2

i = l

j  =  1,2-

4. Arrange drj increasingly;
without loss of generality we can suppose

dr j <' — df, <C =  . . . <C — drm .

Assign Nri(t) := [dr i , . . . ,  dr _(t)}.

5. Adapt weight in the neighbourhood iVri(£)

w,j(t + 1 )  := ULj(t) +  )[#(*) — Wj(t)] i f  f  £ Nri{t)
Wj(t -f 1) := Wj(t) i f  j  & Nrx{t)

6. t t +  1

7. If t < =  z, go to step 2

8. End.

Remarks:

It is obvious that the assumption about [0, l]n and K n 
is not substantial from the algorithm’s point of view.

The reasoning behind this assumption was to have ini­
tial weight vectors u^(0) in the same space as vectors x(t).

There are many theoretical questions about this con­
ception of neighbourhood, but they are topics of future 
work.

One of them is to study the influence of the dynamically- 
taken neighbourhood for the approximation of a probabili­
ty density function compared with the described methods.

The existence of a minimizing function which would des­
cribe both MST and ON-algorithms is not known.

6. Discussion

We have demonstrated several variants of a self­
organizing learning algorithm. Let us note that this work 
was not aimed at exhausting all known variants. It is al­
so important to note that there are a lot of mathemati­
cal questions regarding the variants discussed: for instance 
comparison of the probability density function approxima­
tion, the convergence speed of self-organizing processes, et 
al. The authors of the MST-algorithm [7] claim that this 
algorithm provides a far better and faster approximation 
of prominently structured probability density functions, 
but there has not yet been published any theoretical ana­
lysis on this topic.
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Abstract: The worst-case upper bound on the conver­

gence time of Hopfield associative memories is improved 
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the output are considered.
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variety of classification problems. The computational pro­
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ting network architectures is “best” for a given problem re­
mains subjective. A relationship between optimal network 
design and statistical model identification is described. A 
derivative of Akaike’s information criterion (AIC) is given. 
This modification yields an information statistic which can 
be used to objectively select a “best” network for binary 
classification problems. The technique can be extended to 
problems with an arbitrary number of classes.
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Propagation Learning and Nonidealities in Analog 
Neural Network Hardware
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Abstract: Authors present experimental results of adap­

tive learning using an optically controlled neural network. 
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tion in Large Crossbars
IEEE Transactions on Circuits and Systems Vol.38, 1991 
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Key words: neural networks.
Abstract: A neural network-based controller is presen­

ted for the real-time arbitration of routing paths in large 
crossbar switches constructed from one-sided crosspoint 
chips. This controller is suitable for a synchronous envi­
ronment where a number of connection requests are simul­
taneously presented to the switch.
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Based Learning Applied to Partially Trained Mul­
tilayer Perceptrons
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Key words: query-based neural network learning. 
Abstract: This paper presents a novel approach for 

query-based neural network learning. Consider a layered 
perceptron partially trained for binary classification.
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Laws
Neural Networks Vol.4, 1991 No.l pp.47-51
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saturable learning; Lyapunov function; temporal competi­
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Abstract: This article discusses minimal saturable lear­
ning laws that incorporate deassociative as well as associa­
tive behavior. The requirement of global stability results 
in new terms for the nodal activity equation.

Johnson L.G., Jalaleddine S.M.S.; Parameter Va­
riations in MOS C A M  with a Mutual Inhibition 
Network
IEEE Transactions on Circuits and systems Vol.38, 1991 
No.9 pp.1021-1029

Key words: parameter variations; neural networks. 
Abstract: A MOS implementation of mutual inhibitin 

is combined with a standard content addressable memory 
(CAM) to produce a relaxative content addressable me­
mory (RCAM) that automatically relaxes to the nearest 
match to an input. The operation of the RCAM is similar 
to the Hamming neural net. A simple model to predict 
the dynamic behavior of the mutual inhibition circuit is 
proposed.

Kong S.G., Kosko B.: Differential Competitive 
Learning for Centroid Estimation and Phoneme 
Recognition
IEEE Trans, on Neural Networks Vol.2, 1991 No.l pp.118- 
124
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Abstract: The Authors compared a differential- 

competitive-learning (DCL) system with two supervised 
competitive-learning (SCL) systems for centroid estima­
tion and for phoneme recognition.

Kosko B.: Stochastic Competitive Learning
IEEE Transactions on Neural Networks Vol.2, 1991 No.5 
pp.522-529

Key words: neural networks; stochastic; learning. 
Abstract: We examine competitive learning systems as 

stochastic dynamical systems. This includes continuous 
and discrete formulations of unsupervised, supervised, and 
differential competitive learning systems. These systems 
estimate an unknown probability density function from 
from random pattern samples and behave as adaptive ve­
ctor quantizers.
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TIME DELAY NEURAL NETWORKS

H. Beran1

Summary:

The Time Delay Neural Network (TDNN) is a 
perceptron- like structure with several layers of 
neurons. Each neuron receives not only the instan­
taneous part of information from all the neurons of 
the previous layer, but also the past part of infor­
mation from the predefined delays. The full equi­
valence between the Time Delay and Back Propa­
gation (BP) is prooved, where the TDNN structu­
re is equivalent to the classical BP structure with 
some empty connections. The original approach to 
the adaptation algorithm based upon this equiva­
lence is derived. Simple examples of the network 
performance are demonstrated.

1. Introduction

Spatiotemporal pattern recognition is one of the typical 
neural network tasks. Several approaches have been deve­
loped up to now, taking into account either various phy­
siological analogies or mathematically-derived laws. Two 
major groups of models are studied in the world, Avalan­
ches [4,6,7] and Time Delays [5,12,13]. These models are 
often used for real-time signal processing.

The most simple signal processing method was develo­
ped for the one-dimensional signal, where the signal moves 
across the input window of the Back-Propagation network 
[1,3,9]. This method is very suitable for proper signal pro­
cessing because of its phase-invariance. Most real signals, 
however, are multidimensional, i.e. vectors varying in ti­
me. As a result, we receive a spatiotemporal matrix (after 
digitalisation of the signals) which is to be analyzed. Se­
veral difficulties occur when trying the Back-Propagation 
approach in this case. The most simple solution is to use 
the matrix like a vector for training of the BP network. 
The network is very large in this case because of the num­
ber of the matrix elements. The overlearning effect may 
often occur, and the network requires more computer ca­
pacity and speed. Time-Delay Neural Networks solve the 
problem of multidimensional signal processing in a very 
elegant manner.

*H. Beran
Institute of Physiological Regulations, 
Bulovka pav.ll, 180 85 Prague 8, 
Czechoslovakia

2. Network Description

The Time-Delay Neural Network is a Back-Propagation 
network with special neurons. Its formal structure is the 
same as the BP. The typical TDNN neuron is shown in 
Fig. 1. In comparison with the classical Back-Propagation, 
it takes into account not only the up-to-date input value, 
but also several of the last input values in pre-defined time 
delay intervals. The output function of the neuron is sig­
moidal. All the layers of the TDNN network are composed 
of such elements, i.e. the next layer also takes into account 
the delayed values of the inner signals.

threshold

Fig. 1. An example of a TDNN neuron. The neuron can 
have several inputs (this example has 2, X\ and X2). Each 
input is delayed by one ore more delay units D (their num­
ber is equal for all the inputs in one layer). The inputs and 
all their delays are passed through the weighted sum to the 
sigmoidal output function S.

Each layer has its own number of delays, which can be 
different from the other layers, but this number must be 
equal between the neurons of the same layer. For the ac­
tivation of the hidden and output TDNN layers some pre­
defined amount of input delays of the hidden and output 
neuron inputs is necessary. We can imagine this temporal 
activation like the influence of the neurons in the previous 
layer in the past, or the influence of the temporal images 
of that layer (i.e. the previous layer outputs in the past). 
The values of all the network activities can be reached 
only from the input of the network and its values in the 
past. The total input delay required for the activation of 
all the network with all its inner layers and their delayed 
outputs exceeds the pre-defined delay of the input layer, 
which is only the delay necessary for the activation of the 
first hidden layer.
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3. Learning Algorithm 3.1. The decomposition of the TD N N  and the equi­
valent network

The TDNN is adapted by gradient descent, like the 
classical BP. Like in the BP, the input given to the in­
put layer causes the output, which can be compared with 
the desired output via an error function. The algorithm 
for the BP is derived and described by Rumelhart and his 
coworkers [11]. In this article, the same algorithm and si­
milar notation are used being modified for the purposes of 
TDNN networks. The error function is

e  =  \ T ,  £ ( « , « - «w ’ . ( i )
c j

where y is the actual and d the desired network output, 
j and c are the indices representing all the output neurons 
and all the inputs in the learning set respectively.

This non-negative function is to be minimized via chan­
ging of the network parameters, i.e. weights and thres­
holds.

The output signal of the j-th neuron is given by the 
sigmoidal transfer function

Vj 1 +  e~xi ( 2 )

where Xj is the value of the input summation of the 
j —th neuron. There is a difference between TDNN and BP, 
because the TDNN also takes into account the temporal 
factor of the input matrix. The input sum can be expressed
as

x j  ~~ * Vi,d > (*i)
» d

where are the outputs of the previous layer, i means 
the spatial index, d the temporal one, i.e. the signal delay, 
and iVij,d are the weights from the i-th neuron of the pre­
vious layer from its d-th temporal delay to the j-th output 
neuron. means simple multiplication (everywhere in 
this article).

Thus the output neuron, in comparison with the classi­
cal BP has an input spatiotemporal matrix of size d * i 
instead of an input vector of length i.

The formula for the output layer gradient is very similar 
to that one of the BP:

6E/6wiJid = yitd * (1 -  yj) * (y] -  dj) . (4)

The situation in hidden layers is much more complica­
ted due to the temporal structure of the network. The 
weights leading to the particular neuron have their spatial 
and temporal coordinates and the algorithmisation of the 
problem becomes very difficult. There exists a possibility 
to develop the algorithm individually for each network’s 
topology, which is not suitable for experiments on the com­
puter,

The adaptation method developed by the author is des­
cribed in the following paragraphs. It is based upon the 
similarity between the TDNN and the BP.

The classical approach is to consider the TDNN to be a 
dynamic system with inner variables, represented by the 
delay units of its neurons. The input vector, varying in ti­
me, is sampled by the pre-defined sampling interval being 
passed throughout the network from input to output. The 
layers of the network add the inner information about the 
past values of all the signals. Some period is necessary 
for filling in all the inner variables when starting the net­
work. This approach is the “on-line” one. It correspon­
ds to the classical TDNN definition by Waibel’s research 
group [5,12,13]. This author’s approach is the “off-line” 
one, using spatiotemporal matrices instead of the inner 
variables of the network.

For this approach it is necessary to define the tempo­
ral images of the neurons. The temporal image of the 
neuron is the same neuron with the same weights and 
threshold, but supplied by different input values than the 
actual neuron. Thus, the output from this temporal image 
is different. The values of the inputs of the temporal image 
(i.e. all the inputs including the delayed ones) are simply 
temporarily-shifted values of the input signal of the actual 
neuron. The actual neuron takes into account its input sig­
nals and their pre-defined number of delays, its temporal 
image calculates the same from the same number of the 
values, but shifted to the past. A very simple example of 
the TDNN with the temporal image is shown on Fig. 2.

x(t-2) x(t-1) x(t)

in p u t s ig n a l

hidden neuron 
with 1 delay

output

Fig. 2. A very simple TDNN structure.. The network has 
one input, one hidden neuron nl and one output neu­
ron n2. X(t), x (t-l) and x(t-2) are the samples of a one­
dimensional input signal. Both the hidden and the output 
neuron take into account one delay of their input signal. 
For the full input information of the output neuron the 
delayed output of the hidden neuron temporal image n ld 
is necessary. N ld's input has its origin in the more de­
layed samples of the input signal (x (t-l); x(t-2)). Taking 
into account the fact that n\d is nothing more than the 
temporal image of nl, the weights wl and w ld (also w2 
and w2d) must be equal.
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The example also shows that the spatiotemporal matrix 
necessary for the full activation of the network is larger 
than the input of the dynamic system with inner variables.

If we consider all the neurons and their temporal images 
to be a new neural network structure, we obtain the BP 
network with some empty connections, its function being 
equal to the original TDNN. This BP network is called 
the equivalent network. The equivalent network has the 
following features:

a) The basis of the equivalent network is the original 
TDNN.

b) Instead of the inputs from delay units, each neuron 
has inputs from temporal images of the previous layer (ex­
cept the input layer, which directly uses the past values 
of the input signals). The number of temporal images ne­
cessary for the definition of the layer’s actual output is 
equal to the number of delay units in the layer.

c) The outputs of the temporal images of the layer are 
reached via temporal images of the previous layer (TDNN 
is a feedforward network). Enough temporal images must 
exist in the previous layer to supply the temporal images 
of the next layer. The total number of temporal images 
in the previous layer is thus greater than that necessary 
for the definition of the actual layer output (the previous 
output must be also defined). This rule raises the number 
of nodes in the equivalent network.

d) The total number of temporal images in particular 
layers must be enough to define the output of the net­
work without any inner variables and without changing 
(shifting) the network input.

e) The inputs of the equivalent network and its par­
ticular layers are spatiotemporal matrices with temporal 
size greater than or equal to the number of delays in the 
corresponding layer of the original TDNN network.

f) In comparison with the BP of the corresponding size 
there are some empty connections in the equivalent net­
work (except singular cases).

g) The equivalent network is only the transformation 
of the TDNN dynamic system (with inner variables) into 
the simple combinatorial system (with non-linear transfer 
functions) with a larger input matrix. Both of these ne­
tworks (systems) are fully equivalent, no loss of features 
and properties occurs when using one of them instead of 
the other.

The number of delays of the network and its slabs can 
be simply calculated from the formula:

L
T, =  Dm +  1 , (5)

m~i
where TJ is the number of temporal images in the i-th 

layer of the equivalent network, Dm is the pre-defined de­
lay of the m-th layer of the original TDNN network (Dm =  
0 for no delay; the classical BP has Dm =  0 for all m), and 
L is the number of the layers. This formula is a logical re­
sult of the previous rules. Its derivation is very clear in 
Fig. 2. The formula also shows how the requirements for 
more temporal images rise when raising the number of 
layers of the network.

The comparison between the equivalent TDNN structu­
re and the BP of corresponding size is shown Fig. 3. We 
can see some restrictions resulting from the fact that some 
hyperplanes are parallel to some axes (a logical result of 
empty connections).

output output

Fig. 3. A comparison between a full BP structure (left) 
with 3 inputs, 2 hidden neurons and 1 output neuron and 
the TDNN structure (right) shown on fig. 2. Both networks 
have the same number of elements but different number of 
weights. The 3-dimensional input space with axes x 1, x2 
and x3 is in both cases separated by the 2 hyperplanes of 
the 2 neurons in the hidden layer. One missing connection 
(bold line) causes the separating hyperplane of the hidden 
neuron to be parallel to the axis representing the missing 
input.

3.2. The adaptation of the equivalent network

The TDNN structure is adapted by the gradient des­
cent algorithm developed by Rumelhart et al. [8,11]. The 
equivalent structure is adapted by the same manner. This 
method is very simple for the purposes of algorithmisation 
and computer simulation. In the classical BP algorithm 
without time delays the gradient can be expressed as

6E/6wij =  yi * 6j , (6)

where W{j is the weight from the i-th neuron of the pre­
vious layer with the actual output y,- to the j-th neuron of 
the next layer, 8j is a recursive “starvation” of this neu­
ron, i.e. its demand to change the weights. These recursive 
members can be calculated in the output layer as

8j =  yj * (1 -  y j) * {Vj -  dj) , (7)

where yj and dj are the desired and actual output values 
respectively, and in the other layers

8j =  yj * (1 -  yj) * * wiA (8)
k
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where wjtk is the weight leading from the j-th neuron 
to be calculated to the k-th neuron of the next layer; it is 
multiplied by the recursive member 6k having been calcu­
lated for the k-th neuron in that layer. This is the recursive 
rule for calculating all the changes throughout the network 
from output to input (back-propagation of the error).

In the case of the equivalent TDNN structure the out­
put layer has the same formula (7) because the output is 
considered without its time delays. In hidden layers, taking 
into account the spatiotemporal structure of an equivalent 
network, we obtain

u
& j , d  — V j , d  *  (1  ”  V j , d ) *  ^  j  8 k tn  *  U)j , k  , d — n  > (9)

k n — L

where 6jtd is the starvation of the j-th neuron in its 
d-th time delay (i.e. the starvation of the d-th temporal 
image of the equivalent network), is the output of 
this neuron, <5jtn is the starvation of the k-th neuron of 
the next layer in the n-th temporal image, W j k j - n  is the 
weight from the j-th neuron of a given layer to the k-th 
neuron of the next layer from the time delay d-n, where 
L and U are the lower and upper limit of the temporal 
summation respectively.

The situation is shown in Fig. 4. The lower and upper 
limits of the temporal summation must follow the incom­
plete structure of the TDNN. Some neurons receive less 
temporally delayed connections than the others. Formulas 
for calculating limits are the following:

L = max (0, d — Df) and (10)

¿7 = min (d,Ti+l) (11)

where d is the given time delay for calculation of the 
starvation Sjj (see eq. 9), Di is the number of delays of 
the given TDNN layer (i.e. the original number of delays, 
without other temporal images for calculating of the equi­
valent structure, see eq. 5) and 7}+x is the total number 
of delays in the next layer of the equivalent network. The 
function of these limits can be seen on Fig. 4. In the parts 
of the network with a full structure the temporal summa­
tion is from d — Di to d; all the temporal images of the 
given layer are taken into account. In the parts with an 
incomplete structure, the limits have the bounds 0 (lower 
limit) and Ti+i (upper limit).

When calculating the change of a given weight we must 
take into account the fact that this weight is not only the 
weight of the actual neuron but also that of its all ima­
ges. To follow the rules of the equivalent network we must 
adapt this weight synchronously, so as not to change the 
images from the actual neuron. The starvations, however, 
are influenced by different input values at different images, 
and so each image can have different need to change the 
same weight. For weight in a single image we receive from 
eq. 6:

Fig. 4• The situation of the backward propagation of the 
errors on temporal images of neurons. The neuron in the 
first layer has 5 and the neuron in the second 3 temporal 
images. That means that 3 temporal images of the second 
layer are necessary to supply the next layer, the second 
layer takes into account only 2 delays of the first layer, 
but 5 temporal images of the first layer are necessary to 
supply the second one with all its temporal images. Ac­
tually, there are only 3 weights wO, wl and w2 belonging 
to the neuron of the second layer. In comparison with a 
BP structure, some of the connections are empty due to 
the incomplete temporal structure. The starvations deltaO 
.. deltaS are back-propagated through the network along its 
incomplete connections, being multiplied by the outputs of 
the first layer yO .. y5. The back-propagation of the errors 
has as a result the need to change the weights wO, wl or 
w3 depending on which weight it has been back-propagated.

where Wijtd,n is the weight in a single temporal image 
from the i-th neuron in his d-th temporal image in a gi­
ven layer to the j-th neuron of the next layer in its n-th 
temporal delay, 8 jn is the starvation of j-th neuron in n-th 
temporal delay and yid is the corresponding output of the 
i-th neuron. This formula expresses only the local chan­
ge, i.e the change of a single (n-th) temporal image of the 
weight tUij'd- The global weight change can be determined 
by averaging

i Trn + l
SE/ÓWij d =  — — 8L f8w ijtdin i

Tm+ 1 n = 0

j,n ,

where 7’m+i is the number of temporal images in the 
next layer (i.e. the layer emitting starvations) of the equi­
valent network (see eq. 6). We can see that the starvation 
with the temporal index n corresponds to the output of 
the previous layer n +  d (see Fig. 4).

Practically, the adaptation is performed with the mo­
mentum term

ôE/ÔWijd
' rn+l

Tm+1

y i ‘ n + d  *  6n = 0

Ô L / Ô W i  j ' d l n  — V i , d  *  ^ j , n  i (12) Aw =  —eSE/Swft) -f a(w(t) — w(l — 1)) , (14)
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X(t)where Aw  is the weight change, w(t) is the weight value 
in the time t, w (t-l) is the weight value in t-1, and where 
e and a are constants.

Several modifications are possible in each neural ne­
twork. The first modification, which is not a pure TDNN, 
is to adapt the equivalent network without synchronizing 
weights in temporal images. This is more general than the 
algorithm described here in the sense of input space divi­
sion, but the result is only the incomplete BP without the 
equivalence to the TDNN. The second modification which 
was implemented and experimentally used is the adaptive 
sigmoidal slope. This method, developed by Pelikán [10], 
adapts not only the weights and thresholds of the network, 
but also the shapes of the sigmoidal transfer function. This 
improvement shows faster convergence and is more robust 
in the cases where the classical approach fails. The third 
improvement is batching of the weights changes, i.e. cal­
culation of the needs to change the weight in each adapta­
tion step and adapting the network after several steps to 
the average value of all these partial contributions. This 
method was partially implemented by calculating the ave­
rage value of the temporal images (see eq. 13).

4. Examples

The first task was designed to study the basic features 
of the TDNN and to compare the equivalent network with 
the classical BP. The goal was to detect any front edge 
in the one-dimensional input signal, which was presented 
to the input in 3 points. The input received sequences of 
numbers between 0 and 1 and the network was trained to 
detect those sequences containing the front edge.

The network used for this experiment was that one 
shown in Fig. 2. This is one of the most simple ones. A 
comparison was carried out between a TDNN and a full 
BP. These two networks are shown in Fig. 3.

Several trials were carried out to train both networks 
(i.e. TDNN and BP) being started from different random 
starting weights within the interval -0.3 .. +0.3. In all the 
cases the TDNN converged very rapidly to the solution. 
The most typical of them is shown on fig. 5. When being 
compared with the BP of the same size, the training of 
the TDNN to the same learning set required 1/2 to 1/3 
of the iterations than the training of the BP, depending 
on the training set and initial conditions (the algorithm 
parameters and learning strategy were equal). The TDNN, 
however, shows less generalization properties than the BP. 
This case is very simple and so the counterexamples can 
be simply constructed using Fig. 5, taking into account the 
fact that in the TDNN case, input hyperplanes are parallel 
to some axes in the 3-dimensional input space (i.e. 3 input 
points).

This example is very simple but it illustrates how the 
TDNN works in comparison with the BP.

The second, more complicated task, was to distinguish 
the typical pattern in the 4-channel EEG signal. Alpha ac­
tivity was chosen as the typical pattern, which is a very ty­
pical EEG component of sinusoidal shape with a frequency

x ( t - 1  )

x ( t  — 1 )

IIF

x( t  )

x ( t - 2 )

Fig. 5. The simple network from fig. 2. adapted to front 
edge detection. The neuron of the first layer - including 
its temporal image - converged to the equation x i+ l > xt +  
K, which means that the output of the first layer neuron 
or its image is active only if the following signal is greater 
than the preceding one (front edge). The function of the 
neuron in the output layer is similar to OR, i.e. the front 
edge must be present in at least one of its preceding units.

of about 10 Hz and a relatively high amplitude. The goal 
was to distinguish this activity every where it occurs in any 
channel.

The network used had 4 input channels, each of which 
contained 5 delayed samples. The EEG was sampled with 
the frequency 50 IIz. The first layer of the network, connec-
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ted to this input, had 3 neurons and the second (output) 
layer had one neuron with the binary input connected to 
3 neurons of the previous layer and to 3 past samples of 
this layer.

The network was firs trained to the artificial signals, 
where the alpha activity were simulated by the sinusoidal 
curve and the non-alpha by noise. In the second step it 
was trained to the real EEG.

This simple network was able to distinguish 95% of the 
real alpha activity signals after training. Each part of the 
experiment required approximately 10 hours of adapta­
tion on an IBM /PC/SX computer. In both steps, several 
learning strategies were used to reach a satisfactory final 
error. The most common of them was step-by-step trai­
ning, where only a part of the whole training set is given 
to the input after randomly starting the initial weights. 
Then, the larger training set is used or another subset 
(part) is selected depending on the convergence features. 
This slightly complicated strategy prevents overlearning 
in the initial steps of adaptation and the change of the 
learning subset has an effect very similar to the simulated 
annealing.

When trying to adapt a corresponding BP network (i.e. 
the BP network with the same number of nodes) by similar 
means there was no success, even when re-starting the 
network and repeating the same learning strategy from 
different starting weights. The whole learning set did not 
converge while a part of it (10 input patterns) did. When 
switching this part with another one, it converged too, 
but the full learning set did not reach the satisfactory error 
value (function E) and there were some particular patterns 
which the model was unable to distinguish properly. There 
still exists the possibility that using a more complicated 
learning strategy (e.g, adaptive gradient step or very slow 
gradient step parameters) could result in a satisfactory 
solution. The main goal of this experiment, however, was 
to show that a simple TDNN network can be adapted to 
a task in which the BP network with the same number of 
nodes fails due to overlearning. The typical error curves of 
this experiment are shown on Fig. 6.

5. Conclusions

The main advantage of this structure is the reduced 
number of weights in the temporally-oriented architectu­
re. In comparison with the BP, the TDNN has less para­
meters to be adapted. On the other hand, the equivalent 
network has less possibilities to divide the input space than 
the corresponding BP network. TDNN performs the same 
operation in different time delays, i.e. the weights of the 
temporally-shifted images of the neurons remain the same, 
changing only the inputs. This fact causes two tilings: 1. 
The network is invariant in the temporal sense to the shift 
of any important phenomenon which it has been adapted 
for and 2. The network is insensitive to time sequences 
m the sequential point of view. Simple experiments show 
more rapid convergence of this network compared with the

Fig. 6. A comparison between the TDNN and BP conver­
gence. The BP had the same number of nodes like the 
TDNN (i.e. its equivalent network). The BP did not fully 
converge while the BP did. These convergence curves have 
been chosen from several trials and represent the typical 
situation.

classical BP. When solving more complicated tasks and 
having larger structures TDNN is more resistive against 
overlearning than the BP. When comparing the generali­
zation phenomenon, the TDNN has from the theoretical 
point of view less parameters and less abilities. However, 
when overlearning occurs, the TDNN is more advanta­
geous because there are less parameters to be overlearned, 
its structure being also designed for the spatiotemporal 
tasks.
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Agent World,Cambridge, UK, 16-18 August 1989. Edited 
by Y. Demazeau and J.-P.Mueller. Amsterdam, Elsevier 
Science Publishers 1990. 280 p. ISBN 0-444-88705-9. US $ 
91.50. .

Much research in Artificial Intelligence deals with a sing­
le agent having complete control over the world. A varia­
tion o f this is Distributed AI (DzAI), which is concerned 
with the collaborative solution of global problems by a 
distributed group of entities. This book deals with the ac­
tivity of an autonomous agent in a multi-agent world.

Formal Techniques in Artificial Intelligence. A Sou­
rce book. Edit. R.B.Banerji. (Studies in Computer Science 
and Artificial Intelligence, 6). Amsterdam, Elsevier Scien­
ce Publishers 1990. 438 p. US $ 91.50. ISBN 0-444-88130-1.

Contrary to general opinion, Artificial Intelligence re­
search has often been carried out from a mathematical 
point of view, and frequently incorporates techniques of 
theoretical computer science. This book surveys various 
areas of Artificial Intelligence research, describing formal 
techniques. The areas chosen are most those which have 
been or can be - discussed with mathematical precision 
and clarity.

Future Directions in Artificial Intelligence. IFIP
TC 12 Collected Papers, Edited by P.A.Flach and 
R.A.Meersman. Amsterdam, Elsevier Science Publishers 
1991. 190 p. US $ 80.00. ISBN 0-444-89048-3.

The contributions to this book are from Artificial In­
telligence specialists from all over the world. Their ideas 
on the future of AI are original, thought-provoking and 
sometimes controversial.

Life, Brain and Consciousness. New Perceptions 
through Targeted Systems Analysis. G.Sommerhoff. (Ad­
vances in Psychology, 63). Amsterdam, Elsevier Science 
Publishers. 1990.336 p. US $ 128.50. ISBN 0-444-88436- 
X.

The relation between mind and brain can never be un­
derstood by science until the nature of consciousness and 
self-consciousness is clearly perceived as specific system- 
properties.

Mental Models and Human-Computer Interaction
- 1. Edited by D.Ackermann and .J.Tauber. (Human Fac­
tors in Information Techno!ogy,3). Amsterdam, Elsevier 
Science Publishers. 1990. 280 p. US $ 91.50. ISBN 0-444- 
88705-9.

The important role of psychological research in the field 
of human-computer interaction (HCI) is becoming more 
and more recognized. The principles of how to design a 
user-oriented system cannot be worked out without the 
knowledge of how users work with systems.

Neural Networks. Advances and Applications. Edited 
by E.Gelenbe. Amsterdam, Elsevier Science Publishers. 
1991. 274 p.US $ 94.50. ISBN 0-444-88533-1.

It is expected that Neural Networks will find their niche 
among the methods and techniques that computer scien­
tists use for intrinsically difficult problems. An attraction 
of Neural Networks is the dialog established between com­
puter science, biology, physics, psychology, numerical and 
non-linear analysis, and other areas.
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THE NEURONLIKE NETWORK FOR BRIGHTNESS
PICTURE SEGMENTATION

A.D. Goltsev1

Abstract:

The algorithm of brightness picture segmenta­
tion is described. The algorithm is realized as a 
computer model of a neural network. The results 
of the model’s runs are presented in photographs.

Keywords: neuronlike elements, contour (edge), brightness 
value, excitatory connections.

1. Introduction

Nowadays, the problem of picture segmentation is wi­
dely recognized as the most challenging task in efforts 
to create machine vision for robots [1]. Various app­
roaches have been proposed [2-5] for picture segmenta­
tion (splitting an image into domains differing from one 
another by their visual characteristics). Partial image 
segmentation is performed by singling out homogeneous 
brightness domains within a picture, each of which can 
be defined as a local-contrast formation whose internal 
brightness heterogeneity is considerably lower than its dis­
tinction from the surrounding part of the picture. The 
term brightness segmentation is used to designate the pro­
cess of partition of spots of uniform brightness in the pic­
ture. The method of brightness segmentation can be sub­
divided into two main steps:

1. revealing of the internal points of homogeneity 
domains by one or another variant of comparing the 
threshold value to each element of the matrix of the initial 
pattern brightness [4], and

2. tracing of the domain boundaries in order to mark- 
tham [5].

Neural networks of a visual analyzer are at present the 
only devices as far as we know, capable of complex visual 
pattern recognition. This fact testifies to the plausibility 
of the assumption that neuronlike networks represent the 
most adequate mechanisms for the visual recognition con­
struction of algorithms for visual data processing in the 
form of organization of interaction among different parts 
of a structured neuronlike network. Naturally, this is al­
so true for algorithms of brightness analysis, even to a 
greater extent than for some other functional subsystems

1 Goltsev A.D.
Institute of Cybernetics, Kiev, USSR

in the pattern recognition problem. The fact is that the 
brightness analysis should undoubtedly be performed at 
the very first stage of visual data processing. In the pro­
cess of neurophysiological investigation the detailed and 
valid data were obtained concerned with organization of 
just those neural networks that are immediately adjoining 
the light sensitive receptors of an eye of various living or­
ganisms [6]. In this way there is a possibility to make use 
of certain principles of structural organization of a visual 
analyzer when constructing artificial neuronlike networks 
intended for solution of the problem of preliminary image 
processing.

2. General features of the model

The neuronlike network represented by the model consi­
dered below has a constant structure of connections that 
do not undergo any modifications during the processing of 
visual information. To say it in other words, any process 
of learning is absent in the network.

The model of the neuronlike network considered in 
this paper, which is intended for preliminary brightness 
segmentation of a picture, is designed as a computer pro­
gram. For the sake of the better understanding of the mo­
del’s functioning, meaningful description of the mechanis­
ms of its operation is accompanied by the formal descrip­
tion of computation procedures through which the model 
is realized. In this paper the programmed simulation of a 
neuronlike network is organized on the basis of averaging 
(defocussing) by the square with a side n. Let (xtJ ) be a 
matrix with a row containing p elements and a column 
containing m elements: i =  1 ,2 ,3 ,... , p; j  =  1,2 ,3 , . . . ,  m. 
Note, that all matrices introduced below are of one and 
the same dimension p x m. The value of ij-th element of 
the matrix obtained as a result of averaging by the square 
with a side n of a matrix (z»j) will be denoted by f-j(x ). 
The averaging operation will be defined by the formula

/3 (*) = E E *i+u+‘ ■ (b

n =  3 ,5 ,7 ,...,3 1

N N W  5 /91 , 303-307 Goltsev; Brightness Picture Segmentation 303



To avoid unnecessary complication in the description 
of computation procedures with quite unessential details 
associated with the effects occurring when the averaging 
square falls over the edges of a matrix, all formulas are 
written on assumption that the following inequalities are 
valid : 1 < * +  k < p; 1 < j  I / < rn.

It should be mentioned that, at present, most of the time 
involved in completing an averaging operation is taken up 
by network counting. There is 110 difficulty in constructing 
a specialized high-speed device to carry out the procedure 
of defocussihg an matrix of an assigned dimension.

3. Preliminary processing of the bright­
ness picture

The model starts its work with two successive transfor­
mations of the initial picture. The point is that the initial 
picture can have an excessive or an insufficient light level. 
The purpose of this transformations consists in obtaining 
a picture that is optimal for contours (edges) extraction.

To compensate for defective illumination of the initial 
picture the model first of all reduces an interval of the 
brightness values to the fixed range. Let the initial picture 
be designated by (/,j) . The initial picture is defocussed. 
In the defocussed picture we seek the maximum brightness 
value M’

M' = max / " ( / )  . (2)
»j  J

Let us designate by M the maximum possible brightness 
value in the picture. Then, this transformation may be 
described by

By means of this procedure the maximum if the bright­
ness values of the matrix ( / - )  becomes not less then M. 
All another details of the picture proportionally change 
their brightness.

The second operation for image transformation is ba­
sed on the assumption that the weak brightness heteroge­
neities situated within the areas with rather high or low 
illumination level must not be marked out as contours. In 
the model, special elements with sigmoid output charac­
teristics are used to blot out the aforesaid heterogeneities. 
Let us designate by S the procedure performed by each 
of these elements. Thus the described operation may be 
expressed as

/'' =  ¿'(/'j) ■ (4)

The picture transformed by the two operations descri­
bed above is considered normalized. The contours are ex­
tracted from this picture.

In the implemented computer model the contours were 
marked out by the subtraction of one defocussed picture 
from another. The degree of defocussing of these pictures 
is different: it is made by ri\ x ri\ and n-j x n2 squares.

Then, the operation of marking out contours in the mo­
del is

ca =  i ( f ! i ' ( n - f 7 ( n - o ) (5)
where (c,j) - is the resulting contour points matrix; 0 

- value of the threshold; ni >  n2 ; l(a;) - the unity step- 
function [7]:

If*) -  {  L fo r  * ' > 0 w  “  \ 0, fo r  x < 0

From the foregoing it follows that the marking of the 
contours in the model is performed by a boundary integro- 
differential operator similar to the V G - filter suggested 
by Marr [8].

4. Description of the functioning of the ba­
sic part of the model

The base of the model is represented by a layer of neu­
ronlike elements associated with one another by the re­
gular structure of excitatory connections. Let us call this 
layer the layer with close connections. Mutual Excitatory 
connections with the same weight R connect each neu­
ronlike element (not a marginal one) of a layer with its 
neighbours situated within the limits of the square; the 
centre of this square is the neuronlike element being consi­
dered. The size of the square of excitatory connections is 
n , and the weight of excitatory connections is R . Due to 
the structure of the connections, the neuronlike elements 
of the layer situated apart from each other at distances 
less than (ng -f l) /2  are mutually growing in their acti­
vity. The elements situated still further from one another 
are not directly interacting. During the calculation, the 
values of fig and Rg are constant.

The dynamics of the output potential PiJ (t) of the ij-th 
neuronlike element of the layer are described with equation

dPn(t) =  -(\ E a (t) -  Pa(t)dt (6)
T

where A - is static amplification coefficient of the neu- 
ronlike element; r - is the time constant; Eij(t) - is the 
summarized input of the ij-th neuronlike element.

The contours marked out in the previous stage of 
pattern analysis are used in the model for exerting an inhi­
bitory influence over the layer of neuronlike elements with 
close connections. This may be structurally represented by 
inhibitory connections with weight r, which transfer inhi­
bitory action from the matrix (c,/) to the inputs of their 
respective neuronlike elements in the layer with close con­
nections. The excitatory action of the brightness matrix 
of the normalized picture (/,"•) is also fed to the layer with 
close connections. Stimulating influence proportional to 
the brightness in the element of the matrix (/,-') is ad­
mitted to the input of the respective neuronlike element 
of the layer with close connections through an excitatory
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connection with weight p . In this way and in accordance 
with the above description, the total action at the input 
of the ij-th neuronlike element of the layer with close con­
nections is calculated at an arbitrary moment of time t by 
the formula

Eij(t) =  p l" i j  -  ra , +  RBn \ f? ° (P (t ) )  . (7)

Structure of the model is shown in the Fig.l.

Fig.l

As a consequence of the mixed excitatory-inhibitory ex­
ternal influence on neuronlike elements in the layer of close 
connections and interaction between its elements, the total 
level of activity starts growing in the layer. As this takes 
place, the activity is distributed in the layer in a nonuni­
form way; the highest level of activity is attained in those 
parts of the layer where the image has the most bright, 
compact, contourless regions of comparatively large size 
and convex shape. The activation level of small, poorly 
illuminated and multicontour regions must be conside­
rably lower. Some time after the neuronlike network is 
acquainted with a picture, the marking out of the desired 
domains is performed by a horizontal shear of activity re­
lief in the layer with close connections. Thus, due to the 
combination of inhibitory and excitatory effects on the 
layer of closely-linked neuronlike elements and interaction 
among them, some quantity of compact parts correspon­
ding to the most bright, large, contourless domains in the 
initial picture are marked in the layer.

To simplify the neuronlike network computations, A = r 
is assumed. Then Eq. (6) converts to

dPij(t) =  Eij{t)dt -  dt . (8)

For numeric solution of a system of p x m equations (8), 
discrete time t is introduced with the time interval /\t. As 
a result, from Eq. (8) we obtain

P!i =  +  E \ ;'A t) . (9)

Substitution of (7) into (9) gives the expression for the 
sequential recomputation of output potentials o f the neu­
ronlike elements of the layer with close connections (ele­
ments o f matrix (P-j))

p !, =  -

+  IÏBnlf?j B(P , - l ))  .

(10)
Discriminated by threshold, vertices of the relief of acti­

vity in the layer of closely-linked neuronlike elements are 
represented by the units in the binary matrix (ajj) accor­
ding to the formula

<■¡¿ =  1 (Pi~E)(H )
where L - is the constant threshold.
Recomputation of the network stops after a fixed num­

ber of program steps at time t * .
The function of excitatory relations among neuronlike 

elements in the layer with close connections consists (as 
seen in the foregoing description of the network’s operation 
of the joint activation of compact groups of elements in the 
layer with close connections which are relatively strongly 
stimulated from outside. The role of inhibitory influence 
over the elements of the layer with close connections is to 
restrict the activity propagation in the layer and to prevent 
the merging of activated domains into a single domain. 
To put it otherwise, the effect of inhibitory influence of 
contours over the layer of the close connections permits 
the ’’ pupation” of brightness spots in the picture.

It is necessary to note that the tuning of the model 
(including the picking out the values of ng , Rg, r, p , i*) 
is performed using the criterion of the optimal marking 
out of the convex brightness domain of the assigned size. 
All parameters of the model mentioned above are constant 
during the computations. The marking out of domain with 
much smaller size requires retuning of the model.

For the computer input of pictures, the control of in­
termediary results, and the output of the results of model 
functioning, use was made of a system containing a video 
camera, 128 x 128 6-bit words of frame memory, compu­
ter, and monitor DIS. With the aid of this system the 
brightness analysis algorithm was verified using pictures 
of natural objects. Photographs taken from the monitor 
are shown in Figs. 2,3,4: the initial picture is placed in the

Fig. 2
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upper semi-frame, the domains marked out by the pro­
gram are placed in the lower semi-frame. Fig.2 depicts a 
picture of a stone surface. Fig.3 shows a path in the grass. 
Fig.4 shows patterns of two textures.

Fig. 3

Fig. 4

5. Algorithm to successively specify the 
shapes of brightness spots as they are 
found

According to the above description, the brightness ana­
lysis permits a parallel process to mark out all the 
brightest and most continuous spots in the picture. Howe­
ver, if the model parameters are chosen correctly, then 
each domain marked out by a network resides mostly 
within the actual boundaries of a spot. And here, the lower 
the brightness of a spot is, the greater is the difference 
between marked out domains both in area and in shape. 
Respectively, the greater the brightness of a spot is, the 
closer the domain marked by a network is to the actual 
shape of the spot. From the latter statement in follows 
that the network acts most accurately when it singles out 
the shape of the brightest spot in the picture. The purpose 
of brightness picture segmentation is to outline the boun­
daries of all uniformly illuminated domains of a picture. 
This suggests that if we artificially transform the initial 
picture in such a way that the brightness of the chosen 
spot changes and attains the maximum possible level, and

then perform the brightness analysis on this picture, the 
shape of this spot would be consequently marked out much 
more accurately than in the case when the preliminary 
brightness correction were absent. This operation can be 
successively applied to each of the uniformly illuminated 
domains of the picture and in this way it solves the pro­
blem of comparatively precise outlining of the boundaries 
of all uniformly illuminated picture domains. So, in a brief 
formulation, the sense of the algorithm described is in the 
successive attracting of attention to all uniformly illumi­
nated domains in the picture.

The algorithm for brightness spot shape outlining 
consists of some cycles whose quantity equals the num­
ber of uniformly illuminated domains found in the picture. 
Each cycle represents the process of brightness analysis of 
the picture treated in detail above, to which only minor 
alterations were made.

According to description of the brightness analysis al­
gorithm, the initial picture is transformed by the model 
with the aim of creating the optimal conditions for its fur­
ther processing. Then contours are marked out in the pic­
ture. Inhibitory-excitatory action from the contours and 
the transformed picture is sent to the layer of neuronlike 
elements with close connections. Activation of neuronlike 
elements of the layer begins. However, as soon as the out­
put potentials of the first neuronlike elements of the layer 
attain threshold (L), the course of brightness analysis pro­
cedure is disturbed. The search for the most stimulated 
neuronlike elements in the layer with close connections is 
performed. The coordinates of this element are memorized 
by the special binary matrix (6,j) where only one element 
equals unity and all the rest are zeros. The functional sen­
se of the given operation is that the corresponding raster 
pixel is used henceforth as a domain identifier over which 
the model’s attention is concentrated at the current cycle 
of algorithm operation. This makes it possible to appro­
ximately estimate the brightness of the considered spot. 
Let us determine the value (designated by M "') by the 
formula

p m

m '" =  y . £ w s u ) .  (i2)
t=i j =i

The formula (12) means that brightness of a domain is 
evaluated by the value of defocussed image illumination in 
the singled out raster pixel.

Then, the initial picture is transformed according to the 
formula

~ M " ' t] ' (13)

The transformation described by formula (13) converts 
the initial picture in such a way that the brightness estima­
te of the examined spot approaches, but does not surpass 
the value of M.

After the picture is transformed according to formula
(13) it is considered by the model as the initial picture 
and the whole process of brightness analysis starts all over 
again, and is carried out to the full extent and this time it
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is brought up to the end, i.e., to singling out of several do­
mains in matrix ( a - ). So far, as matrix (/,•'•') in the general 
case differs considerably from the initial pattern, the form 
of certain domains marked out in (a }j) may be partially 
incongruous with the initial brightness spot. However, the 
form of the domain, for the sake of which this cycle of 
analysis is performed, appears to be marked out in a more 
precise way than in the case of the initial picture analysis.

It is necessary to introduce the operation of the single 
expansion of the binary matrix (x fJ ). This matrix descri­
bes an algorithm for detection of the desired domain in 
matrix (a{*). Let the matrix contain an arbitrary number 
of zeros and unities. Each unit element not situated on 
the edge of the matrix has 8 neighbours. The operation 
consists in conferring unity values to all 8 neighbours of 
each unit element of a matrix. Denote the operation of 
expansion of an arbitrary binary matrix (z t'j) by

By « ) .  («?,), H ) , . . ,  « )  and (sfj), (*?■), ( 4 ) , - . ,  
(sfj) we shall denote the sequences of intermediary mat­
rices calculated in the process of the singling out among 
the plurality of domains contained in the matrix (a}-), of 
that domain upon which the model’s attention is focussed 
in the given cycle.

The above sequences are calculated by these formulas:

K ) — * ( M

4
— u h  & a i j

K ) =

4
— u h  & a i j

( 4 )
—

* ( 4 )

4 = u %  & <

« • ) — * ( ' T f 1 )

* 5 = « 5  & a i ]

(14)

The matrix (s^ ) is determined from the condition

p m

E EM5 —S_,) = °- <15)
»=i j= i

The desired raster domain is fixed in this matrix in the 
form of the unity values of its elements.

The results of the algorithms functioning (with a view 
to their further utilization) are transferred to the special 
binary matrix (zjj). All elements of this matrix have zero 
values at the initial moment of time. Let us designate the 
sequence of cycles of picture analysis by a number of in­
dexes q =  1, 2 ,3 , . . . ,  v. Then, in the q-th cycle of analysis, 
matrix (z/j) is defined by the formula

zL =  z?r ‘ V s?.tj tj v ij (16)

The next cycle of analysis starts after the marked out 
domain had been transferred to matrix (zfj). The model 
’’ concentrates attention” on the new brightness spot in the 
picture.

Fig.5 illustrates the above process. The initial picture is 
at the top of Fig.5. The second semiframe at the top de­
monstrates the domains marked out in the picture during 
the single brightness analysis procedure; the figure at the 
bottom shows the same domains marked out as a result of 
multiple application of the mentioned procedure according 
to the algorithm described here.

Fig.5

In conclusion it will be noted that the results of appli­
cation of the suggested algorithm to a picture are to be 
considered as preliminary. In future they are supposed to 
be used as a learning sample for solution of the problem of 
precise definition of the shapes of brightness spots within 
a picture [9,10].
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ON UNIFORM TRAINING

D. F ation1

1, Introduction

During the training phase of an artificial neural network 
with the backpropagation method, it may happen that the 
algorithm converges to a local minimum. To avoid this, 
we thought of new strategies concerning the manner of 
presenting the patterns (to be learnt) to the network.

At any given time, the idea is to present the “worst 
pattern” where worst means that the difference between 
the desired and the effective output is the biggest when 
compared with the differences of outputs from other 
patterns.

The term “uniform training” comes from the fact that 
the expected result, if you present the “worst pattern” to 
the network at each training step, is that the differences 
(errors) between desired and effective outputs for the set 
of patterns will uniformly decrease, avoiding the observed 
facts during a convergence to a local minimum, which are 
that every pattern tends to be well learned (their errors 
tend to zero), except for one or two patterns which have 
much higher error than the average. In classification tasks, 
one bit is reversed causing the error to be one.

In the following paragraphs, we describe the considered 
problem to study this strategy and the used algorithms. 
Finally the results and comparisons are presented.

2. The Problem Considered

The problem considered is one of auto-association. The 
network used is 4-2-4 (4 inputs, 2 neurons in the hidden 
layer and 4 outputs). The desired outputs of the patterns 
are the same as their inputs and they have binary values. 
The maximum number of patterns which can be learned 
by such a network is eleven [1] but one must be careful 
when choosing them.

There are sets of eleven patterns which cannot be lear­
ned due to the fact that it is impossible to represent them 
by suitable hyperplanes partition (this was demonstra­
ted by manual drawing of a graphic representation). The 
four outputs of the network represent four lines in the 
plane R2. One line is described by the weights and the 
threshold corresponding to an output neuron. In the pla­
ne the convex subspaces arising from the crossing of these

* D. Fatten
Institute d ’informatique, University of Neuchâtel,
Chantemerle 20, Switzerland

four lines represent the patterns. By way of example, the 
pattern 1-0-1-0 means that its corresponding subspace is 
in the strictly positive side of the first and third lines while 
in the negative side of the second and fourth lines. Here 
are three sets of eleven patterns. The first two are used in 
this study, while the third is impossible:

1101 1001 0001
m i 1011 0010
1011 1111 0100
1001 0011 0111
1000 0111 1000
1010 1110 1001
0010 0110 m i
0000 0010 1100
0001 0100 0011
0101 0000 1010
0100 0001 0101
set A set B trap set

3. The Algorithms Used

The basic algorithm is standard backpropagation with 
momentum strategy as proposed by Rumelhart, Hinton 
and Williams in 1986:

£»■ — y] x j + $j
j

Xi =  S(ti)

1 +  e x p ( =  A £ . )

e = \ Y ,  ( 4 - % ) 2
j

where: £,• is the potential of a neuron i.
Uij is the weight on the connection between 

the neuron j and the neuron i. 
i?, is the threshold of the neuron i.
Xi is the output of the neuron i, while 
yi is the output of the neuron i which is on 

the output layer.
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S is the sigmoid with the parameter A.
E is the error for one given pattern. 
dj is the desired output of the neuron j for 

a given pattern.

Finally the correction of the weights is the following:

+  aflwj' 1

where we have two parameters:
tj, the step size or learning rate, 
a, the momentum parameter.

To this basic algorithm, we added the superSAB stra­
tegy [2], which consists of having one parameter r) for every 
weight and adapting these parameters in the course of trai­
ning. It can be summarized in this way: while the gradient 
does not change sign, r; is exponentially increased. On the 
other hand, if the gradient changes sign, the weight is not 
corrected and r; is exponentially decreased faster than the 
increase.

The next extension of the algorithm comes from PAB 
[2], Each neuron has its own A (parameter of sigmoid) and 
these parameters are corrected with the same idea as the 
weight’s correction.

Finally we used the SuperSAB strategy for the correc­
tion of the lambdas too.

4, Results and Comparisons

The way the different results were compared is the 
following. We used two parameters. The first is called the 
’’ Global Error” (GE) and the second is called the ’’ Number 
of Training steps” (NT). GE is the sum of the quadratic 
differences between desired and effective outputs for all 
patterns. NT is the number of times that the network was 
adapted by presenting a pattern to it.

We have analyzed also whether the problem was solved 
or not. This means that we tested every pattern by pre­
senting it to the network. Then pattern is considered as 
learned if the difference between effective and desired out­
put is less than 0.5 for every neuron on the output layer 
(this is equivalent to the use of hard nonlinearity on the 
output layer of the network).

Furthermore, two ways of presenting the patterns to the 
network were used during the learning phase. The first way 
is called ’’ classic” and consisted of choosing each pattern 
after eachother (cycle) and each pattern is presented a 
certain number of times (iterations). Here the iteration 
was 15.

The second way was the goal of this study and is called 
’’ uniform” . The idea of this ’’ uniform” training was to 
always present the worst pattern to the network, but with 
this strategy: the network never converged. So ’’ uniform” 
training means presenting the worst pattern to the ne­
twork UNTIL the error for this pattern gets below a given 
limit.

Error is the quadratic sum of the difference of each coup­
le’s ’’ desired-effective output” . Here is an example o f ’’ uni­
form” training. The limit is first 0.5, the network is trained 
by presenting the worst pattern to it until it returns an 
error below the limit. Afterwards, we present the new wor­
st pattern until its error is under the limit value (the error 
of the previous pattern is perhaps again bigger than the 
limit), and so on. The limit is decreased to 0.4 when all 
patterns have their errors below the limit of 0.5. The trai­
ning continues by decreasing the limit to final value 0.1 
and can be stopped when the 11 patterns are correctly 
learned.

[ ] Standard backpropagation with momentum:
With this simple algorithm, the ’’ classic” training met 

an apparent local minimum after about 20000 training 
steps, the GE was 2.02. After 3300 training steps, GE was 
the 4.83. The GE did not decrease very fast to 2.

The ’’ uniform” training was better at the beginning 
(GE=2.67 with NT =  "2000) but it seemed very difficult 
to solve the problem.

The conclusion is that the problem was solved with ne­
ither technique.

[ ] SuperSAB was added:
Again ’’ classic” training met a local minimum and there 

were not many changes from the previous algorithm except 
that the local minimum ended with GE =  1.

With ’’ uniform” training, GE decreased again quite 
rapidly at the beginning (GE =  2.69 for NT =  4575) 
but again it seemed very difficult to solve the problem 
afterwards.

[ ] Every neuron had its own lambda and these lambdas 
were adapted:

’’ Classic” training converged again to a local minimum 
(GE = 1).

’’ Uniform” training now was able to solve the problem. 
After 9896 training steps, GE =  1.8302 and the 11 patterns 
are well learnt. To decrease the GE to under 1, however, 
it was very difficult: it required 30 000 steps to have GE 
=  0.9858.

[ ] SuperSAB was also added to modify the parameters 
(lambdas) :

The ’’ classic” training is again locked in a local mini­
mum (GE =  2). However, GE decreased more rapidly than 
with other algorithms.

The ’’ uniform” training is this time very good compa­
red to other variants because after NT =  2917, GE =  2.12 
and the problem was solved (in the sense that if hard non­
linearity is used, all patterns are correctly learned). Fur­
thermore, continuing learning process, after NT =  7389, 
GE = 0.71 and the solution could still be improved.

All the experiments mentioned were performed with the 
patterns of set A, With set B, the results are in the same 
line. With ’’ uniform” training, the GE did not decrease 
monotonously. GE tended to grow again every time the 
error limit was decreased.

The conclusion is that the adaptation of each parameter 
seems to be important during the learning phase but the 
way of presenting the patterns seems to have the same im-
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portance. Effectively, the problem could only be solved by 
using the ’’ uniform” strategy and the basic algorithm of 
backpropagation extended with SuperSAB and PAB tech­
niques.

Intuitively, I am convinced that this ” uniform” training 
can be generalized to any kind of training with backpro­
pagation technique. The reason is that this strategy does 
not allow a pattern to stay apart, with a neuron having a 
large potential far from the threshold of the sigmoid, and 
being more and more difficult to adapt.
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Princeton, N.J. Contact: Thomas S.Huang, Coordinated 
Science Lab, Univ. of Illinois, 1101 W.Springfield Ave., 
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Sponsor: IEEE Computer Society Technical Committee 
on Mass Storage Systems and Technology, Contact: 
B .T.O ’Lear, NCAR, P.O.Box: 3000, Boulder,CO 80307, 
phone (303)497 1268, fax (303) 497 1137.

Sixth Banff Knowledge Acquisition for Knowledge- 
Based Systems Workshop, Oct.6-11, 1991, Banff, 
Canada. Contact: John Boose, Advance Technology Cen­
ter, Boeing Computer Services, 7L-64, PO Box 24346, Se­
attle, WA 98124; (206)865-3253.

11th IEEE Symp, on Mass Storage Systems, Oct.7- 
10, 1991, Monterey, Calif. Sponsor: IEEE Computer Soc. 
Technical Committee on Mass Storage Systems and Tech­
nology. Contact: Bernard T.CTLear, NCAR, PO Box 3000, 
Boulder, CO 80307, phone (303)497-1268, fax (303)497- 
1137.

First Int’l Conf. on Artifical Intelligence Applica­
tions on Wall St., Oct.9-11, 1991, New York City. 
Sponsor: Polytechnic Univ., Brooklyn NY 11201, phone 
(718)260-3360, fax (718)260-3136.

Workshop on Experimental Distributed Systems, 
Oct.12, 1991, Huntsville, Ala. Contact: Raif M Yan- 
ney, TRW, 1 Space Park, DH2/2328, Redondo Beach, CA 
90278, phone (213)76+6033.

Special Session on Multisensory Computer Vi­
sion, 1991 IEEE International Conference on Sy­
stems, Man & Cybernetics, O ct.13-16,1991, Char­
lottesville, Virginia. ContactN.Nandhakumar, Dept, of 
Electrical Engineering, University of Vwerginia, Char­
lottesville, VA 22903-2442, phone 804-924-6108, e-mail na- 
ndhu@virginia.edu.

IC C D ’91. IEEE International Conference on Com­
puter Design: VLSI in Computers & Processors, 
Oct. 14-16, 1991, Hyatt Regency Cambridge, Cambrid­
ge, Mass. Sponsor: IEEE Computer Society and IEEE 
Circuits and Systems Society. In Cooperation with: IEEE 
Electronic Device Society. Contact: Dwight Hill, AT& T 
Bell Laboratories 3D-446, Murray Hill, NJ 07974, phone 
201-582-7766, e-mail: dwight@research.att.com.

ISMIS” 91: Sixth International Symposium on 
Methodologies for Intelligent Systems, Oct. 16-19, 
1991, Hilton Hotel at University Place, Charlotte, North 
Carolina. Contact: Z.W.Ras, ISMIS” 91, UNC-Charlotte, 
Comp. Sci., N.C.28223, phone 704-547-4567, fax 70+547- 
2352, e-mail:ras@unccvax.uncc.edu.

European Conference on Industrial Applications of 
Knowledge-Based Diagnosis, Oct.17-18, 1991, Mi­
lano, Italy. Contact: A.Camnasio, C1SE, PO BOX 12081, 
20134 Milano, Italy; (39)2-21672400, fax (39)2-26920587.
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1st Irit Conf Practical Application of Prolog, 
O ct.28-31, 1991, Edinburgh UK. Info: AI Roth, 31 Bex­
ley Avenue, Blackpool, Lancs FY20TE, UK. fax +44 253 
53811, phone ...253 58081. alroth@cix.compulink.co.uk.

AI * IA 2nd Nat Congres on AI, Oct.29-31, Palermo, 
Italy. Info: Prof.Salvatore Gaglio, CRES, Centro per la 
Ricerca Electrónica in Sicilia, Viale Regione Siciliane 49, 
90046 Montreale (Palermo), Italy, fax +39 91 640 6200, 
phone ...640  6192/619/4501.

NOVEM BER 1991

IEEE 1991 Medical Imaging Conference, Nov, 2- 
9, 1991, Santa Fe, New Mexico. Contact: S.E.Derenzo, 
Lawrence Berkeley Laboratory, Mail Stop 55-121, 1 Cyc­
lotron Road, Berkeley, CA 94720, phone 415-486-4097, fax 
415-486-4768.

25th Asilomar Conference on Signals, Systems, 
and Computers, Nov. 4-6 1991, Asilomar Hotel & 
Conference Grounds, Pacific Grove, CA. Contact Dr.Neil 
K. Jablon, AT& T Bell Laboratories, 200 Laurel Avenue 
07748-4801. Tel: 908/957-2011.

Neuro-Nimes 91, Int’l Conference on Neural Ne­
tworks and Their Applications, Nov. 4-8, 1991, Ni-
mes, France. Contact: Jean-Claude Rault, EC2-269-287, 
rue de la Garenne, 92024 Nanterre Cedex, France; phone 
33(1)47-80-70-00; fax 33(1)47-80-66-29.

TAI 91, Third IEEE Computer Soc. Conf. on Tools 
for Artifical Intelligence, Nov.5-8, 1991, San Jose, 
Calif. Contact Benjamin Wah, Coordinated Science Lab, 
MC 228, Univ. of Illionis, 1101 W. Springfield Ave., Ur­
bana, IL 61801-3082, phone (217)333-3516, fax (217)244- 
1764, e-mail wah% aquinas@cso.unicu.edu; or Nikolaus 
G.Bourbakis, 4138 Moonfiower Ct., San Jose, CA 95135, 
phone (408)28+6494.

Advances in Intelligent Robotics Systems, Nov. 10- 
15, 1991, Boston. Contact SPIE, PO Box 10, Bellingham, 
WA 98227, phone (206)676-3290.

A N N IE ’91: Artifical Neural Networks in Engi­
neering, Nov. 10-12 1991, Saint Louis, Missouri. Con­
tact C.H.Dagli, General Chair, ANNIE’91, Engineering 
Management Department, 205 Engineering Management 
Building, University of Missouri Rolla, Rolla, Missouri 
65401-0249; phone 314-34+4374.

Fourth Int’l Symposium on AI Applications on In­
formatics: Sowftware Engineering, Database Sy­
stems, Computer Networks, Programming Envi­
ronments, DIS, and DSS, Nov.13-15, 1991. Cancún, 
Mexico. Contact: Hugo Tersashima, ITESM Centro de In­
teligencia Artificial, Sucursal de Correos “J,” Monterrey 
NL, 64849, Mexico.

Frontiers of Computer Science:The Bledsoe Sympo­
sium, Nov. 15-16, 1991. Austin, Texas. Contact: Joan­
ne Click, Office of External Affairs, Computer Sciences 
Department, University of Texas at Austin, Austin, Texas 
78712-1188, phone, 512-471-9729, fax 512-471-8815.

Connectionist Models in Biomedicine, Nov. 17-20, 
1991. Washington, DC. Contact P.D.Clayton, SCAMC 
Program Chair, AMIA, 11140 Rockville Pike, Box 324, 
Rockville, MD 20852.

Int’l Joint Conference on Neural Networks’91, 
Nov.18-22, 1991. Singapore. Contact: Teck-Seng Low, 
Communicationn Int’l Associates, 44/46 Tanjong Pagar 
Rd., Singapore 0208, (65)226-2838, fax (65) 226-2877, e- 
mail mpeangh@nusvm.

Super computing 91, Nov.18-22, 1991, Albuquerque, 
N.M. Cosponsor: ACM. Contact: Raymond L. Elliott, 
Computing and Comm. Div., MS B260, Los Angeles Nat’l 
Lab, Los Alamos, NM 97545; or Supercomputing 91, IEEE 
Computer Soc., 1730 Massachusetts Ave. NW, Washin­
gton, DC 20036-1903, phone (202)371-1013.

DECEMBER 1991

3rd IEEE Symposium on Parallel and Distributed
Processing, Dec.1-5, 1991. Dallas, Texas. Contact: Ian 
Watson, Department of Computer Science, University of 
Manchester, Oxford Rd., Manchester M13 9PL, England, 
phone +4461 275 6248, e-mail: iwatson@cs.man.ac.uk.

Neural Information Processing Systems, Natural 
and Synthesic (NIPS’91), Dec.2-5, 1991. Denver, 
Colorado. Contact: S.J.Hanson, Siemens Research Center, 
755 College Road East, Princeton, NJ 08540.

Int’l Conf. on ParaUel and Distributed Informa­
tion Systems, Doc.4-0, 1991, Miami Beach, Fla. Cos­
ponsors: IEEE Computer Soc. et al. Contact: Amit Sheth, 
Bellcore, IJ-210. 444 Hoes Ln., Piscataway, NJ 08854, pho­
ne (908)699-9011, e-mail amit@ctt.bellcore.com.

Int’l AMSE Conference on Signals, Data, and Sy­
stems. Dec.9-11, 1991. New Delhi, Indiana. Contact the 
Association for the Advancement of Modeling and Simula­
tion Techniques in Enterprises, 16 Av, de Grange-Blanche, 
69160 Tassin-la-Demi-Lune, France, phone 33(7)83-43- 
604, fax 33(7)83-45-417.

Computer Architecture for Machine Perception 
(CAM P 91), Dec. 16-18, 1991. Paris, France. Contact 
Louis Wendel, Ecole National Supérieure de Physique de 
Strasbourg-LSIT, 7 rue de l’Universite, 67000 Strasbourg, 
France, phone, Sylvette/33-1-42-31-97-21, fax 33-88-35-31- 
76.
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TUTORIAL

A  V IE W  ON  N E U R A L N E T W O R K S  
P A R A D IG M  D E V E L O P M E N T

(Part 5)

J.Hořejš 1

H ere we continue in the tutorial paper concerning 
the neural netw ork paradigm , which first part was 
published in the N eural N etwork W ord . No. 1, 
1991.

8A. BP for the last time [an invitation to a 
deeper study]

Back-propagation and similar adaptation strategies for 
multilayered network surely deserve a special care due to 
their generality, proved capabilities and many unresolved 
problems, of both theoretical and practical nature. In this 
a bit more advanced exposition we give (a) a certainly in­
complete survey of various modifications, intended mostly 
but not solely to speed up the convergence and/or to avoid 
(apparent) local minima, (b) a similar sketch how to au­
tomatically reduce the number of hidden neurons [which 
often leads to another function to be minimized, so that 
we speak more generally about objective function instead 
of error function] as well as (c) few advices and comments 
which may be useful when solving problems by means of 
the (standard) BP. Exceptionally we shall give in this se­
ction direct references for the readers who already decided 
to work with BP.

As for theoretical foundations of approximation capabi­
lities o f multilayered networks, the interested mathemati­
cally oriented reader finds an excellent survey by K.Hornik 
[1] in this journal.

(a)
Before you start to read, how to reach a good local mi­

nimum, recall the concept of the error landscape which 
gives for any weight vector w and the input/output pair 
[x,y] the function f?w (y), and keep in mind that every 
change of any weight w changes the whole error landsca­
pe in the neighbourhood of present position of w. Thus if 
for example you seem to walk downward on a pretty plain 
surface, too big a step (learning rate rj) can convert the 
nice landscape into a wall arising before you at once.

Interesting and useful modifications can be found e.g. 
under the following names:

*Prof. Dr. Jiří Hořejš.CSc.,Department of Computer Science,
Charles University, 118 00 Prague 1, Malostranské nám.25,
Czechoslovakia

QUICK-PROP [2]: each weight update moves the sy­
stem toward the center of a more shallow error landscape 
in the weight space along a linear combination of previous 
and presently suggested directions (conjugate gradients). 
If assumed that local valleys are of parabolic shape this 
enables a fast search of a point with zero derivative.

DELTA-BAR-DELTA [3]: each weight w has its own 
learning rate 7?(in), which (linearly) increases as far as 
direction of its update does not oscillate too quickly; 
otherwise the r)(w) exponentially decreases.

SUPER-SAB [4]: the basic idea as in [3]; as far as the 
sign of Are for some particular w remains unchanged [so 
that w ’’ walks down” in the error landscape, maybe, howe­
ver, unnecessary slowly], the learning rate, i.e. the length 
of the pace, is prolonged by setting r)(w)new — K.r](w)old 
for some positive constant K which is recommended to 
slightly exceed 1. When the update of this individual 
weight w changes sign (i.e. if A w old.Awnew <  0) the just 
performed update of w is canceled (which can be done by 
setting Aw  —Am), the system waits one step without 
any change of the particular weight [not to repeat the same 
problem; this can be realized by the statement Am :=  0, 
be however careful on its proper placement in the program] 
and afterwards [being now in another, ’’ shifted” position in 
the weight space, caused by other w’s updates] it shortens 
its learning rate setting say ij{w)new =  rj(w)old/ 2 and tries 
again. Do not forget that t](w ) is no more constant (it de­
pends both on m and time although you specify the initial 
values T}(m), common to all weights, by the programer- 
specified tj as before) and should be represented by an 
array.

GAIN-BP [5]: error function minimization is based both 
on current and past data, the effect of which exponentially 
decays.

CHIR [6]: in this ’’ choice of internal representation” , 
suggestions are made in which you choose (to every in­
put pattern) hidden layer neurons outputs so that upper 
layers will more easily meet their task, asking the same 
from lower layers. We have suggested (see [8]) a somewhat 
similar idea, introducing into the hidden layers ’’ hints” 
derived from observed discrepancies between actual and 
expected values in the output layer and changing (only) 
thresholds of introduced ’’ interneurons” accordingly.

CONE [7]: uses mixture of differentiable transfer func­
tions and hard nonlinearities.

PAB [24]: parameters a and A of the sigmoid transfer 
function, which is of the form S(rj) =  er,/(l/l-j~exp(—At;)), 
are continually updated according to similar laws as 
weights in the standard BP. By setting learning and mo­
mentum terms equal 0, you obtain the standard BP. On 
the other hand, setting rj =  0, you arrive at ’’ weightless” 
paradigm with all weights (maybe even mutually equal) 
which is allegedly equivalent to the usual one.

GEMINI [9]: perturbations [little changes] of the net in­
comes G of every neuron are introduced and responses in 
the error function measured in order to establish dE/dG; 
once this derivative is known, dE/dwij is calculated. Be­
cause G =  w*i xi [sum ° ver x'js from a layer be-
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low - see (11a) for the special case of a m-k-n net] and 
z, =  S(&), ^ dE/dwij =  Xj.dE/d^i] the idea is in [9] 
further improved.

BACKPERCOLATION [10]: uses the symmetry of net 
income w.x and asks for changes of x'{s in the above layers; 
in t s way it assigns each neuron its own error surface. It 
also ut es gradient descent, but on the local level, avoiding 
thus too much "wasted motion” . Reducing local activation 
errors permits the system to ” tunnel through” the global 
error surface.

AMBP [11]: In SuperSAB and PAB we meet automatic 
adaptation of parameters; AMBP (Adaptive Momentum 
BP) gives hints how to treat the momentum term and to 
estimate the range of initial weights values.

All these and many other improvements of the BP claim 
to perform better in some cases, often using some typical 
easy formulated problems [like the XOR problem, symmet­
ry problem, parity problem (distinguishing inputs with 
even and odd number of Ps)] in which they are super­
ior to others, and/or having other advantages. In cases, 
where the main ideas of two such improvements are inde­
pendent, it brings usually good results to combine them 
retaining advantages of both. It should be said however 
that the author is not aware of any ’’ standard” bench­
mark and detailed environment requirements (about the 
random choice of initial values of weights, say) which could 
be accepted as the ultimate judge ranking or ordering all 
these improvements in a unique indisputable way.

You may also meet strategies which perform very well 
as far as the number of required cycles (iterations, epochs) 
concerns, but each cycle is computationally more expensi­
ve than in standard BP.

If you are already involved in a work with BP, you will 
of course hardly have enough time to see all the mentioned 
papers, which anyway are far from covering completely the 
area. Therefore we tried to describe few of them to the ex­
tent that the ideas could be hopefully understood and pro­
grammed; on the other hand more complex ideas are only 
vaguely sketched. Our experience shows that combination 
of SuperSAB and PAB (which shall be in detail described 
in a forthcoming issue of this journal) gives a relatively 
good toole if you choose their proper combination.

( b )
Another often discussed problem is that of the best size 

of the network. Because it is up to the designer, how ma­
ny hidden layers and hidden neurons to choose (while the 
number of neurons in input and output layers are prescri­
bed by the task), several strategies have been developed 
and many (sometimes opposing) views proclaimed. It is 
clear that more hidden elements give a better chance to 
reach a global minimum of the error function: if you add a 
neuron, which could be harmful, the algorithm has always 
the possibility to neglect it by establishing all connecting 
weights to zero. It is also clear that if you choose too few 
neurons, you can put severe restriction on the mapping 
to be realized (see e.g.(15)). The nonsysternatic way then 
usually consists of some guess, adding or deleting hidden

neurons dependently on whether the net is not able to 
converge or the computation is too slow, respectively.

However there are even more serious reasons why we 
prefer nets which converge, but not too easily. Experience 
as well as intuitive feeling shows that if you solved so­
me nontrivial problem too easy, you have not solved the 
proper problem; in terms of NN: you found one of ma­
ny trivial solutions to the approximation problem, which 
is very poor in knowledge extraction and thus generaliza­
tion. Remember Fig.10!

Majority of NN-people believes that by reducing the 
number of hidden neurons to the absolutely necessary mi­
nimum which does still permit convergence, increases ge­
neralization capability of the net, although there are some 
indications that this need not be always true, especial­
ly if you use different measures of generalization abilities: 
e.g. you may distinguish performance of the NN on qui­
te new inputs, not included in T  or inputs from T, which 
are however corrupted by some noise, i.e. changed by some 
little random corruptions (distortions), see [12]. To express 
it another way: if there are too many neurons and thus too 
many degrees of freedom, then there are too many ’’ solu­
tions” to the inner laws represented by the net (too many 
” models” [in the sense of set theory] of the constraints - 
” axioms” extracted from the set T),

Still one important reason that asks for possibly small 
nets is related to the so called overfitting. If the net be­
comes oversized, it may start to be too good in a noisy 
environment, where some inaccuracies should be neglec­
ted. The net then can fit the mapping specified by the trai­
ning set in all unnecessary details - it becomes overfitting; 
if the data given are much less precise than the errors re­
ached during adaptation, we at least waste the time of 
computation and the welcome effect of noise filtering, ty­
pical for well-designed nets is lost.

Several techniques have been developed to find the ’’ re­
duced” net. Those, which start with assumed subminimal 
number of neurons, adding in case of necessity other ones, 
fight with the problem how (when) to recognize that the 
net will not (can not) converge. You can adopt simple cri­
teria like: if during 100 cycles E does not decrease more 
than 1% you are on a wrong way.

Or you can try to formalize the conviction that E  would 
follow an exponential-Uke decrease approaching asympto­
tically an unacceptably high value (which is very often 
the case). Under this category falls solution offered in [13], 
where the author proposes to add a new neuron when a 
flattening of the average squared error curve, specified by a 
few parameters, is detected. This is in fact suggestion of a 
general stopping criterion, which can lead you to another 
conclusion as well: e.g. to start once more with another 
initial weights or so.

There is one more stopping criterion to be mentioned. 
Besides the training and testing sets T  and Q, we have 
at our disposal also a validation set [test training set ] V , 
consisting of some known pairs of input/output vectors 
{[x*',yv]}, not used during the adaptation, but checking
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whether further training should take place. As far as tes­
ting the net on members of V  gives good results, we conti­
nue in adaptation over T ; otherwise we deduce that there 
is a danger of overfitting and stop further adaptation.

Another problem of adding new neurons concerns the 
weights of connections leading to/from them. Usually they 
are initialized randomly or to zero [which then does not 
change quickly the net response].

More promising seem to be approaches starting with 
sufficiently rich number of neurons, eliminating ’’ super­
fluous” ones.

One of the first ways how to do that, has been sugges­
ted in [16], which proposes to eliminate some connections, 
diminishing successively their weights up to zero by exten­
ding the usual global error function (6) to more complex 
objective function, adding a cost function depending on 
weights greater than some norm. In combination with the 
validation set approach, the weight — elimination, which 
ultimately cuts off some ’’ superfluous” neurons, we have a 
good chance to find a properly trained smallest net which 
still covers the training set T  and avoids overfitting.

One such an objective function is suggested in [16]:

E -  -  5)2 +  K - / » o ) / ( i + uifj/wi)
(22)

where the first sum is taken over all output neurons and 
all members of T  (cf.(6)) and the second sum is taken over 
all weights (over all connections in the net); wq is a scale 
factor (for activations between 0 and 1 we set wq =  1) 
and the cost k applies if and only if ¡tOjj | >> Wq, Of course, 
the adaptation then uses the new value dE/dw, calculated 
from (22).

Other objective function has been proposed as well. In 
[17], objective function is formed by adding to the error 
function (6) the so called energy function which is the sum 

e((zi ) 2)) 3 taken over all input patterns and i over 
all hidden neurons, where e is a positive monotonic func­
tion representing ’’ energy” , spent by the hidden neuron in 
solving a problem. If a neuron has a constant output inde­
pendently of the pattern submitted, it contributes only to 
the energy term and will be suppressed by the algorithm. 
The method works well primarily in some cases of boolean 
functions.

There is known a plenty of methods, which estimate fun­
ctioning of particular hidden neurons and cross them out 
as soon as they are purposeless, either not working at all 
or copying work of others. Here we mention a relatively 
’’ old” paper on pruning [18] and the technique of skele­
tonization [19] which assesses the relevance of a hidden 
neuron for proper functioning of the net, the main idea of 
which is to compare error function for the net including 
the particular hidden neuron and for the net with the neu­
ron removed. A formula for cr* in the sum £j =  ^  WijOt{Xi 
is derived; here e*, gives the relevance measure for contri­
bution of Xi to and thus also for Xj. For cr, =  0, output 
of X{ is not needed, while for « , =  1, the usual net income 
for is formed.

Using PAB, a suitable candidate for removal (if it is not 
an output neuron) might be that neuron, which for a long 
time has A near 0 with a fixed [produces a constant value, 
which can be covered by the threshold] or even a «  0 
[giving thus a zero response].

Another interesting method appears in [20]. The method 
does not excise hidden units like many others do, but forms 
clusters of similar weight vectors in lower-dimensionality 
space. This yields a functional bottleneck, distributed 
across many units.

( c )
In nontrivial applications of (standard) BP we often en­

counter as the main problem that it seems that we are 
caught in a local minimum or the convergence is too slow 
or that the global error function starts to oscillate.

Unfortunately there is no exact way (or at least a good 
heuristic) what to do in such cases, even that some expert 
systems has been suggested ([14],[15]); the referred papers 
will however hardly satisfy a reader, looking for a practi­
cal solution. Some year ago, the main problem was to find 
or to manually control the convergence parameters, such 
as the learning rate tj . With the discovery o f their run ti­
me control (of the SuperSAB type), this seems to be no 
more the primary question, although the troubles of men­
tioned sort are not excluded even by using the described 
techniques. If the properly dimensioned net still does not 
converge properly, we can give only a few general hints 
without warranty, especially for those, who can not afford 
to implement the improvements mentioned above; some 
cases are however inherent to any BP method and some of 
the hints address not solely the problem of getting stuck 
or wildly oscillating:

-let us first note that ’’ small” oscillations need not be 
harmful and that they may even help to overcome the 
dead state, when the decrease is practically stopped. If 
you (still) control the parameters r/ and a manually, try to 
(temporarily) decrease rj and a. Generally it is recommen­
ded to do any change of parameters gradually rather than 
abruptly.

[Here it is assumed that you have implemented Save and 
UnSave procedures, which enable you to modify the para­
meters after temporarily halting the run (for smaller pro­
totype programs the best way is to be able to modify the 
source code at all) and continue from the point, where you 
interrupted the computation. The Save/UnSave procedu­
res should of course cover (almost) all (global) variables - 
do not forget to Save the ’’ old” values if you need them.]

The experience and some research shows that the danger 
of being trapped in a local minimum [first part of Fig.9] is 
much less than the case, where the decrease of trajectory 
is very slow [last, flat part of Fig.9], sometimes so slow 
that it looks like being caught in a local minimum. One of 
the leading authorities in NN theory and practice, Robert 
Hecht-Nielsen, has even been for a long time convinced 
that all local minima we meet are just apparent; that we 
simply are not patient enough or that we work with unsui-
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table values of parameters to let the net find the narrow 
path leading out of a deep gorge in the error landscape, in­
to which we went astray. Only relatively lately he himself 
found a provably true local minimum.

There are some more ’’ over’s” connected with NN adap­
tation; we have already mentioned the overtraining case 
which seems to be related to the initial weight vector w 
being randomly placed so unluckily that the landscape 
around is like a plateau, where there are small slopes in 
every direction and when we eagerly ask to deform it to 
adapt to the training set, it may happen that too many 
vcrinkled waves evolve ([see[23]). This may again lead the 
computation to a local minimum, be it true or apparent.

Well, we know that one of the possibility how to tackle 
the problem of not sufficiently decreasing error function is 
to extend the number of hidden neurons, which is undesi­
rable from other reasons. Thus better first

-try to check data for consistency; if the error func­
tion decreases from the beginning of adaptation process 
satisfactorily and then remains hanging on some almost 
constant value, there could be in the set T  two or more 
pairs requiring different answers y for the same input x; 
this does not generally mean that the effort of the net is 
meaningless: it may still offer you a sort of compromise, 
satisfying most of constraints in the best possible way;

-or you may have forgotten that the output is limited by 
the shape of nonlinearity function; using sigmoidal trans­
fer function when trying eg.to predict time series, some 
negative number may appear as the desired output, be­
cause they occur in the input series;

-because moreover the usual LMS criterion will not 
always best fit the task at hand, do not forget that the 
form of both the error function E and/or transfer function 
[sigmoid] are by no means obligatory; all what is required 
that you are able to compute dFJ/dw [or dE/dA etc,]

-try to choose another initial values of weights. It is a 
custom to initialize weights to random ’’ small” numbers 
and keep them small during the whole process; on the 
other hand, in many cases you can afford slightly ’’ bigger” 
weights and the convergence improves;

-occasionally it may help to introduce a weight decay of 
about 0.01% each update;

-try both integer and high-precision arithmetic whene­
ver the task permits;

-let us note that the weight change can be further 
smoothed by setting Aw* — (1 — a ).A w(t) +  a,Aw(t -  1) 
[ actual new change =  (1 — a), proposed new change +a. 
actual old change],

-several experiences on the (initial) choice of parameters 
r; an er have been reported; one of them recommends to 
choose the initial value of r; sufficiently small, a =  rj/5 
and to increase it continually if the convergence behaves 
well; afterwards we may increase it slightly, while in case 
of divergence or persistent oscillation, we decrease both. 
In case of a local minimum (the global error decrease ten­
ds to a nonnull constant), a temporary increase of r] and 
a may help; when the divergence phenomenon occurs, it 
should be decreased back. If the convergence is anyway

unsatisfactory, stop the adaptation process and start with 
another random initial weights;

-be careful to cover by the training set T  the typical dis­
tribution of inputs expected during generalization. Think 
also about training strategy you used; when you present 
some input pattern too many times, it may happen, that it 
will be difficult to adapt the net for the others, to re-learn 
it;

-a special form of the later case appears when you try 
to extend the training set T  to a set T‘ — T  U T" in 
the case that for T  you have already achieved a successful 
convergence. The question then arises what is better: to 
start the adaptation w.r.t. T' from the very beginning or 
to use previously converged set for T  as a starting point 
in learning T '. In general, the following strategy seems to 
work: if for every pattern x "  from T" there exists in T  a 
pattern x close to x"  [say, in the sense of Euclidean metric 
of the input space], the newly required changes of weights 
will be not too drastic and we may use the previously 
reached point in the weight space; otherwise re-learning 
can be more difficult than starting with T' from the very 
beginning;

-as long as this (task dependent) hypothesis is valid, we 
should use it for the real-time learning, in which we try 
(and are often able) to order the training set so that the 
patterns lie on a ’’ continuous curve” , each new pattern 
being close to the predecessing one;

-this method could be of course only used provided that 
additional pairs do not contradict either absolutely [risking 
two different answers y for the same argument x] or rela­
tively, requiring to find quite another model developed by 
the net for good generalization so far;

-this is a special case of a more general problem: when 
it is natural to partition training set into classes of appa­
rently similar training pairs, is it better to let first the net 
converge on a subset of representatives and only then to 
add the rest or conversely? It happened several times that 
the complementary training strategy - teaching one class 
after the other - was better. Sometimes the net behaves in 
such a way, that it hardly ’’ forgets” the training patterns 
already learned;

-concerning testing strategies, be careful not to deduce 
premature decisions, especially in case when some training 
pairs are stubborn ones (showing for a long time worst 
neuron/pattern error) so that their individual errors ex­
ceed the average: exercising them more frequently may 
just shift the problem to other ones;

-try to add a small amount of noise (with standard de­
viation of about 2% ) to both data and weights to make 
the net more ’’ robust” ; this shaking reminds techniques 
of various stochastic variants [to be discussed later on]; 
they also many times enable to find a better solution in 
better time. GEMINI in fact uses shaking of net inputs as 
a self-contained method;

Now few comments concerning the problem of generali­
zation:

-you often meet such papers the power of which is de-
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monstrated on examples with complete training set T  [ex­
hausting all possible pairs] so that the question of gene­
ralization is void; like the XOR or the symmetry problem 
[for a fixed number of letters], for which simple table look­
up or traditional programming is the best way how to 
find the answer [reminding thus the so many formal pro­
of techniques for greatest common divisor algorithm]. Of 
course, as Rumelhart, Hinton and Williams have shown 
in their classical paper on family trees (see preceding se­
ction), even finite sets of pairs may give remarkable results 
provided that the training set T is not complete.

-because we have generally so many weights unspecified, 
the size of the training set should be sufficiently large to 
fix them appropriately. If the net is expected to do some 
knowledge extraction and generalization, the training set 
is best to be several times larger than is the number of 
weights (connections) involved.

-the fact that use of higher order NNs [in which the 
sums of the form W{X{ are replaced by sums like 
Y  WijkXiXjXk etc], helps to increase the generalization 
abilities was demonstrated five years ago on a relatively 
hard problem, called ’’ contiguity problem” ; in a 0/1 se­
quence, the number of uninterrupted blocks/clumps of l ’s 
is e.g. either 2 or 3 and the net has to distinguish these 
cases (see [21] and also [25])

-ideally, we should design a generalization function to 
be added to (22) [forming thus still more complex objec­
tive function] in order to promote better generalization 
abilities; the problem is that we do not know how to exac­
tly and generally define what the ’’ generalization” actually 
means; like in the IQ tests; given sequence of four pictu­
res, choose ’’ the right” fifth one! (but it should be that 
one, which the inventor o f the test had in mind).
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9. Higher order separating surfaces.

Until now we used paradigm, which is close to neu- 
robiologieal observations and has a simple mathematical 
description: the response of a neuron and its manifold 
consequences were dependent on its net income, i.e, on 
the value of £ — wi xj which was then evaluated and 
postponed to further processing by (again a simple) non­
linear transfer function. Except a constant response, the 
linear dependency of £ on x\\s is the simplest possible. If 
we replace this ’’ first order” relation by a more complica­
ted one, we can sometimes achieve more: in generalization 
abilities, in applicability and even in simplicity!

I.Polynomials
We have already mentioned in sec.t.8A(c) that higher 

order nets usually better generalize than linear ones. Of 
course they have more complicated structure, which is 
even not so easy to depict. Thus e.g. for the formula

y

Fig.28 Weights in higher order NN

y = S(w25X2x5 +  iei23xi x2x3) (23)

the following Fig.28 indicates how it is possible to illust­
rate that more than one neuron share the common weight 
(u<25 and W123), respectively.

Having only higher order neurons at our disposal, some 
of the task can be solved very simply. Thus e.g. the XOR 
problem is easily solved by the only second order neuron. 
With use of the encoding

Xl X2 y
1 1 1

-1 -1 1
-1 1 -1

1 -1 -1

and S(fl) =  1 for i] >  0, ,3’(p) = -1 for p < 0 we simply put

y - S { x  1*2) (24)

But even for standard 0/1 codes and sigmoid S we have

y =  5(ini(;ci+i?) +  ti;2(x2 +  ̂ ) +  « 'i2( * i +*?)(*2 +  ̂ )) (25)

where the total threshold is divided into several compo­
nents, depending of course on the incoming pattern. Using 
now standard calculation of dE/dw, we can arrive at the 
result that whenever uq, iu2 0 and up 2 < 0 , y realizes 
the XOIl function.

Another interesting property of (symmetrical) higher 
order neurons was pointed out in works of Maxwell, Giles 
and Lee: if you perform any permutation on indices of x 's , 
the output of considered neuron [cf.(25)] is the same. More 
generally, higher order NNs show certain invariance pro­
perties (w.r.t. a group of input vectors transformations), 
which can be utilized in many ways.

Durbin and Rumelhart recently proposed a general sche­
me in which besides usual - neurons (summing weighted 
inputs as known), also II - neurons the output of which is 
given by

£ = Ilarf* or exp(^^pt-./n aq) (26)

are used (for the real parts of complex plane this conver­
ts to expQTpi.ln\xi\). cos p,/,*, where /, =  0 [tt] for 
i > 0 [i < 0], respectively). The neurons are usually or­
ganized into multilayered way, outputs of IT neurons lea­
ding to summing neurons; this is a generalization of 
so called Eli nets, dealt with already in the early stages 
of NN theory (p,- =  0 or 1). Besides generalization and 
other advantageous properties the author claim that loga­
rithm and exponential scaling occurs in some sorts (e.g. 
Purkinje) cells and has some neurophysiological correlate.

II.RCE network.
Let us now more closely follow a useful and simple se­

cond order neurons. Let the role of the hyperplanes from 
sect.2 and others be replaced by a surface which is well 
known from the time of childhood: a ball, or to use mo­
re scientific terms so that not all will understand: the n- 
dimensional hypersphere (note that our parents preferred 
second order) balls rather than linear cubes in our plays); 
do not worry, I am not going to claim that balls have some 
special relevance to neurophysiology and neurons as such 
(even that we carry them in the ball-like heads). What I 
do claim that ’’ neurons” with a rather simple activation 
rule depending on whether they are inside or outside a 
hypersphere are a material well suited to construction of
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a very simple and yet very powerful NN [it is said that it 
immediately follows the multilayered back-propagation in 
the hit parade of most frequent used paradigms].

Let in a (cartesian) m-dimensional space r =  
[**i, r2, • • •, rmj denote the center of a hypersphere h with 
radius p, so that for any point x =  [xx, x2, . . . ,  i m], x € h 
if and only if

m

d(x,r) =  -  n )2 < p (27)
1 =  1

[if suitable, ” < ” can be replaced by ” < ” ].

Now let the input space should be classified into n diffe­
rent categories C\, C2, . . . ,  Cn. There is again a training 
set T, now consisting of pairs [x j, Cj] and a teacher, who 
for every Xj from T (i.e. for every pair, the first component 
of which is Xj) specifies the category Cj to which Xj belon­
gs [the case when an object x belongs to more categories 
will be discussed later; at present we assume that the ca­
tegorization is unique]. Construct a three-layered network 
m — k — n, where input layer accepts any m-dimensional 
vector of features (to recall or extend our terminology), 
characterizing an object from the input space. The top 
output layer consists of n binary neurons, the neuron i 
firing if an input x belongs to the category (class) C\.

The hidden layer as well as the whole net is specific and 
in many respects differs from what we already learned.

First, the number of its neurons k is not specified be­
fore, but can successively be extended; initially there are 
no neurons at all. Second, there is no step of initialization 
of weights; no wonder, if initially there are no intercon­
nections. All what misses is created in "real time” , as the 
learning/adaptation process begins [there is thus of course 
no spreading activity possible before adaptation].

As soon as first input stimulus, vector xi (where 
[xi,C j] 6 T) arrives, the net takes the first uncommitted 
hidden neuron hi (of which there is no lack, supposed­
ly), connects to it all the m input neurons and ascribes 
to the connections the weights u;,(h 1) (1 < i < m ),w i =  
[w i(h l),. . . ,  wm(hl)], which will further represent the cen­
ter of m-dimensional hypersphere (in a similar sense in 
which formerly weights represented a hyperplane). It will 
be done in such a way that the neuron - hypersphere is 
activated by x i. If we set ri =  W] =  x i, then for arbitrary 
positive pi, this will indeed trivially hold: the center of a 
hypersphere is closer to its center than the radius distance 
pi >  0 prescribes. For specificity assume e.g. that initial 
values of all p's are 1 if not specified otherwise.

If, afterwards, a second input x 2 x 2 is presented, one 
of the three possibilities occurs:

-a) x 2 is still closer to Xi =  ri =  wi then p\ and the 
teacher considers X2 as another representant of the same 
category Cj. In this case all is O.K.: hi fires and X2 is 
recognized as before, belonging to Cj - see Fig.29a.

-b) X2 falls inside the same hypersphere, i.e. d(x2,r i) < 
Pi, but the teacher assigns to it another category, Cjt say. 
In this case hi should not fire; the simplest way how to 
solve the problem is to shrink the hypersphere hi (h ’s

denote both hidden neurons and hyperspheres which they 
represent), setting the new value of p\ to p\ <  d(x2,r 1). 
After this remedy, hi no more covers X2, does not fire 
and does not declare that x 2 belongs to the category C j. 
This is however only the first part of the solution. Another 
hidden neuron h2 has to be attached to the hidden layer, 
X2 becomes (as an m-dimensional point) its center r2 — X2 
and other m connections from the input neurons to h2 
are created. Moreover they should be assigned weights, 
forming the vector w j — X2; as before, X2 then surely 
causes h2 to fire and h2 starts to represent C Of course, 
the radius ¿>2 of the hypersphere h2 should be chosen so 
as not to interfere with x i, i.e. less or equal than (due to 
inequality in (27), rf(x2,rt) - Fig.29b.

Fig. 29a

-c) X2 falls outside hi. If the teacher decides that x2 be­
longs to the same category as xpi.e. C* =  Cj (ca), we can 
copy the procedure known from b), adding next hidden 
neuron h2; only less care need be devoted to choice of p2, 
it may well be again 1. And this is the time, when the 
third layer of the net comes into action. It consists of n 
neurons (provided that there are n categories, as indicated 
above), each of which is the ultimate judge telling us, to 
which category a given input x belongs. Any of these out­
put neurons are connected exactly to all hidden neurons, 
recognizing the category assigned to it. The new connec­
tions, directed from hidden neurons to this output neuron, 
have the same weight 1 and the output neuron performs 
just the logical OR, i.e. the output neuron fires if and only 
if some of hidden neurons, here hi or h2 which are connec­
ted to it, recognized the proper category of the incoming 
x, here x i,x 2. When the teacher however assigns to x 2 
another category Cj /  C* than he did for Xi (Fig,29,cb), 
we have now two neurons, hi and h‘2, with the property 
that if hi [h2] fires, so should do Cj[Ck] and corresponding 
hyperspheres are disjoint.
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Fig.29 illustrates the three cases a), b), c), showing both 
the structure of the net and hyperspheres, called fields of 
influence, represented by particular hidden neurons.

Fig. 29 a, b, c Relations among fields of influence

We considered explicitly only two incoming vectors; the 
idea is however the same if you take into account any num­
ber of inputs:

Submitting a new input x?, being classified as of cate­
gory C by the teacher, all of its m coordinates come along 
the weighted connections to all hidden neurons created up 
to now. Every hidden neuron h calculates the distance of 

and its center =  wh according to the sum from (27) 
[which substitutes the dot product w x known from pre­
vious models] and compares it with its current value of ph 
[which corresponds - arid is sometimes named - after the 
threshold of usual linear neurons]. If the resulting distance 
is less than the threshold, h fires and so does the output 
neuron to which h is attached because it represents the 
desired category C.

The last paragraph serves as a description of adaptive 
[learning] dynamics, but also of activation [working] dyna­
mics. The only difference is in interpretation of the phrase 
” to which h is attached” . During teaching this means that 
the connection is established, while during activation this 
means that the connection is used.

The main idea of this RCE network (called after 
some analogy with ” Restricted Coulomb Energy” ) is 
to cover different subsets of input space [where any 
such subset corresponds to different category, or classi­
fication class, being continuous or not] by hypersphe­
res o f  various radii under the only condition (which 
will be later relaxed a bit), namely that hypersphe­
res belonging to different subsets do not intersect.

(  Continuation)
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