
■ID G
NEURAL NETW ORK W ORLD

International Journal on Neural and Mass-Parallel
Computing and Information Systems

V O LU M E 1 1991 N U M B E R 6

Whitcomb M.J., Augusteijn M.F.: Hierarchical Learning in Neural Networks: A New
Paradigm with Possible Applications to Automated Data Processing

Adamaizky A.L: Neural Algorithm for Constructing Minimum Spanning Tree of a
Finite Planar Set

Vornberger 0., Zcppenfeld K.: GRAVIDAL (A Graphical Visualization Tool for
Transputer Networks)

Gunhan A.E.: Pattern Classifier, an Alternative Method of Unsupervised Learning
Frank 0.: Statistical Models and Tests of Intrafascicular Nerve Fiber Arrangements
Olej V,, Chmurný J.: Analysis of Decision-making Processes in Discrete Systems by

Fuzzy Petri Nets
Kraaijveld M,A,, Duin R.P.W.: An Optimal Stopping Criterion for Backpropagation

Learning
Samsonovich A.V.: Molecular-Level Neuroelectronics

Hořejs J.: A View on Neural Network Paradigms Development (Part 6)

N E U R A L N E T W O R K W O R L D is published in 6 issues
per annum by the IDG Company, Czechoslovakia,
160 00 Prague 6, Lužná 2, Czechoslovakia,
the member of the IDG Communications, USA.

E dltor-in -C h lef: Dr.Mirko Novák

Associate Editors: Prof.Dr.V.Hamata,
Dr.M. Jiřina,
Dr Q Kufudaki

Institute o f Computer and Information Science, Czechoslovak Academy
o f Sciences, 18207 Prague, Pod vodárenskou věží 2, Czechoslovakia.
P h on ei (00422) 82 16 39, (00422) 815 2080, (00422) 815 3100

Faxs(00422) 85 85 789,

E -M ail: CVS15QCSPGCS11 BITNET

International Editorial Board:
Prof V.Cimagalli (Italy),
Prof.G.Dreyfus (France),
Prof.M.Dudziak (USA),
Prof.W.Dunin-Barkowski (USSR)
Prof.S.C.Dutta-Roy (India),
Prof J Faber (Czechoslovakia),
Prof.A Frolov (USSR),
Prof.C.L Giles (USA),
Prof.M.M.Gupta (Canada),
Prof.H Haken (Germany),
Prof.R.Hecht-Nielsen (USA),
Prof.K Horník (Austria),
Prof.E.G.Kerckhoffs (Netherlands),
Prof.D.Koruga (Yugoslavia),
Dr O.Kufudaki (Czechoslovakia),
Prof H Marko (Germany),
Prof.H Mori (Japan),
Prof S.Nordbotten (Norway),
Prof.J Taylor (GB),
Dr.K.Vicenik (Czechoslovakia).

General Manager of the IDG Co., Czechoslovakia:
Prof.Vladimír Tichý
Phone: (00422) 34 78 81, Fax. (00422) 34 78 81.

Managing Director of the IDG Co.,
Czechoslovakia:
Ing. Vítězslav Jelínek
Phone:(00422) 36 92 79, Fax: (00422) 36 92 79

Responsibility for the contents of all the published papers and letters
rests upon the authors and not upon the IDG Co.Czechoslovakia or upon
the Editors of the NNW.

Copyright and Reprint Permissions:
Abstracting is permitted with credit to the source. For all other copying,
reprint or republication permission write to IDG Co., Czechoslovakia.
Copyright c 1991 by the IDG Co , Czechoslovakia. All rights reserved.

Price Information:
Subscription rate 399 US$ per annum.
One issue price 66 50 USS .
Subscription ad teas IDG Co., Czechoslovakia, 160 00 Prague 6, Lužná 2,
Czechoslovakia.

A dvertisem en t: Ms Ing H.Vančurová, IDG Co., Czechoslovakia,
160 00 Prague 6, Lužná 2

Phone. (00422) 34 78 95, Fax: (00422) 34 78 95.

Scanning the Issue

Papers:

Whitcomb M J., Augusteijn M.F.: Hierarchical Learning in Neural
Networks; A New Paradigm with Possible Applications to Au
tomated Data Processing p.321
A nontraditional approach to the learning strategies is presented.

Adamatzky A.I.: Neural Algorithm for Constructing Minimum
Spanning Tree of a Finite Planar Set p 335
The paper deals with parallel local algorithm for constructing minimum
spanning tree of a finite planar set based on mechanisms of dendritic tree
neuronal ontogenesis.

Vomberger D., Zeppemfeld K.: GAVIDAL (A Graphical Visualiza
tion Tool for Tk-ansputer Networks p.341
This article desribes a graphical visualization environment for occam
programs running on arbitrary transputer networks.

Giinham A.E.: Pattern Classifier, An Alternative Method of
Unsupervised Learning ... p.349
The discussion of alternative approach to learning procedure for artificial
neural networks is discussed.

Frank Q.: Statistical Models and Tests of Intrafascicular Nerve
Fiber Arrangem ents... p.355
The paper deals with modeling of infrafascicular nerve structures.

Olej V., Chrmirny J,: Analysis o f Decision-making processes in Dis
crete Systems by Fuzzy Petri Nets , p.361
The paper presents the possibility of access to uncertainty in analysis of
decision-making processes in discrete systems by fuzzy Petri Nets.

Kraaijveld M.A., Duin R P.W.: An Optimal Stopping Criterion for
Backpropagation Learning p.365
A learning set can be transformed to a data set in which the overlap
of the classes is effectively removed. This results in an optimal stopping
criterion for iterative learning procedures.

Samsonovich A.V.: Molecular-Level Neuroelectronics p.371
The idea of neural network oriented molecular level implementation is
presented.

Tutorial:

HofejS J.: A View on Neural Network Paradigms Development
(Part 6) ... p.383

Book Alert .. p.360

Comming Events p.339,340

Literature Survey ... p.354,364,382

ISSN 1210-0552

H IE R A R C H IC A L L E A R N IN G IN N E U R A L
N E T W O R K S : A N E W P A R A D IG M W IT H P O S S IB L E

A P P L IC A T IO N S T O A U T O M A T E D
DATA P R O C E S S IN G

M.J. Whitcomb, M.F. Augusteijn1

A bstract: The application of neural network learning to
automated data processing is explored. The requirements
for learning methods in this domain are discussed. Two
new learning methods, satisfying these requirements, are
introduced. Both methods dynamically allocate the ne
cessary number of hidden nodes. The first method is called
the Flat Learning Procedure because it builds a single
layer of hidden nodes. Performance of this procedure is
compared with that of the Generalized Delta Rule. The
Flat Learning Procedure requires less training but uses
more hidden nodes. The generalization properties of this
procedure are unsatisfactory. The second method, the Hie
rarchical Learning Procedure, builds a hierarchical struc
ture of hidden nodes. This method is capable of learning
a hierarchy of concepts. Due to this property it is able
to generalize well while maintaining the favorable charac
teristics of the flat procedure with respect to fast learning.
The introduction of these learning procedures is a first step
towards the application of neural nets to automated pro
gramming.

Key words: learning method, hidden node, hierarchical
structure, automated programming.

Received: July 23, 1991
Revised and accepted: December 9, 1991

1, Introduction

Currently, the demand for automated systems exceeds
industry’s ability to produce them. Since the introduction
of the microprocessor, the trend towards further automa
tion has accelerated and the burden of producing automa
ted systems has shifted almost entirely to the software dis
cipline. Unfortunately, there has been little gain in softwa
re development productivity. Progress has been made, but
not enough to compensate for the increasing demand and

^Mark J. Whitcomb, Marijke F. Augusteijn
Department of Computer Science, University of Colorado at Colorado
Springs, Colorado Springs, Colorado

shorter development times required. Against this backg
round, any viable means to increase system development
productivity would be very beneficial.

The recent resurgence of interest in artificial neural ne
tworks has given rise the notion of building automated
systems through learning, instead of programming. If a
machine could readily learn its intended functions, there
could be a great potential for increasing the productivity
of system development. Some recent progress in the deve
lopment of learning procedures, such as the Generalized
Delta Rule (GDR) [14], offers hope that useful systems
might be built through learning instead of programming.

In order to devise a neural network strategy for this ty
pe of application, it is first necessary to determine what
kind of organization a network would need if were to ta
ke on traditional types of data processing tasks. For that
purpose, it is useful to consider the techniques that are
currently used for modeling data processing systems. One
such technique that is frequently used during requirements
analysis and early software design is Structured Analysis
[1] [5] [17].

Fig. 1: An example data flow diagram that depicts a
data flow model

Structured Analysis employs a data flow approach to
describing the function of a system. Data flow techniques

N N W 8 /9 1 , 321-334 W hitcom b, Augusteijn: Hierarchical Learning 321

decompose a process into a series of transforms that are
applied to the data as they proceed from input to output,
A data flow diagram illustrating this approach is shown in
Figure 1, where the individual bubbles represent the data
transforms and the arcs between them show the flow of
information. When using a data flow model for a system
that has been decomposed into data transforms at a low
enough level, pattern association neural networks could be
considered to implement each transform. A pattern asso
ciation network is a feedforward network in which neurons
are grouped in layers. Each layer receives its inputs, ma
kes decisions based on these inputs and passes the results
to the next layer. If pattern association networks can be
taught to perform the desired transformations, then po
tentially the function of an entire system could be taught
to a machine rather than programmed.

Alternative network architectures may also be conside
red, such as feedback networks [7, 8], or competitive ne
tworks that use lateral inhibition [15, 6, 9], but the most
straightforward neural network implementation of a da
ta flow model is the feedforward pattern association. The
pattern association model was used as the basis for deri
ving the learning paradigms presented here. There are
other architectural issues that will also be important. For
example, a data flow model represents a system in terms
of data stores, as well as data transforms. Strategies for
implementing data stores need to be discussed, but the
se are beyond the scope of this paper. This paper focuses
on the requirements for learning strategies and methods
meeting these requirements.

2. Requirements on the learning methodo-
logy

The following is a list of characteristics which were dee
med necessary or desirable for a learning strategy suitable
for traditional types of automated systems. Some items
are actually simplifications allowed in this application.

1. Only binary inputs and outputs need to be conside
red. For traditional automation, this is reasonable sin
ce almost all current automation tasks are performed
with binary data.

2. The procedure must learn exact mappings from in
puts to outputs. Furthermore, it must be capable of
learning arbitrary mappings from binary inputs to bi
nary outputs. Precision is required for most traditio
nal automation tasks. Thus, the learning wiil be su
pervised with a trainer specifying all input/output
pairs.

3. The procedure should converge to a solution rather
quickly. An important consideration is the order in
which teaming time grows with the size of the pro
blem. A learning procedure in which the cost to
learn an arbitrary transform does not remain trac
table when scaled up is practically useless.

4. The procedure should be able to support incremental
changes to the training set, in order to enable step
wise refinement of the system’s function. The alterna
tive would be to completely retrain the network whe
never any change (large or small) needs to be made,
which seems undesirable.

5. The procedure should converge to a solution regard
less of the initial state. To facilitate step-wise refine
ment, a network may need to unlearn the effects of
earlier training and converge to a new solution.

6. The procedure should be able to dynamically add
hidden nodes as required to support greater degrees
of complexity. The need to predetermine the amount
of resources to solve a given problem leads to an un
necessary and difficult constraint on the trainer.

7. The procedure should be able to generate solutions in
which the number of required hidden nodes remains
reasonable. The rate at which the number of hidden
nodes increases with respect to the size of the problem
is a driving consideration in whether the learning pro
cedure is practically useful or not.

8. The procedure must be capable of generalizing in such
a way as to learn the underlying inten behind the
training set with a minimum number of training pairs.
The size of the required training set must grow at a
tractable rate with respect of the size of the problem.

Two new methods were developed, specifically designed
for the automated data processing application. In each of
these techniques, the input and output layer are prespe
cified but the internal structure of hidden nodes is built
during learning. The first method is called the flat learning
procedure because it builds a single (flat) layer of hidden
nodes. The main features distinguishing the new learning
methods from existing strategies were developed during
the design of this procedure. However, the generalization
characteristics of the flat learning procedure were found
to be rather weak. The second method was then develo
ped to specifically improve on generalization. It is called
the hierarchical learning procedure because it organizes its
hidden nodes in a hierarchical manner.

3. The flat learning procedure

A basic idea behind the flat learning procedure is to
create and train a set of hidden nodes so that each of
them learns a linear separation function in the tradition
of the perceptron [13, 11]. Since an arbitrary number of
hidden nodes can be allocated during training, the enti
re set will be capable of learning any separation function
which can be approximated by linear segments. A major
advantage is that a fast converging variation of the del
ta rule can be used to update the weights. This variation
will be referred to as the “Greedy Delta Rule” . In order
to achieve this, the input set needs to be partitioned into

W hitcom b, Augusteijnt Hierarchical Learning N N W 0 /9 1 , 321-334

linearly separable subsets. Each hidden node must learn a
single subset. A separation mechanism has been designed
that accomplishes this partitioning and, in addition, aids
in the generalization properties of the net.

Output Nodes

Hidden Nodes

Input Nodes

Connection Weights

Fig. 2: Architecture for the Flat Learning Procedure

The specific architecture used by this learning procedu
re is shown in Figure 2. Each output node has its own
independent pool of hidden nodes and each hidden node
is completely connected to the inputs. The output node
essentially applies an OR operation to its hidden nodes.
When the desired output of a node equals 1, one of its
hidden nodes must be taught to produce a 1. When the
desired output equals 0, each of its hidden nodes must
produce a 0. In this, a mapping from binary inputs to bi
nary outputs is learned by constructing a piece-wise linear
approximation of the required function, with each hidden
node learning one linear segment. The connection weights
between hidden and output nodes are all fixed and are
generally set to 1.

The weights on the connections between input and
hidden nodes are determined through learning. During the
learning phase, the training pairs are presented in an in
cremental fashion to support step-wise refinement of the
system’s functionality. The main features that enable the
required learning are discussed in the following subsec
tions. Several small improvements to the essential ideas
were discovered during the extensive testing of this pro
cedure. Not all of them are discussed in detail but the
complete algorithm, as used in the experiments, is given
in subsection 3.6.

3.1 Increm ental Training Presentations

The learning procedure should be capable of incremen
tal modification of the system data transforms. It should
not be necessary to present all required training pairs to
gether since it will often be the case that the system fun
ctionality will need to be expanded a little bit at a time.
With an incremental training order, the presentation of
each new training pair is followed by the presentation of
all previously learned pairs until no more errors occur.
This presentation order can be stated more precisely as
follows:

1. Partition the training set into two parts old and new.
The old set consists of all training pairs that have
been presented before and is initially empty. The new
set consists of all training pairs that the network has
never seen, and initially consists of the entire training
set.

2. Select a training pair from the new set and present
it to the network. If the new set is empty, learning is
complete.

3. If the network correctly produces the specified out
puts from the given inputs, remove the new training
pair from the new set, place it in the old set and repeat
step (2).

4. If the network does not produce the correct outputs,
initiate learning for this pair. After this pair has been
learned, cycle through all training pairs in the old set
(in the same order as originally placed in the set) and
initiate learning for each pair that produces an error.
If any pairs from the old set resulted in an error, pre
sent the new pattern again and repeat this step until
no more errors occur. When this has been accom
plished, remove the new training pair from the new
set, place it in the old set and repeat step (2).

A disadvantage of this approach is that the network is
only slowly exposed to a large portion of the training set.
It cannot, therefore, anticipate the impact of patterns la
ter in the set. But, for this application, all the training
pairs must be learned exactly, and the training set is, the
refore, assumed to be noiseless. Given those conditions,
the use of an incremental presentation order should not
be detrimental.

3.2 The G reedy Delta Rule

Generally, when the Generalized Delta Rule is used to
implement learning, the network will not be allowed to
move quickly in any particular direction. The weight ma
nifold (or equivalently, the error function) may be quite
complex and a fast learning algorithm may not converge to
the correct solution. However, when each node only learns
linearly separable patterns, a much more greedy approach
can be taken. In this case, the weight manifold will only
contain a single global minimum. The learning procedure
can then be made to move rapidly towards that minimum.

The Delta Rule was modified to adjust the weights for
each training pair so that the output will be correct for
that pattern after a single iteration. The new procedure
does not use a learning rate parameter. Given the desired
output of a hidden node, the amount that each weight will
be adjusted is computed from:

Dwi — ((desired — output — actual — output) a?,-)/
nurnbei— o f — input — ones

where Dwi is the change in weight from input i to the
hidden node, the actual-output equals the current activa-

N N W 6 /0 1 , 321-334 W hitcom b, Augusteum Hierarchical Learning 323

tion of the hidden node, ar, is the value of the input from
node i, and number-of-inpui-ones is the sum of all the
x% values in the current pattern. Thus, the weights are
adjusted enough to bring the activation to the exact value
desired for that one pattern.

Another characteristic is that whenever a node produ
ces the correct output, regardless of its activation value,
the weights are not modified. The goal here is not to find
a subtle separation function that maximizes the number
patterns that are correctly classified by a single hidden no
de, but to rapidly and deterministically achieve a correct
output for the entire network.

3.3 Separation M echanism

The separation of patterns across different hidden no
des serves two purposes. One is to distinguish the patterns
that are linearly inseparable, the other is to control gene
ralization. An important criterion in the partitioning is
similarity between patterns. Input patterns that are simi
lar to each other should be learned by the same hidden
node. The mechanism to accomplish this is lateral inhi
bition. Lateral inhibition serves to select the hidden node
that has the greatest activation.

Without an adequate separation mechanism, some poor
types of generalization may occur. As an example, consider
the input pattern (0 1 1 0 0 0) and (0 0 0 1 1 0) which
both correspond to an output (1). If these patterns would
be allocated to the same hidden node, it would dutifully
learn to produce a (1) output for the specified inputs as
well as for all cross combinations of these patterns. As an
example, the pattern (0 1 0 1 0 0) would also produce a
(1) output.

This form of generalization does not seem appropria
te since the original two patterns are completely disjoint.
This is an example of over-generalization that should be
avoided. However, if the two training pairs had been more
similar the same type of generalization would have been
reasonable.

The mechanism for separating patterns is based on
a measure of their similarity. The activation value of a
hidden node will be used as the similarity measure. It
should be noted that not all linearly inseparable training
sets involve disjoint patterns. However, the activation of
a hidden node depends on the weights as well as on the
inputs, and the weights can be modified so that patterns
that need to be separated will appear dissimilar. Consider
the following training set:

input: (0 0 1 0 0) output: (0),
input: (0 1 1 0 0) output: (1),
input: (0 1 1 1 0) output: (0),
input: (0 0 1 1 0) output: (1).

The second and fourth training pairs are not disjoint and
they produce the same output pattern, so it seems reaso
nable, from a generalization standpoint, to assign them to

the same hidden node. If they combined together, howe
ver, the entire training set will not be separable. But be
fore the fourth training pair is presented to the network,
the third one will introduce some inhibition on the fourth
bit. That inhibition will lower the activation value for the
fourth training pattern, so that it will no longer appear to
be very similar to previously learned patterns.

Based on this type of reasoning, a threshold mechanism
has been defined to separate input patterns, both when
they are non-linearly separable and to control generaliza
tion. Each hidden node has a unification threshold which
determines whether a new pattern will be unified with
those already represented by a hidden node. When a new
pattern is presented to the net, all hidden nodes with acti
vations exceeding their unification threshold enter a com
petition. This competition has been implemented through
lateral inhibition. The winning hidden node is the one se
lected to learn the new pattern.

If the patterns previously learned by all hidden nodes
are not similar enough to the new input (their activation
does not exceed their unification thresholds), none of the
hidden nodes will enter the competition. When this occurs,
a new node must be allocated. Allocation of a new no
de can occur naturally with this mechanism. If a pool of
unallocated nodes exists initially, with each one having its
inification threshold at 0 and its weights to the inputs as
small random values, all hidden nodes will initially en
ter a competition. Their initial activation will be small,
so they will be unlikely to win any competition unless no
other nodes have activations that exceed their unification
thresholds. In this manner, a previously unallocated node
will win a competition and become part of the solution
when a new input pattern is not sufficiently similar to any
previously learned input patterns.

As a consequence of this separation mechanism, the lear
ning procedure will not always derive the smallest network
possible. The approach consciously separates patterns that
are fairly dissimilar in order to control generalization. In
essence, the learning procedure is more concerned with ge
neralization than with minimization. The manner in which
the unification threshold is set and adjusted is as follows:

1. Initially, the unification threshold for all hidden nodes
is 0.

2. When a node learns to produce a 1 output for any
input pattern, its unification threshold is increased
by some percentage of the total error; that is output
threshold minus activation value.

3. The unification threshold is never lowered, except
when a node is deleted, as described later. On de
letion, the unification threshold is set back to 0.

In this manner, unification will require a greater degree
of similarity as more patterns are learned by the same
hidden node. Thus, the domain of a single node becomes
increasingly more focused around certain input patterns
that are very similar.

324 W hitcom b, AuguDieiju: Hierarchical Learning N N W 6 /9 1 , 321-334

3.4 Short-Cut Inhibition 3.6 The flat learning algorithm

Inhibitory connections, required when a hidden node
produces a 1 while a 0 is desired, can be learned in a
short-cut fashion. An example will illustrate this feature.
Consider the training pairs:

input: (0 0 1 1 0 0) output: (1),
input: (0 0 1 1 1 0) output: (0).

Because of the similarity of the inputs, the second pattern
will initially produce the wrong output. In ordeer to learn
the correct result for both patterns, the third and four
th input connections must acquire excitatory (positive)
weights and the fifth connection must obtain an inhibito
ry (negative) weight. These connections can be learned in
a single pass through the training set if, on presentation of
the second training pair, the weight for the fifth bit will be
the only one manipulated (lowered to a negative value).

In general, to learn a 0 output, if any of the weights are
zero (or very small) and an input is present, those weights
can adjusted down immediately, without affecting much of
the previous learning. As a matter of fact, this is the only
reliable way that was found to turn a node off when the
separation mechanism described previously is used. The
basic problem is that the meaning of similarity becomes
unclear when other weights are lowered. If the unification
threshold were to be lowered when the weights are lowe
red, it could happen that patterns would be unified that
should not. This could occur because a lower threshold
allows a much lower degree of similarity for unification.
On the other hand, if the original value of the unifica
tion threshold were to be maintained, previously learned
patterns could sometimes not be learned anymore by this
node. When only the weights with zero values are lowered,
most previously learned patterns will not be affected and
the unification threshold need not be changed.

3.5 N ode D eletion

There will be cases in which there are no unassigned
weights that can be lowered when a node needs to be shut
off. Then, it will not be possible to learn the training pairs
in the order presented. The solution is to delete the node
that could not be inhibited and reorder the training set so
that the training pair requiring the inhibition is now pre
sented first. Incremental training presentations can then
be restarted from the beginning.

There is an additional benefit to the ability to reorder
the training set. If there are contradictions in this set,
they will also result in deletion and reordering. Then, the
contradictory patterns will become the first two training
pairs in the reordered set Once both contradictory trai
ning pairs have been moved to the beginning, it is easy to
recognize them.

The flat learning procedure can be summarized as
follows:

1. Initialize the net with no hidden nodes. The input
and output nodes are not yet connected.

2. Present the training pairs in the incremental fashion
described. (In the case of reordering, remove all
patterns from the old set and put them back into the
new set.)

3. For each training pair, and for every output bit:

(a) If the desired output is 1:

i. If the actual output is 1, do nothing.
ii. If the actual output is 0, try to identify the

hidden node, aassociated with the output,
that has the greatest activation and who
se activation is greater than its unification
threshold.
A. If identification is successful, increase all

weights on the connections receiving a
1 input of the identified node by equal
amounts until its activation is greater
than or equal to the output threshold
(Greedy Delta Rule). Increase its unifi
cation threshold as described.

B. If identification is unsuccessful (no
hidden nodes have an activation greater
than their unification thresholds), create
a new hidden node. Connect this node
with the corresponding output using a
fixed weight. Also, connect this node to
all inputs arid proceed as if identifica
tion had been successful with the newly
created node as the identified node.

(b) If the desired output is 0:
i. For all hidden nodes associated with the out

put, if the activation is less than the output
threshold:
A. If the activation is less than the unifica

tion threshold, do nothing.
B. If the activation is greater than or equal

to the unification threshold, but less
than the output threshold, increase the
unification threshold until it is greater
than the activation. This is to prevent
possible future input patterns that are
similar to the current input pattern and
that require a 1 output from being lear
ned by the hidden node and invalidating
the 0 output for the current pattern.

ii. If the activation is greater than or the same
as the output threshold, and one or more
unassigned (zero or very small) weights exist

N N W 6 /0 1 , 321-334 W hitcom b, Augusteijm Hierarchical Learning

G e n e ra l iz e d D e lta R u le F la t L e a rn in g P ro c e d u re

Problem
learning

rate
P a ra m e te r

N u m b e r o f
H id d e n
N o d e s

P r e s e n ta t io n s /1
I te ra tio n s 1

similarity
P a ra m e te r

N u m b e r o f
H id d e n
N o d e s

P re s e n ta t io n s /
I te ra tio n s

“ xor” 0.5 1 2232/ 558 50% 2 10/ 2.5

4 bit odd parity 0.5 4 45200/ 2825 50% 8 239/14.9

6 bit symmetry 0.1 2 77312/ 1208 50% 8 1072/16.8

3 bit negation 0.25 3 <80000/<5000 50% 6 62/ 3.9

2 bit add - c o u ld n ’t re l ia b ly so lv e 50% 8 103/ 6.4

T a b .l: Comparison of the performance of the Generalised Delta Rule versus the Flat Learning Procedure

where the inputs are 1, lower those weights
until the activation is below the unification
threshold.

iii. If the activation is greater than or the same
as the output threshold, but no unassigned
weights exist where the inputs are 1, delete
the node. Reorder the training set so that
the new training pair is at the beginning.
Start the incremental training presentations
over again.

3.7 Results and Analysis o f the flat learning pro
cedure

The flat learning procedure was tested on a set of fa
miliar bit pattern manipulation problems. The results of
these tests are shown in Tables 1 and 2. Table 1 compares
the results of flat learning with those of the GDR proce
dure as published by [14]. For the GDR, the learning-rate
parameter (which controls the size of each increment in
the gradient descent process) is a measure of the speed of
convergence of this procedure. The flat learning procedure
does not use a learning-rate parameter and the similari
ty parameter is used instead. The similarity parameter
specifies the rate of growth of the unification threshold. A
50% value means that when two input patterns unify, they
must share at least half of each other’s 1 bits. A lower va
lue would allow more unifications to take place and fewer
hidden nodes might be allocated. The drawback is that ge
neralization can be poorer and separation takes more time
to accomplish. The 50% value was experimentally found
to be adequate for the test cases in Tables 1 and 2.

Table 1 compares the number of hidden nodes for both
methods. This number is prespecified for the GDR and
derived during learning for the flat learning procedure. It

is seen that the number of hidden nodes for the GDR is
less in all cases. This is to be expected since the flat pro
cedure does not explicitly try to minimize the number of
hidden nodes. It should be noted, though, that the solu
tions obtained by the flat procedure for the symmetry and
parity problems show combinatorial growth in the number

Problem |
Number of

Hidden
Nodes

Number of
Deletions

Presentations/
Iterations

Prediction
Accuracy

or 2 0 7/ 1.8 50%
and 1 0 7/ 1.8 75%
xor 2 0 10/ 2.5 25%

4 bit symmetry 4 0 106/ 6.6 25%
6 bit symmetry 8 0 1072/ h ; 50%
8 bit symmetry 16 0 10456/ 40.8 69%

4 bit odd parity 8 1 239/ 14.9 6%
8 bit odd parity 128 94 111909/ 437.1 2%
3 bit negation 6 0 62/ 3.9 50%

2 bit add 8 0 103/ 6.4 50%
3 bit add 17 0 1027/ 16.0 59%
4 bit add 42 8 19251/ 75.2 64%

2 bit subtract 8 1 158/ 9.9 19%
3 bit subtract 17 2 1500/ 23.4 38%
4 bit subtract 41 9 21031/ 82.2 56%

Tab.2: Complete test results for the Flat Learning Proce
dure

W hitcom b, Auguateijn! Hierarchical Learning N N W 6 /9 1 , 321-334

of hidden nodes. This is a result of the piece-wise linear
solution that the network constructs.

The performance of the two procedures is also compa
red with respect to the total number of presentations of
training pairs required for adequate learning. The GDR
cycles through the entire set until the total error for the
entire training set has become acceptable. The flat lear
ning procedure follows the incremental presentation order,
so the term iteration is not that meaningful. For compa
rison purpose, an iteration is defined as the total number
of presentations divided by the total number of training
pairs.

All of the training sets listed in Table 1 contained all po
ssible input patterns for the specific problem. In all cases,
these training sets were ordered according to the binary
counting sequence for the input patterns. It is evident that
there is a significant speed improvement using the flat lear
ning procedure over the GDR. It should also be noted that
the results obtained by the flat procedure were not prone
to local minima. The GDR, on the other hand, did not
easily avoid local minima when attempting to solve the 2
bit add problem.

Table 2 shows the complete set of results for the flat
learning procedure, In all cases, the similarity parameter
was set to 50% . The number of deletions listed is the num
ber of times the learning procedure was forced to delete a
hidden, node and restructure the training set. The predic
tion accuracy column indicates the percentage of the total
number of training pairs for which the network guessed the
correct output, without modifying any weights, at the first
presentation of that input pattern. Although not listed, a
training set including a contradiction was also presented
and the contradiction was recognized as expected.

it is obvious from these results that the generalization
properties of the flat learning procedure are not strong.
For the smaller problems, the prediction accuracy is not
a reliable measure, but for the larger problems, this accu
racy is probably the best measure of performance. It is
seen that the prediction accuracy is increasing with the
problem size (except for the parity problem), but it is not
increasing nearly as fast as the number of possible input
combinations. As an example, the prediction accuracy im
proves only 5% from the 3 bit add problem to the 4 bit
add problem, but the number of possible input patterns
increases by a factor of 4.

4. The hierarchical learning procedure

Structured learning is commonly perceived in humans.
Lower level concepts are learned first and then used for the
acquisition of higher level concepts. If this type of learning
could be simulated by a neural network, a learning method
requiring fewer training pairs and showing stronger gene
ralization properties can result. As an example, consider
the addition problem. If a learning procedure could unco
ver the hidden, hierarchical carry function, it could learn
the solution to the addition problem from fewer training

pairs. In more general terms, it would be of great benefit
if a neural net could learn a hierarchy of concepts.

The hierarchical learning procedure that will be presen
ted is an attempt to model structured learning. It should
be noted that, in the case of an artificial neural network,
all learning information is represented by the training set
without any other contextual clues that could aid the lear
ning process. The two aspects of a training set that can be
exploited to support hierarchical learning are the content
of the set and the order in which the training pairs are
presented.

In general, the training set can be structured so that
related concepts are taught together and low level concepts
are taught first. The restriction that all related concepts be
taught together is a mechanism to provide context. That
limited type of context can be a great help in deciding how
to organize a solution by providing some clues as to which
concepts belong together. The restriction that low level
concepts be taught before high level ones is obvious. For
higher level concepts to be properly learned, they should
be based on all appropriate lower level concepts. If such is
not the case, generalization (understanding) will likely be
poor, even for humans.

The hierarchical learning procedure is in many aspects
similar to the flat learning method, but it has better ge
neralization properties. Like the flat learning proc edure, it
uses the notion of the incremental training presentation or
der, the Greedy Delta Rule to learn the excitatory weights
to the hidden nodes, a unification threshold to measure the
degree of similarity between patterns, and the idea of only
changing free (zero) weights when a hidden node needs to
be turned off. The incremental presentation order is par
ticularly important to the notion of hierarchical learning.
With this order, it can be ensured that low level concepts
are completely learned before any higher level concepts are
introduced.

The architecture of the hierarchical learning procedure
is, however, quite different from that of the flat learning
procedure. The architecture is characterized by a multile
vel, self-organized structure. The learning procedure crea
tes a network with a hierarchically arranged set of hidden
nodes whose organization is completely determined during
learning. Figure 3 shows the essence of this architecture.

Each hidden node learns a concept, based on the net
work inputs and the outputs from lower level hidden no
des (which represent lower level concepts). In this manner,
hidden nodes are visible to higher level hidden nodes and
the output nodes, but not to any lower level hidden no
des. It is important to note that the hidden nodes are not
arranged in layers but form a hierarchical sequence. Each
hidden node may have connections to all inputs and to the
outputs of lower lever hidden nodes, but a hidden node do
es not have any input connections from higher level hidden
nodes. This network architecture is strictly feedforward.

Contrary to the flat architecture, each output node does
not have its own pool of hidden nodes. A hidden node may
connect to all outputs. The connection weights between
the hidden and output nodes are set when a hidden node

N N W 8 /9 1 , 321-334 W hitcom b, Augustejjni Hierarchical Learning

learns its first pattern (and are not all equal to 1 as in
the flat procedure). The values of these weights will be
determined by the Greedy Delta Rule. Once a hidden node
has learned its first, pattern, the weights from it to the
output nodes will not change.

Network Outputs

Fig. 3 : Architecture for the Hierarchical Learning procedu
re

4.1 Building Internal Concepts

When an input pattern is presented, adjustments will
be made unless the corresponding outputs are already pro
duced by the net. If adjustments are necessary, the input
pattern will either be unified onto an existing hidden no
de, or a new hidden node will be created. A pattern will
only unify onto a hidden node if that node is not already
firing, the node’s activation is greater than its unification
threshold, and the output of the entire network would be
correct if the hidden node were to fire. Alternatively, if a
hidden node is firing and shutting it off would make the
output exactly correct and there is a free connection (with
zero weight) that could be used to inhibit the hidden node,
the inhibitive connection will be learned and the hidden
node shut off.

If neither of these options exist for any hidden node, a
new node will be allocated directly above all other hidden
nodes. This new hidden node will be connected with the
net’s inputs, the outputs of the existing hidden nodes, and
the output nodes of the net. Allocation of a new node is
called discrimination, because the new pattern represents
what is deemed to be a new concept (since it couldn’t
unify onto any existing hidden node), and the new node

discriminates the new concept from all previously learned
concepts.

The weights between the new hidden node and the out
put nodes will be adjusted so that all outputs will be
correct for the presented input. The output nodes also ha
ve biases which may be adjusted if needed. In particular,
if an output node is asked to produce a 1 when the inputs
are all Os,the bias for that output node will be adjusted
to accomplish this goal.

Whether unification or discrimination has taken place,
only the input weights to the hidden node that learns the
new pattern will be adjusted. There are two types of input
connections, those to the inputs of the net and those to
the outputs of lower level hidden nodes. In general, not
all of them will be adjusted and the decision about which
weights will be changed is crucial to hierarchical concept
building. An example will demonstrate this. Consider the
training pairs:

input: (0 0 1 1 1 0) output: (O i l 0),
input: (1 1 0 0 0 0) output: (0 1 0 1),
input: (1 1 1 1 1 0) output: (1 0 0 0).

Figure 4 shows the net that will built during presentation
of this set. After presentation of the first two pairs, the
network will have learned two distinctly different concepts
by two different hidden nodes. The third pair should also
create a new hidden node since both existing hidden nodes
will fire, but the output will be incorrect. The question is
which of the connection weight should be adjusted. Since
the two hidden nodes will both be firing, the options are
to adjust the weights to the network inputs only, adjust
the weights to the outputs from the two lower level hidden
nodes only, or to adjust the weights to both the network
inputs and the outputs from the two existing hidden no
des.

If the training set has been properly specified, the third
training pair should be interpreted as a new concept built
from the lower level concepts represented by the first two
training pairs. This will be the case because the third
pattern is a combination of the two previous patterns.
Therefore, the outputs from the first two hidden nodes
should be used to help discriminate the third concept.
Furthermore, the weights from the first two hidden nodes
should be the only ones adjusted. If the third hidden node
would be allowed to establish excitatory weights directly
to the network inputs, then there would be no hierarchical
building of concepts.

Experimentation with this learning procedure has
shown that generalization is improved by adjusting the
weights as described. Once one or more concepts have been
unified together (represented by one hidden node), only
one training pair with one of those original patterns ne
eds to be presented to represent all of the patterns in the
unified concept. In this way, higher level concepts can be
made to apply to an entire set of lower level patterns by
presenting only one representative pattern.

The desired hierarchical structure will be built if new
high level hidden nodes adjust their weights to only the

328 W hitcom b, Auguatefjni Hierarchical Learning N N W 0 /9 1 , 321-334

highest level hidden nodes (or inputs) that are firing imme
diately below them. New hidden nodes should not learn
associations to any concepts or to the network inputs, un
less they represent the highest level concepts. To achieve
this result, some mechanism is needed to restrict which
weight adjustments a hidden node will be allowed to ma
ke.

Note: The numbers inside the nodes Network Outputs

bit

Fig.4 : Network resulting presentation of the first two trai
ning pairs in the example training set

4,2 The Occlusion M echanism

The mechanism devised to restrict which weight adjust
ments can be made has been termed an occlusion mecha
nism, because it occludes, or hides, certain network inputs
or hidden node outputs from other hidden nodes. The occ
lusion mechanism is derived from the simple notion that
if a hidden node is firing, no new associations should be
made to the inputs that led the hidden node to fire. A new
association is made when a zero connection weight is ini
tially adjusted to some non-zero value. The occlusion me
chanism, therefore, controls when zero connection weights
can be adjusted. Connection weights that are already non
zero can be adjusted as needed. In this manner, the occlu
sion mechanism forces higher level hidden nodes to learn

new associations only with the highest level concepts be
low them.

An input is occluded if

Fig. 5: Mechanism for occlusion of input signals

Figure 5 depicts a means to implement the occlusion
mechanism. An extra signal line follows each input and
each hidden node’s output. These lines flag which inputs
and hidden node outputs cannot be used to establish any
new associations. When a hidden node fires, its output
is also to activate the occlusion signal line for any of its
inputs wherever an excitatory connection exists between
that input and the hidden node. In this way, the inputs
to a hidden node that caused it to fire can be kept from
establishing any new associations.

It should be realized that the occlusion mechanism does
not stop the inputs or the hidden node outputs from firing
higher level hidden nodes. The output of the network will
be the same whether the occlusion mechanism exists or
not. The mechanism is only used to determine which input
weights should be adjusted and which ones should remain
unaffected in learning a new pattern.

There are three additional aspects to the occlusion me
chanism. The first one arises from the possibility that a
hidden node may fire, while all of its inputs are occluded.
In this case, the output of the hidden node should also
be occluded. This possibility may happen when indepen
dent patterns are learned by a network. It is possible for
multiple hidden nodes that were established independent
ly to end up occluding all the inputs to another hidden
node. In this case, the hidden node with all of its inputs
occluded is not providing any additional information for
discrimination purposes. The other concepts should be the
highest level concepts for the purposes of establishing new
associations. Thus, a hidden node should occlude its own
output in the case that all of its inputs are occluded.

The second aspect occurs when several input patterns
have been unified onto a hidden node and a newly created
node finds all its inputs occluded except for the output
of that particular hidden node. In this case, it can on
ly establish a connection to this hidden node. With this
single connection present, the new hidden node will not
be able to discriminate input patterns from those causing
the previously existing hidden node to fire. More than one
hidden node must be unoccluded in order to discriminate
patterns. As an example, consider the training set:

N N W 0 /9 1 , 321-334 W hitcom b, Augusteym Hierarchical Learning

input: (1 1 1 0 0) output: (0 1 1),
input: (0 1 1 1 0) output: (0 1 1),
input: (1 1 1 1 0) output: (0 0 1).

The first two inputs unify onto a single hidden node and
the third pair creates a second hidden node that can only
connect to the first one. The third pattern cannot be dis
criminated from the previous two. In order to solve this
problem, the occlusion mechanism was modified. This me
chanism was made selective, such that only the inputs to
a hidden node that are minimally necessary to cause that
node to fire will be occluded. In the example, one of the
input connections to the second hidden node will then not
be occluded and the third pattern can be discriminated
from the first two.

The third and final aspect of the occlusion mechanism
follows directly from the selective mechanism just dis
cussed, Experimentally, conditions were found in which
the selective occlusion mechanism could force the learning
procedure into an infinite loop. If inputs to a hidden no
de are selectively not occluded and they are subsequently
used to inhibit another hidden node, it is possible for the
inhibition to keep a hidden node from ever firing. That
would m turn force the creation of a new discriminator
hidden node, which is subsequently inhibited, and so on.
An example of this situation is given by the following trai
ning set:

input: (0 0 1 1 0) output: (0 1),
input: (0 0 0 1 1) output; (0 1),
input: (0 1 0 1 1) output: (1 0),
input: (0111 1) output: (0 1)-

The resulting network (taking the selective occlusion me
chanism into account) is illustrated in Figure 6. In this
example, the first two patterns unify together in the first
hidden node. The third pattern results in a second hidden
node that learns connections to the second input bit and
to the first hidden node, When the fourth training pair is
presented, the second hidden node will inhibit itself as a
means to produce the desired output. Unfortunately, the
selective occlusion mechanism does not know which of the
input bits in the first two patterns should not be occluded.
Based on the Greedy Delta Rule, it sees larger weights for
the first pattern and, therefore, selectively does not occ
lude the fifth bit (from the second pattern) The second
hidden node will then inhibit itself, based on the presence
of that fifth bit. But, of course, the fifth bit will inhibit
the second node all of the time.

The solution is to modify the selective occlusion mecha
nism to only partially occlude inputs that are not mini
mally necessary for a node to fire. Inputs that are partially
occluded are allowed to have excitatory connections estab
lished, but not inhibitory connections,

4.3 N ode Deletion

pattern cannot be discriminated and the network has over
generalized. In response, the network deletes the lowest
level hidden node that is currently firing and all hidden
nodes above it. The new training pattern is moved to the
front of the training set and training is resumed.

Note; The numbers inside the nodes Network Outputs

Fig.6: Erroneous use of selective occlusion mechanism to
establish inhibitions

It should be noted that, like the flat learning procedure,
the node deletion and reordering process leads to the easy
detection of contradictions. Contradictory training pairs
will again end up as the first two pairs in the reordered
training set, where they are easy to spot.

4.4 The Overall Learning Procedure

The overall learning procedure can be summarized as
follows:

1. Initially, set up the network with no hidden nodes.
The output nodes have no input connections, and
their bias is set to 0.

The need to delete nodes occurs when the output of
the network is not correct and only a single hidden no
de output has not been occluded. In this case, the new

2. Present the training pairs in an incremental fashion
with the possibility for reordering as in the flat lear
ning procedure.

330 W hitcom b, Auguatetjni Hierarchical Learning NN,W 6 /8 1 , 321-334

3. For each training pair:

(a) Compute the entire network output and all occ
lusion signals.

(b) If the network produces the correct outputs, do
nothing.

(c) If the network does not produce the correct out
puts:

i. If the highest level hidden node that has
been allocated is active, and if the output
would be correct if it were shut off, and if
one or more inputs to the node are present
and not occluded or partially occluded that
have zero weights:
A. Equally decrease the weights to all tho

se free inputs until the activation of the
node reaches 0.

ii. Else if the highest level node that has been
allocated is not firing, but its activation is
greater than its unification threshold, and if
the output of the network would be correct
if the node were on:
A. Equally increase all existing excitatory

weights to inputs that are present and
all previously 0 weights to all unocclu
ded inputs that are present, until the ac
tivation of the node is greater than or
equal to its output threshold.

B. Increase the unification threshold for
that node by a preselected percentage
of the total error.

iii. Else if any input is unoccluded or if 2 or
more hidden node outputs are unoccluded:
A. Allocate a new hidden node immediately

above all other hidden nodes in the hie
rarchy. Set its unification threshold to 0,
set all of its input weights to 0. Set all
of the weights between it and the output
nodes to 0.

B. Equally adjust the weights for all unocc
luded inputs to that new hidden node
until the activation of the node is grea
ter than or equal to its output threshold.

C. Increase the unification threshold for the
hidden node by a preselected percentage
of the total error.

D. Equally adjust the connection weights
from the new hidden node to all output
nodes until the activation of all output
nodes is exactly as desired.

iv. Else:
A. Delete the lowest level hidden node that

is firing and all hidden nodes above it in
the hierarchy.

B. Reorder the training set so that the new
training pair is at the beginning. Start
the incremental training presentations
over again.

4,5 Results and Analysis

For this learning procedure, two different types of test
sets were run. The first type contained all of the possible
input combinations in binary counting order. This corres
ponds to exactly the same test data used for the flat lear
ning procedure. The second type of training set contained
just those training pairs that were minimally necessary
(and in the order necessary) to teach the network the un
derlying concepts.

Table 3 lists the results from the unstructured training
sets, and cross lists them with the results for the flat lear
ning procedure. Table 3 also lists some additional tests.
The similarity parameter that governs the modification
of the unification threshold was again set to 50% . The
number of deletions shows the number of times that the
network was forced to delete one or more nodes and reor
der the training set. The number of training iterations is
defined as the total number of training presentations divi
ded by the total number of training pairs in the training
set. Finally, the prediction accuracy column indicates the
percentage of the total number of training pairs for which
the network guessed the correct output at the first presen
tation of the corresponding input pattern.

From this table, some definite improvement over the flat
learning procedure can be seen in the prediction accuracy
in almost all cases. Only the 2 bit add problem is slightly
worse. Also, the training times are generally shorter. This
general improvement is also reflected in the very small
number of deletions.

The hierarchical learning procedure often generated mo
re hidden nodes than the flat learning procedure. In par
ticular, the subtraction problem generated many more
hidden nodes. In this case, the training procedure traded
resources for better prediction accuracy and greater speed.
The training sets were not well enough structured, how
ever, to uncover the minimum solution. In the case of the
symmetry problem, the number of hidden nodes decreased
to a linear function of the number of bits in the problem.
This is obvious from the type of solution generated, since it
is now able to create building blocks that can be combined
together to eliminate the combinatorial expansion. The so
lution to the 8 bit parity is somewhat better than the flat
procedure. There are roughly 25% fewer hidden nodes and
the prediction accuracy has improved over that of the flat
procedure. As a result, the training time dropped by an
order of magnitude. The small and elegant solution found
by the GDR should still not have been expected, however,
because the procedure is a greedy approach based on si
milarity of the patterns. The parity problem is difficult to
solve using this type of approach because input patterns
that are only one bit different require a different output.
Contradictory data could easily be detected as before.

N N W 6 /9 1 , 321-334 W hitcom b, Auguateijn: Hierarchical Learning

Flat Learning Procedure
■

Hierarchical Learning Procedure

Problem
Num ber o f

Hidden
N odes

N u m ber o f
D eletions

Presentations/
Iterations

Prediction
A ccu racy

N um ber o f
Hidden
N odes

N um ber o f
D eletions

Presentations/
Iterations

Prediction
A ccu racy

—— ------- —--“ •

or 2 0 7 / 1,8

— ---------—

5 0 % 2 0 7 / 1.8 5 0 %
and 1 0 7 / 1.8 7 5 % 1 0 7 / 1.8 7 5 %
xor 2 0 10/ 2 .5 2 5 % 3 0 1 0 / 2.5 2 5 %

4 bit sym m etry 4 0 1 0 6 / 6 .6 2 5 % 6 0 4 6 / 2 .9 5 6 %
6 trit sym m etry 8 0 1 0 7 2 / 16.8 5 0 % 9 0 1 9 0 / 3 .0 8 4 %
X bit sym m etry 16 0 1 0 4 5 6 / 4 0 .8 6 9 % 12 0 7 6 6 / 3 .0 9 4 %

4 bit odd parity 8 1 2 3 9 / 14.9 6 % 8 0 1 2 2 / 7 .6 1 2 %
8 bit odd parity 128 9 4 1 1 1 9 0 9 / 4 3 7 .1 2 % 98 0 1 3 4 9 8 / 5 2 .7 5 .3%
3 bit negation 6 0 6 2 / 3 .9 5 0 % 7 0 6 2 / 3 .9 5 6 %

2 bit add 8 0 1 0 3 / 6 .4 5 0 % 7 0 8 1 / 5.1 4 3 %
3 bit add 17 0 1 0 2 7 / 16 .0 5 9 % 18 0 6 9 7 / 10.8 6 5 %
4 bit add 4 2 8 1 9 2 5 1 / 7 5 .2 6 4 % 44 0 5 8 3 8 / 2 2 .8 8 0 %

2 bit subtract 8 1 1 5 8 / 9 .9 1 9 % 9 0 1 0 4 / 6 .5 2 5 %
3 bit subtract 17 2 1 5 0 0 / 2 3 .4 3 8 % 23 0 9 3 5 / 14 .6 5 0 %
4 bit subtract 41 9 2 1 0 3 1 / 8 2 .2 5 6 % 62 0 8 4 9 8 / 3 3 .2 6 8 %

4 bit increment - - — — — 9 0 1 5 3 / 4 .8 7 1 %
4 bit decrem ent — — — — — 8 0 2 6 7 / 8 .3 5 6 %
4 bit com pare — — — — — 50 0 6 0 9 0 / 2 3 .8 7 6 %
2 bit m ultiply - - _ _ — — — 5 0 6 1 / 3 .8 6 8 %
3 bit m ultiply — — — — — 21 0 8 3 8 / 13.1 6 7 %
4 bit m ultiply **■ — — — — 91 2 2 8 5 7 7 / 111 .6 6 3 %
6 /3 bit divide “ “ — * — “ “ 90 4 2 7 2 7 1 / 1 21 .7 5 5 %

Tab.3: Performance of the Flat Procedure versus the Hierachical procedure; unstructured training set

Tab.4: Performance of the Hierachical procedure; unstructed training sets versus structured training sets

W hitcom b, Augusteym Hierarchical Learning N N W 6 /9 1 , 321-334

Table 4 lists the results for structured training sets and
cross lists them with the results from the unstructured
training sets. All of the structured training sets had many
fewer training pairs than the total number possible. For
these training sets, the learning procedure had a 0% pre
diction accuracy, as was desired. Each new training pair
in a structured training set represents some new aspect of
the problem that the network will not already know. The
prediction accuracy given in Table 4 for the structured
training sets was, therefore, calculated on the assumption
that all other possible input patterns would be presented
immediately after the structured training set itself.

From Table 4, in the add, substract, and compare pro
blems, the prediction accuracy has been further improved
by large margins. The number of hidden nodes has also
dropped dramatically for those problems. These problems
benefited greatly from the additional structuring of the
training set. In the remaining problems, it is apparent that
the normal binary counting order was already a good way
to order the training pairs. In all cases, by specifying only
the minimum required training pairs, the training speed
also dramatically improved.

5. Comparison with Other Research

There is currently a great deal of research in the area
of neural net learning. It is not the objective here to gi
ve an exhaustive account of all recent efforts. Only a few
learning strategies that have similar objectives or results
will be mentioned here for comparison with the flat and
hierarachical learning procedures.

A non-deterministic learning strategy was developed by
[10], Their approach is similar to the Boltzmann machine.
This network has also been applied to the add problems
that were used to test the flat and hierarchical procedures.
They report the ability of their method to solve t he 2-bit
add problem in 12 iterations with 18 hidden nodes, the 3-
bit add problem in 46 iterations with 26 hidden nodes, and
the 4-bit add problem in 76 iterations with 47 hidden no
des. Comparing this procedure with flat learning, it is seen
that its performance is worse for small problems, but both
learning procedures approach the same type of performan
ce for the more complex problems. However, the hierarchi
cal learning procedure is clearly superior for this type of
application with respect to the number of iterations requi
red. The method by [10] lacks the deterministic features,
as desired for the automated data processing application,
and requires long execution time on conventional compu
ters. The generalization properties of this network were
not published.

The Multiple RCE (Restricted Coulomb Energy) net
work ([12] et al.) appears to be, in essence, very similar to
the flat learning method. The network uses an analogous
mechanism to the unification threshold described here to
separate linearly inseparable patterns, and the network
uses fixed connection weights for each output node that
applies the or operator to the outputs of all hidden nodes.

The separation mechanism does not appear to have the
same type of generalization control, but over large training
sets, the RCE network is likely to perform similarly to the
flat learning procedure. However, the RCE net does not
have the generalization characteristics or learning speed
of the hierarchical learning procedure.

Several architectures employing a hierarchical organiza
tion of the hidden nodes have recently been developed. [2]
have developed a hierarchical approach which is based on
the observation that patterns that are not linearly sepa
rable in one binary coding scheme can, in fact, be linear
ly separable in a different coding scheme. Their method
uses a transform technique (the Fast Real Discrete Fourier
Transform) to map input bits to another coding scheme, if
a pattern produces too large an error in the original sche
me, Thus, multiple classifying nodes operate in parallel,
based on data that have been recoded in a cascaded, or
hierarchical fashion. Experimentation is probably required
to better determine the performance and generalization
characteristics of this approach for comparison purposes.

[16] present a hierarchical, self-organizing network that
appears to be able to construct arbitrarily deep networks
that seem to have good generalization characteristics. The
specific approach they describe, however, is based on the
use of continuous data and higher-order functions, and re
lies on the use of simulated annealing to converge. Their
network is, therefore, not deterministic, and is not app
ropriate for incremental learning.

[4] have developed a hierarchical architecture called
Cascade-Correlation. It was designed to improve the slow
learning characteristics of backpropagation. [3] (1990) has
designed the Upstart Algorithm which shows definite si
milarities to the hierarchical learning strategy. This ne
twork also constructs an exact association between binary
patterns. However, it does not build a hierarchy of con
cepts as described in this paper.

6, Conclusions and Future Work

Based on the results achieved with the hierarchical lear
ning procedure, it appears possible to make neural networ
ks learn fairly quickly and to achieve the required type of
generalization. If the hierarchical training procedure pro
ves to be robust for a large variety of problems, the concept
of learning instead of programming may become within re
ach.

The hierarchical procedure, as currently developed, still
has some limitations. The procedure does not perform well
when the training set is not properly structured. Automa
ted structuring of the training set has not yet been accom
plished. An inherent limitation in achieving this goal is
found in the incremental presentation order. While this
order has definite advantages, it prevents a network from
comparative analysis as a means to discriminate between
low and high level concepts. Another disadvantage is that,
when the size of a problem is scaled up, the training perfor
mance will decrease due to the fact that the learning

N N W 8 /0 1 , 321-334 W hitcom b, Augusteijn: Hierarchical Learning

procedure always reconsiders all previous training pairs
to ensure that previous learning isn’t impacted. The tes
ts performed showed that in many cases the rechecking
passes through the training set weren’t actually required.
It may be possible to employ heuristics to decide when
such reconsiderations are not necessary.

Finally, a more rigorous, formal development of the lear
ning procedure is needed in order to determine whether
the procedure will always converge to a solution. Further,
a formal means to determine the upper bound on the num
ber of hidden nodes and the number of training pairs ne
cessary for different types of problems would be of great
benefit.

References

De Marco. T Structures Analysis and System Specification, New
York; Yourdon Press, 1979

[2] Ersoy, O.K , and Hong, D : Parallel, Self-Organizing Hierarchical
Neural Networks, IEEE Trans Neural Networks, V ol.l, 1990, 167-
178.

[3] Frean, M : The Upstart Algorithm: A Method for Constructing and
Training Feedforward Neural Networks, Neural Computation Vol.
2, 1990, 198-209.

M Fahlman, E.S., and Lebiere, C.: The cascade-Correlation Lear
ning Architecture, Techn Report CMU-CS-90-100, Carnegy Mellon
University, Pittsburgh, PA., 1990

[5] Gane C,, and Sarson, T ; Structured Systems Analysis: Tools and
Techniques, Saint Louis, Mo : McDonnell Douglas Professional Ser
vices Co, 1985,

[6} Grossberg, S.: Competitive Learning: From Interactive Activation
to Adaptive Resonance, Cognitive Science, V ol.l 1, 1987, 23-63

[7] Hopfield, J.J.: Neural Networks and Physical Systems with Emer
gent Collective Computational Abilities, Proc. Natl. Acad. Sei.
USA, Vol. 79, 1982, 2554-2558,

[8] Hopfield, J.J.: Neurons with Graded Response Have Collective Com
putational Properties Like Those o f Two-State Neurons, Proc. Na
tl. Acad. Sei. USA, Vol. 18, 1984, 3088-3092.

[9] Kohonen, T.: Self-Organization and Associative Memory, Berlin:
Springer-Verlag, 1984.

[10] Lansner, A., and Ekeberg, O.: An Associative Network Solving
the ‘4-Bit ADDER’ Problem, Proc. IEEE First Int. Conf.Neural
Networks, Vol.II, 1987, 549-556.

[11] Minsky, M L , and Papert, S A.: Perceptrons (Expanded Edition),
Cambridge, Mass.: MIT Press, 1988.

[12] Reilly, D L , Scofield, C., Elbaurn, C,, and Cooper, L N.: Learning
Systems Composed o f Multiple Learning Modules, Proc. IEEE Fir
st Int. Conf. Neural Networks, Vol.II, 1987, 495-503.

[13] Rosenblat, F.: Principles o f Neurodynamics: New York, Spartan
Books, 1962.

[14] Rumelhart, D.E., Hinton, G.E., and Williams, R.J.: Learning In
ternal Representations by Error Propagation, In D E Rumelhart,
and J L McClelland (Eds), Parallel Distributed Processing: Ex
plorations in the Microstructure of Cognition, Vol.l: Foundations,
318-364, Cambridge, Mass.. MIT Press, 1986,

[15] Rumelhart, D E., and Zipser, D.: Feature Discovery by Compe
titive Learning In D E. Rumelhart, and J.L. McClelland (Eds),
Parallel Distributed Processing: Explorations in the Microstructu
re of Congnition V ol.l: Foundations, 318-364, Cambridge, Mass:
MIT Press, 1986

[16] Tenorio, M.F., and Lee, W.: Self-Organizing Network for Optimum
Supervised Learning, IEEE Trans. Neural Networks, V ol.l, 1990,
100- 110 .

[17] Yourdon, E.: Modern Structured Analysis. Englewood Cliffs, New
Jersey: Prentice Hall, 1989

334 W hitcom b, Augusteijm Hierarchical Learning N N W 6 /9 1 , 321-334

N E U R A L A L G O R IT H M F O R C O N S T R U C T IN G
M IN IM U M S P A N N IN G T R E E

O F A F IN IT E P L A N A R SE T

Andrew I. Adamatzky1

Abstract: We present a local parallel algorithm for con
structing minimum spanning tree of a finite planar set.
Our algorithm is based on mechanisms of a dendritic tree
growth during neuronal ontogenesis. We assume that some
neuron wishes to make synaptic terminals on the all points
of a given set. Neuron solves this problem by growing and
sprouting its dendritic tree at plane. We implement our al
gorithm in a cellular automata processor, which architec
ture is similar to neural one. Cellular automata processor
is the perspective specimen among massively-parallel com
puters. Offered algorithm runs in 0(h) time and it requires
0(n) processors, when h is a number of the given points
in the longest branch of minimum spanning tree, n is a
number of the given planar points.

Key words: Neuron, Dendritic Tree, Cellular Automata
Processor, Parallel Algorithm, Minimum Spanning Tree,
Complexity.

Received: July 7, 1991
Revised and accepted: December 9, 1991

1. Introduction

We’ll consider a modification of well-known Steiner’s
problem, i.e. the problem of connecting a given set S of n
points in the Euclidean plane by straight lines, that there
is a path of lines between every pair in the set, so as to
minimize the total length of the lines used. Line segments
connecting points of a given set must not be intersected
anywhere in the plane except points of a given set S. By
that way, we construct minimum spanning tree (MST),
i.e. a connected planar graph with n nodes, n — 1 edges,
without cycles, so as the sum of weights (lengths) of all
edges is minimal.

In the base work [1] it was shown that the relative ne
ighborhood graph and Delanuay triangulation are a su-

1 A,I. Adamatzky,
Biophysics Department, Sankt-Petersburg University, Universitetskaya
emb. 7 /9, Sankt-Petersburg 199164, Russia,
and GALAFOX, Sankt-Petersburg, Russia

persets of the MST. It leads to use of constructing MST
in computing relative neighborhood graph and Dealanuay
triangulation. Furthermore, constructing MST is a one of
the basic algorithms for the following problems: routing
[2], network synchronization, breadth-first-search, dead
lock resolution, leader selection, traveling salesman [3,4,5].
MST problem has an important application to designing
of the distributed networks in which the nodes represent
cities and the edges represent electrical power, water and
natural gas lines, roads etc.

Modern algorithms for MST problem use the ideas of
the pioneer work of Boruvka [6,7]. The majority of app
roaches to constructing MST are based on Kruskal’s al
gorithm [8], Prim-Dijkstra algorithm [9,10] and Sollin’s
algorithm [11]. The distributed algorithms for MST pro
blem are discussed in [12]. In the majority of distributed
algorithms it is assumed that a processor exists at each
node of the graph: it means that data are mapped on
to processor network by one-to-one correspondence. The
known algorithms for parallel constructing MST have ti
me complexity 0(n logn) and space complexity Q(n) [13,
14]. Huang’s algorithm [15] uses a one-dimensional systo
lic array of (n — 1) cells and it runs in 0(m + ti) time,
for computing MST of a given graph with n nodes and m
edges. Asynchronous implementation of parallel algorithm
leads to 9(n) time [5].

In section 2 we present an algorithm for constructing
MST by single neuron using growth of dendritic tree. Im
plementation of this algorithm in a cellular automata pro
cessor is discussed in Section 3.

2. Neuronal Constructing MST

Along the whole section we concern the subject of a
dendritic tree growth in single neuronal cell. The notion
of growth cones is widely used by us. Roughly speaking,
each growth cone (GC) is a bulb at the tip of neuron’s
sprout (branch) filled with all cellular organels except nuc
leus and which is able to motion similarly to amoeba. GC
communicates with neuronal soma by using macro mole
cular transport. These messages need in a great time, the-

N N W 6 /9 1 , 335-339 Adamatzky: Neural Algorithm

refore GCs are practically independent on their host neu
ron, i, e. host neuron fulfills some energetical support only.

At the beginning we’ll consider the MST problem from
the ontogenesis point of view. First of all, we point out
three main stages of neuron transformating that can be
distinguished in the differentiation of neural cells: me-
dulloblast —► neuroblast —+ neuron. Medulloblast is cha
racterized by ability to cell division whereas each neurob
last has neurofibrils, large nucleus and small volume of
cytoplasm (moreover, it can move); at last, neuron has
axon and dendritic tree shaped and electrical activity. We
mean that the transformation “neuroblast —+ neuron ba
ses on the process of axon and dendritic tree grows. The
following propositions, which are well known and someti
mes folklor among neuromorphologists, are basical to un
derstanding algorithm offred by us:

1. the GCs of dendritic tree moves towards afferent ter
minals,

2. in the beginning, synapses are formed on apical dend
rites and after that on proximal dendrites and soma,

each neuroblast (when it is transforming to neuron)
maked much more branches than it is needed; ” unne
cessary“ branches pull in soma (or in other branches)
when neuroblast ” matures“ ,

4. neurons obtain chemical labels at early stage of onto-
gu 'sis; these labels help GCs to find target-cells or
target-branches.

Let a neural tissue is cutted by plane P which is per
pendicular to n afferent fibers passing through this tissue.
Assume, a some neuroblast Af must transform itself to
neuron which obtains information from each of n afferent
fibers, i.e. Ar must form synaptic contacts with n axons by
dendritic tree growing. The principal limitation on grown
dendritic tree is a minimal summary length of all bran
ches. We can sure that neuroblast M finds solution of this
task without any problems.

Initially,Af crowls up to a site where density of afferent
fibers is greatest. And after that Ar begins the growth of
dendritic tree. Each GC of Af has the wide powers for
moving and branching out, i.e. GC chooses a direction of
movement and time when branching out itself only.

Now, show the process of spanning planar set S with n
points by dendritic tree in details. Let the following va
riables and constants are ascribed to each GC C: (1) 7 is
an upper degree of branching, i.e. output degree of node
from the graph-theoretic point of view, (2) p is a maximal
distance at which C can recognize point of a given set S,
(3) E is an ’’ energy“ of C, (4) 0 is a threshold of energy E
decreasing, (5) 8 is a small real, (6) x is a current position
of C at plane, x 6 RJ ■ J,p,8 and 0 are constant, but E
and x are variable. Note, that energy E of C is an anlog
of distance between C and host neuron Af (or neuroblast
for initial stages).

Each GC C at unit time step can fulfill one of the opera
tions: crowl up to next position x, generate not more than

7 new GCs (successors), detect point of S and crowl up
to its position, settle a conflict (when it occurs) between
C and other GCs for point of S. The energy E is decrea
sed at each time step of C motion as: E (°) = E0, E l1) =
E « " 1) - 1, E0 is enough great. Variable E is necessary
to count the length of path from current position of C to
host neuron Af along branch, i.e. E describes ’’ age“ of GC
because at each time step GC must move towards one of
the all possible directions (note, ’’ age“ is analogue of len
gth of branch from host neuron or branching point to GC
position). This quantity is used for resoluting conflicts.

Let, three GCs C1, C% and C3 have crowled up to a given
point p, and at moment of meeting, their energies are equal
to E1, E<2 and £ 3, such that E\ > £2 > £3 (see Fig.l,A).
Each of Ci, C% and C3 recognize the leader on energy, i.e.
cone Ci which energy is a maximum Ei = maxi<; <3 E)
and such GCs that are not leaders pull back in predecessor
or continue motion, but leader occupies position of point
p (see Fig,l,B).

T — 1

F ig.l * Resolution of conflict between C\, C2 and C3.

Show the typical situations in a tree growth (see Fig.2)
GC C has came to position of point p G S (see Fig.2,A)
Note, r = min{distip.q) : q € S'}. After that C generates
seven GC-successors which find the next points of S in a

336 Adamatzky: Neural Algorithm N N W 0 /9 1 , 335-339

some neighborhood of point p (see Fig.2,B). Let, some of
these GCs have found points of S and fixed themselves
at their positions, but other GCs continue searching until
energy of each GC Cj holds the condition \Ej — 6\ < 6 (see
Fig.2,C). After that they pull back in C (see Fig.2,D).

Each GC C stops any action in the case when all of
its GCs-successors pulled back in it. Neuron J\f stops the
growth of dendritic tree when all of its GCs have stoped
any actions.

As a results, we can design the following pascal-like pro
gram for a single GC. Note, D (x,p is a planar disc with
center x and radius p.

Fig.2 : Stages of spanning points P\,P2 ,P$ and P4 € S
by routes of GC C.

Program Growth- Cone; (^assume it is the program for single GC C*)
INPUT: S;
OUTPUT: MST (S);
const 6 = <5(3; p = pq\ 8 = 0O; (■*<<5q , pq, £>q are natural *
var xarray [1 . 2] of integer;

E.integer;
Bboolean,
C : set of integer;

Begin
E ;= Eo; B FALSE, ¡r : = x q ; C := 0; (*E q is enougth great natural*)
R e p e a t

Begin
E - E - 1;
Repeat x := next(x) Until x is not occupied by any branch;
Generate C ; (*C is a set of energy values of such GCs that visit to

occupy position choosen by GC C*)
If D (i',/5)p] 5 ^ 0 then
Begin
If C = 0 or m a x {£ ' £ C) < E then B:=TRUE

End
End;

Until B or \E - < b\
If B then
Begin
Occupy position x and stop growing;
Branch out (Generate at least 7 successors);

End
else Pull in predecessor

End

The result of computation is a dendritic tree which is
the MST of a given set S.

We do not compute the bounds of complexity for den
dritic tree growth because of a number of informal terms
(as ’’ motion“ , ’’ branching out“ , conflict” , “pull back” etc.)
used in our algorithm description. Complexity of neuronal
algorithm will be discussed in the next section using the
most certain notion of the local parallel computations.

3, Cellular Automata Implementation

This section presents the realization of dendritic tree
growth, spanning points of a given set, in the one class
of the massively-parallel computers, - cellular automata
processor. Cellular automata processor (CAP) has medial
position between massively-parallel computers with very
local (CLIP) and global (Connection Machine) interpro
cessors connections [16, 17].

The cellular automata (i.e. local massively parallel) al
gorithms had been used by us for solving such problems of
computational geometry as Voronoi diagram [16], relative
neighborhood graph, influence graph and Gabriel graph
[17] constructing.

N N W 0 /9 1 , 335-339 Adamatssky: Neural Algorithm

CAP is an integer grid which nodes are elementary pro
cessors having its own local memory of 0(1) size and cellu
lar automata structure of connections. All processors of
CAP are uniform and each processor performs the same
local algorithm and it has its own instruction counter, local
set of registers. Each processor of CAP can commu
nicate with k neighbor processors Pi-Rj~fi> • • • > Pi+Rj+R
such that R > 1, k = (2/2 + l)2. Set of these processors is
called a neighborhood of Pi: and it is wrote as Ufi(Pij).
Note, R is radius of neighborhood and k is a neighborhood
size.

We mean that CGs crowl up on an integer grid. This
discrete motion is simulated by CAP such that, when GC
is in cell (i , j) of grid, processor P,y is activated, hence, in
this case, CGs do not rove on plane for searching points of
5, but each of them jumps from one point of S to another.
The searching of points for branching out or jumping for
GC at cell (i , j) is performed by processor Pi: ■ Ascribe
to each processor Pij of CAP the following variables and
constants:

1. p, 0, 7 , <5 are as in GC definitions,

2. D is a length of path from an initial point (root) of
tree to a current point of S stored by a given processor
pi: > D is an analog of energy E ,

3. L is a list of coordinates (addresses) of processor Pij
neighbors containing the such points of S which are
the targets of ramifying (branching out),

4. LP is a list of coordinates of points contained in pro
cessors of L,

5. Lmst is a list of points neighboring with point belon
ging to P^ at MST(5),

6. Pm,t is a list of coordinates of processors containing
elements of Lmst,

7. A is a boolean variable.

Example. Let us assume P\j is a processor of
CAP which has neighborhood radius R = 1. Assu
me neighborhood of Pij is equal to U\ (Ptj) =
(Pi-1 j - l , Pij — li Pi+lj — h Pi—ljt Pi—l j + l) Pij + li
Pt + i j + i)- Let (P^) contains coordinate of point p\ € S
and processors P i j - 1, P ,+ ij_ i, G j+ i contain coordina
tes of points p2 , Psi P4 € S correspondingly, whereas pro
cessors Pi-] j - 1, Pi-1 j , Pi 4-1 j , P i-i j+ i , Pi+i j + i con
tain nothing. Then L = { { i , j - 1), (i 4- 1, j - 1), (i , j 4- 1)}
and LP = {p2,P3,P4}- Assume processor Pij had con
nected points in pairs (p i,p2) and (pi,p4) by edges of
MST, In that case we have Lmst = {p2,P4} and Pmst =
{ (¿ . j - !),(* ',J + 1)}*2_

So processor Pii with coordinates of p £ 5 acts as
follows. If boolean variable A is true, it means that Pij
is occupied by a virtual GC, then Pij scans clockwi
se neighborhood by increasing neighborhood radius r =
1 ,2 ,3 ,... and performs the operations. Adds to set L add
resses of processors in neighborhood, containing points of

5 , which are at distance not more than min{dist(p,q) + s :
q G LP}. Notes, that points contained in element of L are
added to set LP. After that Pij writes its own coordinates
(address) and coordinates of p in the sets Lmst and Pmst
of processors of L. Except this, Pij changes the value va
riable A from FALSE to TRUE for each processor of L,
i.e. processor Pi: activates processors of L.

The process of computation is finished globally when
there are no procceors of CAp with true variable A.

Let us assume that points of a given set S are distribu
ted in the processors of CAp in a natural order such that
the arbitrary points p and q, which are neighbors with
one another at plane, are contained in the neighboring
processors.

So processor P = Pij containing coordinates of point
p E S performs the following program.

Algorithm Cell
const 7 := 7 q; p := p; 6 = 6 q, e := e q , 8 := 0q , R ::
var A: Boolean,

a, r, DInteger; (* r is a neighborhood current radius*)
(* a is an auxiliary variable *)

L, LP, Lm s t , Pmst Set of integer,
Begin

L := 0, LP = 0,
If A then;
Begin r: = 0;
Repeat
Begin
r := r + 1 ; Scan neighborhood Ur(P{j),
If 3P E , 6 Ur (P) and p ! , j t g P,n)t and P ' ■, contains
coordinates of p1 £ 5 then Begin L L A {(¿L jU };
LP •- LP + { / } End;

End
Until r — R or |IP| = 7 ; (* R is superior limit to increasing r *)
Find such a £ LP that dist(p, a) = m in {d jjt (p ,j) : q 6 L P } ,
For each q £ LP do If dist(p, q) > a + e then LP \— LP — { 7};
For each (i , j) £ L do If 3q £ LP that Pjj contains coordinates of

q then else L := L —
For each (i* , j *) £ L do If D > D* then
LP := LP - L P n L P * ,L := L - Ln L* , Pmst - L , Lmst := LP,
Active processors which addresses are in L . (* analog of branching
out *)
A: = FALSE (* transition of Pjj to passive state *)

Begin
End

It is clear that if processor PtJ is not active (A =
FALSE) then it implements empty sequence of opera
tions.

Before discussing complexity of constructing MST, show
extreme structure of data. Let n points of S belong to the
only straight line and MST begins to growth from a tip
point (see Fig. 3, left). This is the worst case and CAP
needs in n — 1 steps (see Fig. 3, right).

* 2 3 4 N-I N 1 2 3 4 N-l N• • * • • . ■ • • * ♦ 1 —♦* • • • - > *

Fig.3 : Extreme case of data structure.

This case of data structure shows that upper bound of
time complexity of constructing MST in CAP is eqn 1 to

338 Adamatsiky: Neural Algorithm N N W 0 /9 1 , 33S-339

0(n). But it is not the most precision bound. We unders
tand that computation in CAP is finished when each pro
cessor of CAP has A = FALSE. It leads to time comple
xity 0(/i), where h is the maximal number of given points
forming single sprout of MST, i.e. time complexity of con
structing MST is bounded by time needed for growth of
longest branch of MST.

Theorem . Minimum spanning tree of a planar set with
n points is computed in cellular automata processor of
size 0(n) in 0(/t) time by the algorithm of a dendritic tree
growth, when h is a maximal number of vertices in single
sproute of tree. 2

We can give concrete example concerning application of
our algorithm to practice. It is the constructing MST of a
multi-pin net in wire routing design [20]. The algorithm
shown was included into the system for serial-parallel
routing SPROUTE based on parallel co-processor L51V
(Scientific Research Corp. GALAFOX, Sankt-Petersburg)
(see also [18, 19, 20]).

Acknowledgm ent. The author would like to thank the
referees for their careful reading of my paper and valuable
suggestions.

References

[1] Toussaint, G .T. The relative neighborhood graph of a finite planar
set. Pattern Recogn Vol.12, 261-268, 1980

[2] G ilbert, E.N. A solvable routing problem Networks Vol 19, 587-594,
1989.

[3] Held, M and Karp, R. The traveling salesman problem and mini
mum spanning trees Part II Math Program Vol.1, 6-26, 1970.

[4] Awerbuch, B. Complexity of network synchronization J ACM
Vol 32, 804-823, 1985

[5] Awerbuch, B. Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election and related problems, in
Proc. 19th Annual ACM Symposium on Theory of Computing,
ACM, NY, 230-240, 1987.

[6] Borůvka, O. Příspěvek k řešení otázky ekonomické stavby elektro-
vodních sítí. Eletotechnický obzor, 15, 153-154, 1926.

[7] Graham, R.L. and Hell, P. On the history o f the minimum spanning
tree problem Ann. Hist. Comput. Vol.7, 43-57, 1985.

[8] Kruskal, J.B. On the shortest subtree of a graph and the traveling
salesman problem. Proc. Amer, Math , Sec 7, 48-50, 1956.

[9] Prim, R.C, Shortest connection networks and some generalizations.
Bell Syst. Tech.J. Vol.30, 1389-1401, 1957.

[10] Dijkstra, E A A note on two problems in connexion with graphs.
Namer. Math Vol 1 , 269-271, 1959.

[11] Goodman, S.E. and Hedetniemi, S.T (Eds.) Introduction to the
Design and Analysis of Algorithms. McGrow-Hili, NY, 1977.

[12] Quinn, M.J. and Deo, N. Parallel graph algorithms. Comput.
Surveys. Vol.16, 3190340, 1984.

[13] Chin, F. and Ting, H F. Improving the time complexity o f message-
optimal distributed algorithms for minimum-weight spanning trees.
SIAM J. Comput., Vol.39, 612-626, 1990.

[14] Gallager, R.G., Humblet, P.A., and Spira, P.M. A distributed
algorithm for minimum weight spanning trees. ACM Trans Pro
gramming Languages and Syst. Vol 5, 66-77, 1983.

[15] Huang, S.T. A fully pipelined minimum-spanning tree constructor,
J. Parall. Distrib. Computing Vol 9, 55-62, 1990.

[16] Adamatzky, A I Local parallel algorithm for constructing Voro-
noi diagram. Elektronnoe Modelirovanie (Kiev), V ol.l, 1992. (In
Russian).

[17] Adamatzky, A.I Local parallel constructing graphs o f a finite pla
nar set. Elektronnoe Modelirovanie (Kiev), 1992 (to appear. In
Russian).

[18] Ivanov, S.F. Cellular Automata Processor, GALAFOX Report, 7,
1990.

[ie] Bronnikov, V.A., Ivanov, S.F., Adamtzky, A.I., Solovyov, M.V
Assively-parallel computer LOGON Project, GALAFOX, Lening
rad, 1989 (in Russian).

[20] Adamatzky, A.I. and Ivanov, S.F. Algorithms for parallel routing.
XIII All-Union Workshop on Homogenous Computing Media and
Systolic Structures, L'vov. October 1991.

Interesting and Coming Events

In this section of our Journal the information on some
interesting and coming conferences, symposiums and se
minaries are given;

D E C E M B E R 1991

1991 IEEE W orkshop on Speech Recognition,
D ec.15-18, 1991, Harriman, NY. Contact; Jay G.Wilpon
(201)582-3559.

W orld Congress on Expert Systems, D ec.16-19,
1991, Orlando, Fla. Cosponsors: Int’l Assoc, of Knowled

ge Engineers et al. Contact World Congress on Expert
Systems, c /o Congress Secretariat, Congress (USA), Inc.,
7315 Wisconsin Ave., Suite 404E, Bethesda, MD 20814,
phone (301)469-3355, fax (301)469-3360.

8th Israeli Conference on Artificial Intelligence
and Com puter Vision, D ec.30-31, 1991, Tel-Aviv,
Israel. Contact: H.Wolfson, 8th IAICV, School of Mathe
matical Sciences, Tel-Aviv University, Tel-Aviv 69978. Is
rael.

JA N U A R Y 1992

25th Annual Hawaii International Conference on
System Sciences (HICSS - 25), Jan. 7-10, 1992.

N N W 0 /9 1 , 335-339 Adamatzky! Neural Algorithm

Kauai, Hawaii. Contact: Dr, Bhushan Saxena, Depart
ment of Computing, Hong Kong Polytechnic, Hung Horn,
Kowloon, Hong Kong, e-mail: cssaxena @ hkpcc.hkp.hk

Second In t’l Sym posium on A I and M athem a
tics, Jan ,5-8,1992. Fort Lauderdale, Fla. Contact: L-
L.Lassez, IBM T J.Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598, fax(914)784-6307, e-mail:
j 11@ w atson. i bm. com.

F E B R U A R Y 1992

Singapore International Conference on Intelligent
C ontrol and Instrum entation, Feb.18-21, 1992. Sin
gapore. Contact: C.C.IIang, Technical Programme Chair,
SICICI 92, IEEE Singapore Section, 200 Jalan Sultan,
11-03 Textile Centre, Singapore 0719, e-mail: fengh-
cc@nus3090.bitnet.

M A R C H 1992

IEEE Int, Conf. on Fuzzy Systems, M arch 8-12,
1992. San Diego, CA. Contact FUZZ-IEE’92, Meeting
Management, 5665 Oberlin Drive, Suite 110, San Diego,
CA 92121, phone (619)453 6222, fax (619)535 3880.

1992 IEEE International W orkshop on Intelligent
Signal Processing and Com m unication Systems,
M arch 19-20, 1992. International Convention Center,
Taipei, Taiwan, ROC. Information: Dr. Naohisa Ohta,
NTT Transmission Systems Labs, 1-2356, Take Yokosuka-
shi 238-03 Japan, phone +81 — 468 - 59 — 2072, fax
+81 — 468 — 59 — 3014, e-mail: naohisa@nttsd.ntt.jp.

1992 Inti, C onference on A coustics, Speech, and
Signal Processing, M arch 23-26, 1992. San Francisco
Marriott. Paper Proposals due August 2, 1991. Informa
tion: Sally Wood, EECS Dept, Santa Clara Univ., Santa
Clara CA 95053.408/554-4058, swood@scu.bitnet.

A P R IL 1992

International Conference on Inform ation - D eci
sion - A ction Systems in C om plex Organisations-
ID A S C O ’92, A pril 6- 8, 1992. Zoology Department
University of Oxford, UK. Contact Miss Jane Chopping
Conference Organiser IEE Conference Services, Savoy Pla
ce, London WC2R0BL, phone (071)240 1871, fax (071)497
3633.

IC C L 92, In t’ l Conf. on C om puter Languages, A p
ril 20-23, 1992, San Francisco. Sponsor: IEEE Compu
ter Soc. Technical Commiteee on Computer Languages.
Contact: Mario Barbacci, Software Eng. Inst., Carnegie
Mellon Univ,, Pittsburgh, PA 15213, phone (412)268-7704,
fax (412)268-5758.

M A Y 1992

IEEE Infocom 9 2 ,11th Conf. on C om puter Com m .
M ay 4-8, 1992,Florence, Italy. Contact L.Fratta, Poli
técnico di Milano, c /o Cefriel, Via Emanueli, 15, 20126
Milano, Italy, phone 39(2)2399-3578, fax 39(2)2399-3587,
e-mail: fratta@imicefr.bitnet.

IEEE International Sym posium on Circuits and
Systems - IS C A S ’92, M ay 10-13, 1992, Sheraton
Harbor Island Hotel, San Diego, California; Contact: Dr.
Stanley A.White,433 Avenida Cordoba, San Clemente,
CA 92 672, phone (001 714) 498 5519

A I 92: Canadian Artificial Intelligence Conferen
ce, M ay 11-15, 1992, Vancouver, Canada. Contact:
Fred Popowich, School of Computing Science, Si mor Fra
ser University, Burnaby, B.C. V5A 1S6, Canada.

E C C V -92: Second European Conference on C om
puter Vision, May 18-23, 1992, Santa Margherita Fi
gure, Italy, Information: P.Ponte, ECCV-92 Secretariat,
Consorzio Genova Ricerche, Via dellAcciaio 139, 16152 ge~
nova, Italy, phone +39 10 651-4000, fax +39 10 603-801.

S E P T E M B E R 1992

IEEE International W orkshop on R ob ot and Hu
man Com m unications, Septem ber 1-3, 1992, Ho-
sei University, Tokyo, Japan; Contact: Prof. Hisato Ko-
bayashi, Dept, of Electrical Engineering, Hosei University,
Kajinocho, Koganei, Japan, phone (0081) 423 87 6187, fax
(0081) 423 87 6122.

O C T O B E R 1992

1992 R N N S /IE E E Sym posium on N euroinform a
tics and N eurocom puting, O ctober 7-10, 1992, Ros
tov on Don, USSR; Contact: Prof.W.Dunin-Barkowski,
Symposium Chairman, Research Institute of Neurocyber
netics, 344104 Rostov on Don, pr-t Stachki 194/1, phone
(095) 8632280588; Phone/Fax (Moscow): (095) 3660394.
Authors outside USSR should submit papers to Prof. W.E.
Snyder, Department of Radiology, Bowman Gray School
of Medicine, Winston-Salem, NC27157-1022 USA.

JA N U A R Y 1993

IEEE International Sym posium on Inform ation
Theory, January 10-15, 1993, San Antonio, Texas,
Contact: Mr. Costas N. Georghiades, Texas A& M Uni
versity, Department of Electrical Engineering, College Sta
tion, TX 77843-3128, phone (001 409) 845 7408.

Coming Eventa N N W 6 /9 1 , 340

mailto:naohisa@nttsd.ntt.jp

G R A V ID AL
(A G R A P H IC A L V IS U A L IZ A T IO N T O O L F O R

T R A N S P U T E R N E T W O R K S)

0. Vornberger, K. Zeppenfeld1

A bstract; Large distributed algorithms are hard to
design and to implement. One difficulty is the potential
complexity of the interactions among the large number of
parallel processes. One way to help these problems as small
as possible is visualization of the dynamic behavior of such
distributed algorithms. This article describes GRAVIDAL,
a graphical visualization environment for occam programs
running on arbitrary transputer networks. It provides ani
mated user defined views of algorithms during their run
time. The user has only to place some macro calls in his
source code and GRAVIDAL then generates a visualized
version of his algorithm. Therefore, a modular and spe
cially adapted visualization for any distributed algorithm
can be easily achieved. Time measurements show that the
overhead for the animated version is in an acceptable ran
ge. Besides visualization and debugging, GRAVIDAL can
be used to improve teaching and learning of the science of
distributed algorithms.

Key words: parallel processes, distibuied algorithms, vi
sualization environment, occam programs, transputer net
works

Received: July 15, 1991
Revised and accepted: December 9, 1991

1. Introduction
Graphical animation or visualization is an invaluab

le help in understanding the dynamic behaviour of al
gorithms. Especially for distributed algorithms graphical
visualization is necessary, because during the execution of
several processes in parallel the user loses the overall view
of the activities in his network. To obtain this survey in
large transputer networks extremely difficult routing or
multiplexing techniques for every network and application
have to be implemented because only one processor, the
host processor, is connected to the keyboard while screen
while the network processors have no direct connections
to these resources.

* Oliver Vornberger, Klaus Zeppenfeld
Department of Mathematics and Computer Science, University
o f Osnabrück, Albrechtstr.2S, D-45Ö0 Osnabrück, Germany
E-mail: Klaus <0 dosuni.uvcp

Another important advantage of the graphical visuali
zation, especially for new users, is the reduction of the
difficulties involved in understanding the complex beha
viour of distributed systems and parallel algorithms. With
a graphical visualization environment they get a simple in
troduction to these topics.

For this reason our objectives was to develop a software
environment for distributed algorithms running on arbit
rary transputer networks (see [3], [4]). It should provide
animated user-defined views into distributed algorithms
during their runtime. And so, the herefore unfulfilled wish
of transputer and occam users to look into their networ
ks becomes reality, and by simple means. Combined with
this ability to look, we achieve a monitor facility which
can be very helpful during the design phase of distribu
ted algorithms. The development of a modular and easy
to use graphical visualization environment for distributed
algorithms, named GRAVIDAL (Graphical Visualization
of Distributed Algorithms) is described in the following
sections.

Section 2 gives a general view of the basic concepts of
GRAVIDAL. The transformation from a normal occam
program into an animated one is shown in Section 3. Se
ction 4 presents some of the modular features supported
by GRAVIDAL. Graphical outputs, examples and over
head measurement are the topics of Section 5. Finally, our
conclusions are presented in Section 6.

2. Basic concepts

There are a lot of existing systems which show the beha
viour of sequential algorithms with graphical output. They
can be divided into two main categories. On one side there
are the so called on-line systems, which show information
about the program during runtime. The others, let’s call
them off-line systems, only collect and store the data of
the program during the runtime. After the program has fi
nished they show the information on the screen. The BAL
SA system from. M.H. Brown [2], for example, is a typical
member of the first category. The MOVIE-STILLS system
from Bentley and Kernighan [1] and GRAIL (Graphical re
presentation of activity, interconnection and loading) from
Stepney [7] represent the second group of systems.

N N W 6 /9 1 , 341-348 Vornberger, Zeppenfeld: Visualization for Transputer Networks

Another criterion for graphical visualization systems is
the style of algorithm behaviour graphical output and the
selection of data which must be drawn. One important
example of these different types in the literature is the
graphical visualization of sequential sorting algorithms.
They are animated only with vertical bars, which show
the user the point of the array where the numbers which
have to be sorted are found. The user has no chance during
the whole animation to change the representation. Also,
the user only sees the sorted data and no other details of
the algorithm. If it does not work propertly, for example
a variable violates array boundaries, it is very useful to
have an additional look at the values of certain variab
les. During the design phase of the algorithms these views
could have a great influence on error detection. However,
we have to mention that these views can not replace a
debugger that not only looks at variables but also allows
their manipulation.

The discussion shows that the graphical visualization of
sequential algorithms already has a number of possibili
ties to show the behaviour of the algorithms. These po
ssibilities are more complicated for distributed algorithms
which run in parallel. From the above-mentioned ideas and
from the experience with distributed algorithms written in
occam on transputer networks, which we have accumula
ted over the years, we decided to develop a graphical visua
lization environment that meets our demands, and those
of our students. The GRAVIDAL environment combines
some of the above-mentioned facilities.

GRAVIDAL is an on-line system that represents the
behaviour of distributed algorithms during their execution
phase. The specification of the data to be represented, is
done in a similar manner as in the MOVIE-STILLS sy
stem. In this system the user can specify certain views
of his program by placing some statements into his sour
ce code. During the execution phase of his program these
statements produce special outcode, which must be compi

led after the program has halted, to produce the so called
script file. With the help of the script file the user-defined
views of the program are animated.

We also used the idea of user-defined views because the
user knows exactly which parts of his program are impor
tant and should be animated on the screen. But we have
some important differences in contrast to the sequential
idea of Bentley and Kernighan. GRAVIDAL visualizes the
user programs during their execution. The graphical out
put task on the screen and the event collection task in the
network are strictly separated. The advantage of this se
paration is the large modularity of GRAVIDAL, because
these tasks can be enlarged or reduced as the user wants.
Additionally, they can be modified or changed to run on
other parallel computers or graphic screens.

The user has a choice between several macro calls,
hidden in libraries, which can be placed in his program
source. During the runtime of the distributed algorithm,
GRAVIDAL routes the data to the screen. To get infor
mation from inside the net the user normally has to imple
ment routing and monitoring techniques by himself. This
work done from now on by GRAVIDAL and this is another
advantage of the system.

At the moment, GRAVIDAL runs on the hardware
configuration shown in Figure 1. The transputer network
contains up to 32 T800 processors. The host transputer is
placed on a VMTM-board (VME-Multi Transputer Modu
le) from Parsytec. The connections are made via the VME-
bus. Data can be sent in two directions between the host
transputer and the Sun, which runs under UNIX. The in
coming data on the Sun are displayed with the well known
SunView graphics environment, running under Sun-tools.
Unfortunately SunView is not device-independent. There
fore, the graphical output can be shown only on the screen
of the Sun which is connected to the host. But we are wor
king on a graphical output environment, which uses the
device-independent facilities of the X-Window system.

Arbitrary transputer network VMTM-Board

L
Event collection

Sun 3/260

J L
Graphical output

F ig .l: Hardware configuration for GRAVIDAL

Vornberger, Zeppenfeldi Visualization for Transputer Networks N N W 8 /9 1 , 341-348

Fig.2: Typical GRAVIDAL output

A typical output of GRAVIDAL can be seen in Figure
2. It shows the network topology as a graph, the CPU-
load of some processors and some user-defined traces of
variables.

3. How to get a Visualized Algorithm

In this section we describe the steps that convert a dis
tributed algorithm, written in occam, into an animated
one.

• First, the user writes his distributed occam program
as usual.

• Second, he adds some macro calls (for example
CPU_Load, LINK_Load, VAR.Out, etc.) into his sou
rce code.

• Compilations of the EXE and PROGRAM folds are
done as usual.

• The CONFIG INFO fold, in which the WIRING
DIAGRAM and the BOOT PATH information are
hidden is created.

• At the end, GRAVIDAL converts this program into a
new source code in which the user-defined outputs are
automatically routed to the host transputer and then
sent to the Sun workstation, on which the outputs are
drawn.

The last step is very complex and is explained in detail
in the next subsections.

3.1 Scanning

The original program, with the embedded macro calls, is
first scanned from GRAVIDAL to put some technical help
macros and statements into the source code. In addition,
a so-called supervisor process is built around the old user
process to observe the in going and outgoing messages.
These modifications are necessary to relieve the user of

N N W 6 /9 1 , 341-348 Vornberger, Zeppenfelds Visualization for Transputer Networks

some technical details of the macros and of the supervisor
process. He only sees the user-friendly calls of the macros
and has, for example, only to add the call “VAR_OUT(x)”
into his source code to get the value of variable a? on a
network processor. Also the whole supervisor technique is
invisible to the user and is added automatically by the
scanner.

3.2. B oot path and W iring Diagram Inform ation

After changing the user program the information from
the WIRING DIAGRAM fold and the BOOT PATH fold
are scanned from GRAVIDAL.

From the WIRING DIAGRAM fold GRAVIDAL gets
information about the topology of the user network. With
this information, the network topology is automatically
drawn on the screen. If the user does not accept this re
presentation he can draw a new one, save the coordinates
of this layout and load this file instead of the GRAVIDAL
representation. The BOOT PATH fold contains informa
tion about the boot path from the host processor to each of
the net work processors in the from of a minimum spanning
tree. So, for every network processor GRAVIDAL knows
the shortest way to the host processor.

With this information, GRAVIDAL can run on any ar
bitrary transputer network.

3.3. The Supervisor Process

The original user process, which runs on one processor,
and has up to four links, is embedded into a so-called
supervisor process that simulates the behaviour of the old
user node and, in addition, multiplexes user messages with
event messages that were generated by the macro calls.
These event messages have to be routed through the ne
twork to the host transputer. To make a clear decision
between the event messages and the normal user messages
the supervisor process creates new message headers so that
the other processor in the network know exactly where a
message must be sent to. An overview of the supervisor
node is given in Figure 3.

The user application is the old program, written by
user. GRAVIDAL reads information about the ingoing and
outgoing links of the user application from its wiring diag
ram and the PROC definition. Then, it creates at least
one, and up to four, switch-in and mux-out processes. If
necessary, the switchJn processes are connected to two
buffer processes in which messages are stored. If no messa
ge is sent to the swith-in processes they are descheduled.
If a message does arrive it is sent via the buffer process to
the util or user application process, according to its messa
ge type. All user messages are sent to the user application
process and all event messages to the util process.

Fig.3: Supervisor process

Vornberger, Zeppenfeldj Visualization for Transputer Networks N N W 0 /9 1 , 341-348

This process then routes the event messages via the
mux-out processes to the host. The user application pro
cess is responsible for its own user messages. Event messa
ges which are created by the user application process are
sent to the util process. To have a relation between the
macro calls and the output windows on the screen, the
macro calls inside the user application process genera
te special message headers, so that the graphic program
on the Sun knows exactly which value is to be drawn in
which window. All added processes {switch-in, buffer, util,
mux-out) are active only if they send or receive a messa
ge. Otherwise, they are descheduled and do not waste pro
cessor time.

After the user application process has terminated, an
end message is created and sent from every transputer to
the host transputer. The host then sends an end message
to all network processors, and on receipt of this message
the network processes terminate. If some user processes are
deadlocked, the corresponding user application processes
from GRAVIDAL are deadlocked too, but graphical out
put from non-deadloc.ked transputer are routed through
the network and displayed on the screen. So, GRAVIDAL
has no influence on the termination of the original al
gorithm, but with the help of the graphical output we
achieve a monitor facility which shows deadlocked pro
cessors on the screen.

3.4. Ordering of Events

To get the chronological order of the user defined events
in the distributed system we have implemented a time
stamp algorithm according [6], which simulates a logical
global clock.

In every processor, there is a logical clock which assigns
numbers to event, the number being the time at which the
event occured. The logical clocks are initialized at the be
ginning of the animation. The definition that an event on
processor X happens before an event on processor Y can
be done if the processors communicate with each other.
Otherwise these events are considered to be concurrent.
If communication takes place, the time stamps which are
included in each message can be compared and possibly
adjusted. From these time stamps it can be whether an
event A on processor X occurs before an event B on pro
cessor y .

Every event message gets an additional time stamp. On
the Sun workstation, GRAVIDAL then reorders, if ne
cessary, these time stamps to obtain a consistent order
of the events in the system.

The functions mentioned in subsections 3.1. - 3.4. are
performed automatically by GRAVIDAL. So, the user gets
new EXE and PROGRAM folds which run after compila
tion with the user-defined graphical views of his algorithm.

4. Macros

Some selected macros which the user can place into his
source code are now explained in detail.

4.1. VAR.OUT(x)

One of the important and most-used macros is the
VAR„OUT(;z) macro. As its name suggests, this macro
outputs the value of the variable x. It is possible that
the name of the variable x exists in several processes, but
GRAVIDAL automatically scans the scope of the variab
le which should be traced. The user is responsible for the
names of the variables in one processor.

VAR_OUT(i*) is macro which should be called out of
a SEQ statement. Macro calls which output values from
PAR and ALT statements are also available.

4.2. CPUTOAD

To achieve high performance in the network many distri
buted algorithms use load balancing techniques. In other
words, with the help of heuristics, they try to dynami
cally distribute subtasks to idle processors. GRAVIDAL
supports a software implementation of a cpu-load monitor
which measures the cpu-load of a processor by measuring
the idle times. The code of the measurement consists of a
cpusupervisor process which must be run, at low priority,
in parallel with the code of the program being measured.

The cpu-supervisor process counts how often it finds
the processor idle, and returns a value representing the
percentage utilization of the processor. It works command
driven, which means that the information of which point
the measurement should be taken comes over a command
channel, connecting the cpusupervisor process with the
program being measured.

The cpusupervisor process works by counting the num
ber of times it finds no processes in the low priority process
queue of the transputer. When it is executed, it makes a
note of the timer and deschedules itself, placing itself at
the back of the ready queue. The next time the process
comes to the head of the queue and is executed, it com
pares the present time with the last noted time. If the
difference is sufficiently small, we can assume that only
the cpusupervisor process is in the ready queue and the
processor is therefore idle. So the cpusupervisor process
is only active if the original program has nothing to do,
eg. because the processes are waiting for communication.

Our measurements show that a program which runs in
parallel to the cpusupervisor process has an average run
time overhead of only 1% . However, there are some more
tricks in the implementation of the CPIJ-LOAD macro
which could not be shown here. A detailed description of
its implementation can be found in [5].

4.3. LINK „LOAD

To monitor the traffic along the communication chan
nels GRAVIDALsupports a LINK-LOAD macro. This
macro counts the bits and bytes which are transferred
between two processors via the hardware links and compa
res them with the maximum link transfer rate which goes
from 5 Mbits/sec up to 20 Mbits/sec for the T800 trans-

N N W 6 /9 1 , 341-348 Vornborger, Zeppenfeld: Visualization for Transputer Networks

puter. These transferrates can be achieved under op
timal hardware circumstances, but measurements in
performance-maximized occam programs show that these
hardware transferrates can not be achieved with normal
user programs. So, the LINK-LOAD macro, which returns
a percentage utilization of the link-load, is not as accurate
as the CPUXOAD macro.

The link transfer, say of an integer variable, works as
follows. After division into four bytes, these bytes are sent,
in addition to a start-, a data- and an end-bit, from pro
cessor A" to processor Y . These eleven bits, resulting from
one byte, are always acknowledged by two bits, which are
sent from processor V' to processor A'. The LINK-LOAD
macro takes this data-transfer technique into account, and
returns a percentage utilization of the link-load.

5.0. Graphical outputs, Examples and
Time Measurement

One of the important application fields of GRAVIDAL
is analysis of the performance of distributed algorithms.
Many of these algorithms use load balancing techniques,
i.e. with the help of heuristics they try to dynamically
distribute subtasks to idle processors. For example, distri
buted algorithms from the field of operations research use
distributed heap management techniques. With GRAVI
DAL, the heap weights can be shown graphically during
the whole network computation and therefore, anomalies
in the distributed heap management can be detected very
easily.

Figures 2, 4 and 5 show some GRAVIDAL layouts. They
are snapshots of the rutime phase of a distributed Branch-

tauno

EiK [Retd Data] [Stop Data] [wiring Diagram] [Link Load S ta tistica l | Quit |

---------- — «■fc—f " — “ | ^

[dose]

*
■stack!

E

fromstac
0 , 9) PP:5 2863 3968

2096 3261

1329 2555

(4 ,9) ...P I

4382

378 4388

beeteol
(6,9) P

Fig.4: CPU-load output

Vornberger, Zeppenfeldi Visualization for Transputer Networks N N W 6 /9 1 , 341 -348

nuñotonT
Iflpggggm _ __
I [Read Data) [stop Data) [V1r1

♦ ♦ v : li-'A'vT r>AI ..I.:1
mmm m

Diagram] [Link Load S tatist ics) fQuit]

17
tos 1
(2 ,6) P: 6

900

490

100

50

26

-33 100

mmMmmmmmmmmmmmmmmni

50 -

l IriK . OÍD :,1 M I37 1

1680

-840

[Close]

JL1nk 0 (Bytes received)

sendtpl
(4 ,6) P:6

-12

recelvetp
(5 ,6) P; 6

-45

-22

7771

3B05

5551

-2775

106

□roc# #1 terns m1n max total mean
0 4 132 656 1.44809+03 3 .6200e+02
1 4 0 4408 6.91209+03 1.72809+03
2 4 0 4540 7.57209+03 1,09308+03
3 3 1448 2640 6.59609+03 2.19978+03

■: 4 2 524 528 1.05209+03 5.26008+02
■ 5 4 1056 1452 4.00009+03 1.22009+03
• 6 4 528 2112 4.3520a+03 1.08909+03

7 3 788 1328 3.29609+03 1.09B7e+03
i 8 4 396 1056 2.90009+03 7.25009+02

9 3 660 792 2.24009+03 7.4667e+02
18 2 528 656 1.1840B+03 5.92008+02

1 11 3 524 924 2.24009+03 7.4667e+02
S 12 4 0 792 1.58009+03 3.95009+02
?: 13 4 0 524 1.05209+03 2.63009+02

14 4 132 788 1.71209+03 4.28006+02
15 3 0 1198 1.97608+03 6.5867e+02
16 3 0 788 1.44809+03 4.8267e+02
17 3 132 920 1.71209+03 5 .7867e+02
18 3 132 524 9.20009+02 3.0667e+02
19 4 264 7B8 2.10809+03 5.27006+02
20 2 524 660 1.18409+03 5.92009+02

§ 21 2 132 708 9.2000a+02 4.6000S+02
22 3 132 788 1,05209+03 3.50679+02
23 2 396 524 9.20009+02 4.60009+02
24 2 264 788 1.05209+03 5 .2600e+02
25 3 132 524 1.05209+03 3.50679+02
26 3 264 396 1.05209+03 3.50676+02

■ 27 3 132 650 1.31609+03 4 .3867e+02
28 4 0 528 1.31609+03 3.2900e+02
29 2 656 6B0 1.31609+03 6.5800e+02
30 2 660 7B8 1.44809+03 7,2400e+02

| 31 2 656 660 1.31609+03 6.50006+02
Í; Link 1 (Bytes received)
t proc# #items m1n max total mean

Fig-5 : Traced variables

&-Bound algorithm, which calculates the NP-complete “m
processor scheduling” problem.

In Figure 2, a typical GRAVIDAL layout is shown.
Behind a little part of the network topology one can see
a lot of parameters in which the user defined views of the
values of certain variables are visualized. In every para
meter the names of the variable and the processor num
ber are shown. The boundaries of a single parameter are
self-adjustable so that the closest boundaries are always
shown. Additionally, the user can modify the names, the
placements, and the boundaries of parameters during the
runtime of his algorithm.

Figure 4 shows the complete 32 transputer network
which was used for the testruns. The layout of this ne
twork is automatically drawn by GRAVIDAL after re
ading the BOOT-PATH and WlRlNG-DIAGRAM-fold.
The different gray tones of the processor icons of the ne
twork topology show the CPU-load of each processor. A
white icon indicates 0% GPU-utilization and a black icon

shows 100% CPU-utilization, With this graphical visuali
zation, the user can identify the cold spots or hot spots in
his network and he gets an impression how good or bad
his load balancing strategy is.

To see the LINK-LOAD statistics, the user has a choice
between a representation as large number columns or as
a perfmeter (see Figure 5). But here it can be seen that
visualization as a perfmeter is much easier to recognize
grasp than large number columns.

GRAVIDAL offers many another graphical features
which canot be shown in detail here.

To see what price must be paied for a visualized dis
tributed algorithm both GRAVIDAL, we evaluated the
run time difference between some user programs and their
animated counterparts and call this the overhead of the
graphical visualization.

GRAVIDAL is a software environment and therefore it
is clear that if the number graphic and user messages in
creases, the overhead increases too. Therefore, the graphi-

N N W 0 /9 1 , 341-348 Vornberger, Zeppenfelds Visualization for Transputer Networks 347

cal visualization overhead is user-dependent. If the user
wants to see, for example, the values of all variables in his
network, then he has to t.»ke into consideration that the
runtime of his distributed algorithm increases dramatical
ly.

Our measurements show that for the above-mentioned
example and for a lot of other testruns that the overhead
lies between 10% - 15% if the macro calls produce less than
2KBytes/sec of graphical information. If more than 2KBy-
tes/sec information is produced, the overhead increases
accordingly. But the measurements show that Figures 2,
4 and 5 are produced with less than 2KBytes/sec. Addi
tionally it can be seen that the user loses control over
the things which are visualized if the graphical messages
produce more than 2KBytes/sec information. If the user
wants only to see the CPU-Load and some values of cer
tain variables, the overhead is extremely low.

Normally, the user has to implement his own routing
and monitoring algorithms to know the behaviour of his
network. Therefore, he spends his own time and a lot of
processor time too. So the everhead measurement has to
be seen in relation to these times.

6.0, Conclusions

GRAVIDAL represents a new concept in graphical vi
sualization of distributed algorithms.

The system architecture of GRAVIDAL is modular so
that the user can build his own visualization for every
application from a wide range of possibilities.

The time measurement of the overhead is in an accep
table range, if we take into consideration that for a “home

made” output the user would have to implement all these
features by himself.

Therefore, with GRAVIDAL the user has an easy-to-
use software tool for the analysis and the design of his
distributed algorithms.

Acknowledgments. Our student Thorsten Telljohann
did an excellent job in programming GRAVIDAL.

References

[1] Bentley, J.L., Kernighan B W : A system for Algorithm Animation,
Tutorial and User Manual, AT &c T Bell Laboratories Computing
Science Technical Report No 132, 1987.

[2] Brown M.H.: Algorithm Animation, ACM distinguished dissertation
1988, The MIT Press.

[3] Nurns A: Programming in Occam 2, Addison-Wesley, 1988.

[4] INMOS Limited, Transputer Development System, Prentice Hall,
1988

[5] Jones G with contributions of Rabagliati A., Zeppenfeld K. and
Goldsmith M,: Measuring the Business of a Transputer, Occam
User Group newsletter N o.12, Jan.1990 , 57-64.

[fl] Lamport, L.: Time, clocks, and the ordering of events in a distribu
ted system, CACM Vol.21, No.7, 558-565, July 1978.

[7] Stepney, S ; GRAIL: Graphical Representation of Activity, Inter
connection and Loading, Processings of the 7th OUG Meeting,
Sep.1987.

Vornberger, Zeppenfelds Visualization for Transputer Networks N N W 6/91 VI 1 348

P A T T E R N C L A S S IF IE R , A N A L T E R N A T IV E
M E T H O D O F U N S U P E R V IS E D L E A R N IN G

A.E, Gunhan 1

Abstract: This model arid its learning algorithm is
based on the neurophysiological activity of real neurons.
Natural Neural Networks have an extremely powerful
self-organizing property. In the present model, this self
organization property emerges not only as a consequence
of mutual inhibition of neurons, but also as a result of a
very simple and plausible learning principle governing the
individual neurons.

Key words: learning algorithm, real neurons, self-
organization.

Received: September 1991
Revised and accepted: December 9, 1991

1. Architecture of the Network

The network is composed of two feed forward layers. 64
input units, a hidden layer with 64 hidden units and an
output layer with 8 units (see Fig.l). The layers are fully
interconnected to the next layer. The output and hidden
layers have internal lateral inhibitions. We may consider
the network as a combination of two different single layer
networks.

1.1. Features o f the network

The first part that is between input units and hidden
layer accepts input patterns one at a time. In other
words, when we present the first pattern to this part, only
this part of the network will be trained until we obtain in
ternal representations in the hidden unit for this pattern.
Before we can present the second pattern this part of the
network will be initialized. After we have obtained an in
ternal representation for the first pattern in the hidden
layer, this representation is presented to the second part
of the network as an input for final classification of the
pattern.

The second part of the network can be considered as
another single layer network between the hidden layer and
output layer. The function of this second network differs

1 Atilla E. Gunhan
Department of Information Science, University of Bergen, Hightechno-
logy center, N-5020 Bergen, Norway

from the first part of the network in terms of the way of
training. This part, accepts the internal representation as
input and the layer is trained untill the pattern is classi
fied, The next internal representation, which is the result
of the second pattern that is presented in the first part,
will also be accepted as second input pattern to the second
part of the network without any initialization. In this way,
the second part of the network is capable of training and
memorizing a sequence of patterns as in traditional trai
ning.

F ig .l : Architecture of multi layer network

A “neighbour inhibition” method with an Eight-
directional Inhibition Strategy (see Fig.2) is used in the
layer of the first part of the network that is in fact the
hidden layer for the whole network. In this strategy most
active unit inhibits the activity of its closest neighbour
units. Units in the layer are organized in a two dimensional
array. Positional overlapping is not allowed by the appli
cation program. Therefore the number of neighbour units

N N W 0 /9 1 , 349-354 Giinhan: Pattern Classifier

can vary from 3 to 8, In the output layer of the network,
the “Winner-take-all” method is used.

A n t l v * u n i t

Q I n h i b i t e d u n i t

n i g h t d i r e c t i o n a l

Fig.2: Eight-directional Inhibition Strategy. Most active
unit inhibits the activity of its closest neighbour units.

1.2. Lateral inhibition

their minimum value. This minimum value is called
resting-membrane-potential in real neurons. In this way
one can build more complex systems which allow different
neurons to fire simultaneously in a given time.

1.2.2. W inner-take-all

This method is used in most known unsupervised lear
ning algorithms [7,8,10]. In the winner-take-all method
each unit in the output layer inhibits every other unit in
the same layer. There is only one unit in a given time
which wins the competition and this unit remains activa
ted while the others are pushed to their minimum value
(see Fig.4).

Lateral inhibition is a special form of neural interaction.
In the 1959's some theories have been developed to de
scribe the lateral inhibition mechanism and to show its
possible importance in perception. This provides an ability
to enhance contrast, peaks and edges of incoming patterns.
Lateral inhibition can also be used in preprocessing noisy
data. In the present work the lateral inhibition property
is based on Purkirije cell activity in the neurophysiology.
This property is studied in ref. 4,5.

According to the principle of lateral inhibition [3] the
activity of a unit not only depends upon the stimulus re
ceived by itself, but also upon the activity of units in its
neighborhood. Such an interaction has been observed in
the retina, auditory pathways and Purkinje cells of ver
tebrates.

E x c i t a t i o n

N t u v o n f T h v t i h o l d

I n h i b i t i o n

Fig.4 : Wmner-take-aU function. In figure neuron num
ber 5 is the winner and it pushes other neurons into a
constant minimum value

1.3. The training process

1.2.1. Neighbour neuron inhibition

Neighbour neuron inhibition is actually accepted as real
lateral inhibition mechanism [3] which is similar to neu
rophysiological aspects. In this work; at a given time the
neurons which are not fired will keep their different inhibi
ted values and will join the competition continuously until
they are fired (see Fig.3). The fired neurons will return to

N e i g h b o u r n e u r o n i n h i b i t i o n

Fig.3: Neighbour neuron inhibition In figure neuron
numbers 2 and 7 are fired. Neuron number j is approaching
the threshold

In the beginning of the process the weights in each part
of the network are initialized with small random numbers
between 0.1 and 0.9. Afterwards weight vectors in each
part of the network are normalized according to the nor
malization condition which is explained in the next se
ctions. Input patterns in each part of the network are also
normalized during the whole process.

The first part of the network is trained for the first in
coming normalized pattern until internal representation
is achieved. Then this internal representation for the first
pattern is presented to the second part of the network as
normalized input pattern. The second part of the network
is then trained for this input pattern until final classifica
tion is achieved.

Before presenting the second pattern to the network
the weights in the first part of the network are initiali
zed and normalized while the weights in the second part
of the network remain with the latest modified values of
the weights. The process continues until the network is
trained with all patterns.

The main property of this network is that: The first
part of the network behaves as a temporary storage and
the second part behaves as a permanent storage. This is
somewhat similar to short term and long term memory
concepts in biological systems [2].

350 G iln h an t P a tte rn C lassifier N N W 6 /9 1 , 349-354

2. Learning Algorithm of the Network

There is a large number of fibers that provide synaptic
connection to a given Purkinje cell (see Fig.5) in a Natural
Neural Network [1,9]. We denote the number of all parallel
fibers by N. The input carried by the kth parallel fiber at
the time t is denoted by Sk(t)\ it can have the value of 1 or
0 according to whether the fiber carries an impulse or not.
The effect of the input from the kth fiber on the ith Pur
kinje cell is determined by the synaptic coupling strength

The output of the network is carried by the axons of
the M Purkinje cells and acts to inhibit muscle activity.
The strength of the effective inhibition of a cell denoted by
g. This activity of the ith Purkinje cell is characterized by
the quantity a ^ (t), which is 1 or 0 depending on whether
the cell it originates at is active (i.e. has fired) or not. The
activity state of the Purkinje cell in turn depends on its
axon hill potential,

S
k

W
k

Fig.5: Symbolic notations for two Purkinje cells.

2.1. Neuronic equation (N etinput)

To describe the behaviour of a neuron, I will employ a
formulation based on ref. 4. The dynamic behaviour of a
neuron is governed by the neuronic equation:

v{i)(t + T) = [(1 — A)vii\t) + ^ T w ikl\ t) s k{ t) -
jfe=i

M

j - 1

from fibers then the potential of the neuron decreases
exponentially with A decay constant (A = 0.1 in my
appl.)

• t)sk{t): The excitation arriving from the kth pa
rallel fiber to neuron i at time t.

• g^a^ \t): The inhibition arriving from other neurons
to neuron i at time t.

• (1 — a(*)(/)): A multiplicative factor. This term resets
the potential to its resting value after the firing and
keeps it there the refractory period (the minimum ti
me between two firings), during which the neuron is
not excitable.

A neuron will become active, if its potential at the
axon hill exceeds a threshold value, (0 = 1 in my
appl.). In that case the neuron will emit a non-decreasing
pulse of fixed duration r, along its axon making inhibitory
action at all of its synaptic connections.

This activity is described as,

a(i)(t)
l, if vW(t) > ew
0, otherwise

Given the time-dependent input sk{t), the response of
the network can be calculated with eq. (1). For a shorter
period, the synaptic strengths and g ^ can be consi
dered as constants. If the incoming pattern remains steady
for several time steps; those Purkinje cells whose synap
tic strength vectors have the best overlap with the input
pattern vector will be most likely to fire; in turn, they will
then inhibit their neighbouring neurons as a consequence
of the lateral inhibition g^\ If the membrane potential,
a, of a neuron exceeds a given threshold value, 9, then
neuron becomes active (fired) and inhibits its neighbours
with a certain inhibition value. Active neuron also resets
itself into resting membrane potential value.

2.2. M em ory equation (Learning)

On a longer time scale the coupling strengths may chan
ge, thus providing a learning ability for the net. When we
assume that the inhibitory synapses are fixed, the excita
tory synapses leading from the parallel fibers to the Pur
kinje cells may change according to Hebb’s rule [6], which
we formulate in the following memory equation:

w f + r) = [(1 - r)Hf >(0 + Sa<-‘ X t) , k(t - r)], (2)

(1)

where

• v^\t •+ r): Hill potential at time (t -f r) of cell i. (In
natural systems this time is r « 1 msec.)

• (1 — A)tj(i)(t): The remaining potential of neuron i
from time t at time (t + r). If no other input arrives

where

• W ^ (i + r): Synaptic strength of coupling between
fiber k and neuron i at the time (t -f r).

• <p*): Normalization constant for neuron i.

• (1 — £)W ^(<): Exponential decay of synaptic strength
(e = 0.001 in my appl.)

N N W 6 /9 1 , 349 -354 G ü n h an t P a tte rn C la ssifier

* S a ^ (t) s k (t — t) : If the neuron i is active at time t
(i.e.,a = 1), the connections between neuron i and
fiber k will be strengthened by 6 learning rate.

The normalization condition

- ’■)]) (3)
k= i

where r/b) is a constant (i.e., r;b) = 1). This condition
ensures that the total synaptic strength remains constant,

£ H f V) = n(<)-
k = 1

This learning mechanism simply describes the effect
that if an excitatory impulse is arriving to a synaptic coup
ling which will lead in the following time step to a firing of
the post-synaptic cell, then that connection will be stren
gthened by S. Due to the normalization and the slow
exponential decay of the couplings, all “non-successful”
synapses will be somewhat weakened at the same time.

Exponential decay (1 — A) in neuronic equation and (1 —
e) in memory equation are ignored in the second layer of
the network to obtain plausible classification of patterns.

Learning algorithm for the second layer of network is as
follows

neuronic equation

N

v(,){t + r) = [v(l)(t) +
k = 1

M

i —1

(4)
and memory equation,

w £ \ t + r) = q(t) [H^li(f) + 6a(i)(i)sk(t - r)]. (5)

3, Discussion

This model has many advantages compared with other
models. The learning algorithm and architecture of the
network explained above are different from other network
models. In competitive learning the output unit with ma
ximum value is chosen as the winner and all activation
for the other units are set to zero value. Competitive lear
ning does not produce internal representations of input
patterns. Choices for learning parameter values and the
number of training iterations are adjusted experimentally
to obtain the best results.

In Kohonens’ network model, distances between all in
put and output units are calculated. The unit with lowest
distance is the winner. The weights of the units within a
square with the winning unit in the center are adjusted.

The advantages of the two layer model presented above
are:

Ability o f prepossessing the incom ing pattern.
The network has ability to preprocess the inconiing

patterns and reduce the linear dependency among these
patterns (see Fig. 6). The network has ability to learn
to respond in different parts to differences in input sig
nals by using the neighbour inhibition mechanism. These
responses are represented in the hidden layer as internal
representation of a given pattern.

I N P U T P A T T E R N S H I D D E N L A V E R OUT P UT
R E P R E S E N T A T I O N S L A V E R

Fig.6: Input patterns A,B,C, their internal representa
tions and response of the network in the output layer.

Experiments indicate that the network has ability to
classify all input vectors as long as those vectors have less
than 50% common elements with each other. When the
patterns A ,B ,C ,1 and 2 presented to the network (see
Fig.7), patterns C and 2 have been classified into same
class.

The reason is that common elements of these two
patterns are more than 50% of the number of representa
tion elements. Patterns A and C had 4 common elements
but they have been classified into their own classes since
their uncommon elements were in majority. The second
layer of the network is limited with properties of u winner-
takes-all” method.

Network architecture and learning algorithm are
similar to biological mechanisms.

The first part of the network is a temporary storage
for each pattern. The task for this part of the network is
to preprocess incoming patterns like a filter, in other
words, to reduce the linear dependency among patterns
by determining their relevant representations. These re
presentations are the input patterns for the next part of
the network. The second part of the network classifies in
coming pattern information that comes from the hidden
layer. As long as the hidden layer has preprocessed pattern
information, the final classification and memorizing pro
cess will be easy.

The learning algorithm is based on neurophysiological
activity of real neurons. If the membrane potential, v, of
a neuron at a given time exceeds a certain threshold va-

G U nharu P a tte r n C la ssifier N N W 6 /9 1 , 349-354

lue, 9, then the neuron becomes active (fired) and inhibits
its neighbours with a certain inhibition value. Only the
weights of the active neuron are adjusted. Active neuron
also resets itself into resting membrane potential value.

I N P U T P A T T E R N S H I D D E N L A Y E R
R E P R E S E N T A T I O N S

OUTPUTLAYER

Fig.7: Input patterns A ,B ,0,1,2, their Internal repre
sentations and response of the network in the output layer.

Ability to recognize noisy patterns.
Experiments showed that this network also has ability

to recognize ambiguous or noisy incomplete input patterns
as long as, noise were not dominating these input patterns.

Network accepts repeated patterns.
Repeated patterns during training do not cause any side

effect. They activate always the same output units.

Values o f param eters are fixed.
Choice of parameter values for learning and the number

of training iterations are fixed. The network may be trai
ned with a value of learning rate between 0.1-0.6, 3 epochs
and 50 cycle for each pattern. These values are valid for
any type of pattern. The number of epochs can be reduced
to 2, learning rate to 0.1 and the pattern cycles to 5. The
se reduced values give the same results but the number of
firings is minimized. Inhibition values between the units
are set to 0.9 when the method is neighbour inhibition,

Disadvantages of the network were common with
all other networks in this field. The capacity problem
occurred because the internal representations of an input
pattern required many hidden units. This problem may be
reduced by increasing the area of inhibited neighbour ne
urons. The experiments with neighbour inhibition showed
that when we increase the direction of inhibition from 2 to
8, common activated units among different input patterns
are reduced. The “ winner-takes-all” method was actually
the best method to reduce common elements among the
internal representations of input patterns. This method is
used for final classifications in the network. If we use this
method in the hidden layer with one at time training, the
pattern classification may be maximized in this multi layer
network but this type of mechanism has the solution for
only well-defined input patterns as in competitive learning
by Rumelhart.

For research on patterns which are not well-defined, we
need to observe more representations in the hidden layer
by using neighbour inhibition mechanism for future inves
tigations. Eliminating common internal representations of
not-well-defined patterns could be the solution for classi
fication of these type of patterns. This method has po
ssibly three disadvantages. First, we need an extra filter
mechanism in the network before we may present the in
ternal representations of patterns to the last part of the
network. Second, if we increase the number of patterns
which will be passed through this filter mechanism, the
number of existing active units from the previous filter
(internal representations which are results of the training
first part of the network) will probably decrease strongly
and will cause non-active units at the end of the elimi
nating process. Third, if the network trains with reduced
information, it will not be able to response correctly in
a recalling process. Thus, we must study mechanisms like
neighbour inhibition and experiment with more amount of
hidden units or layers.

Another problem is that the network classified the same
pattern differently when we changed the location or size
of the input pattern. This is a usual problem for most of
the unsupervised learning algorithms.

Conclusion

In the present work, an alternative unsupervised neural
network model that may approximate certain neurophy
siological features of Natural Neural Systems has been stu
died. This work is a result of further investigations on ref.
4 and 5. However the present model shows us the abili
ty of machinewritten character recognition. It can also be
investigated within the subject of signal processing. This
model can work as a feature detector or signal classifier in
many application areas like speech recognition, active so
nar classification, signal analyses on nuclear power plants
etc.

Acknowledgem ent. I want to thank Professor Svein
Nordbotten and Professor Laszlo P. Csernai for their use-
full discussions and constructive comments to my ideas.

N N W 0 /9 1 , 349-354 G iin h a n : P a tte rn C la ssifier

References

[1] Bullock, T.H.; Introductions to Nervous Systems W.H Freeman and
Company, San Francisco 1977.

[2] Caianiello, E R : Outline of Theory of Thought - Processes and
Thinking Machines J.Theoret, Biol., 1961, 2 , 204-235.

[3] Caianello, E.R : Cybernetic o f Neural Process. Ricerca Scientifica,
Roma, 1965.

[4] Giinhan, E. A., Csernai, L.P., Randrup, J.: Unsupervised Competi
tive Learning in Neural Networks. International Journal o f Neural
Systems, World Scientific, London, V ol.l, No.2 , 177-186

[5] Giinhan,E A Pattern recognition and Self-Organization of Neu
ral Networks, Dept of Information Science, University o f Bergen,
Norway, Master thesis, March 1991.

[8] Hebb, D.O.: The Organization o f Behaviour. Wiley, New York, 1949.

[7] Hinton, G.E.: Connectionist Learning Procedures. Technical Report,
CMU-CS-87-115, University o f Toronto, Canada 1987.

[8] Kohonen, T.: Self-Organization and Associative Memory. Springer
Verlag, New York 1984.

[9] Pellionisz, A., Llinds, R.: A computer model o f Cerebellar Purkinje
Cells. Neuroscience, 1977, Vol.2 37-48,

[10] Rumelhart, D.E , McCelland, J.L. and The PDP research group:
Parallel Distributed Processing- The MIT press. Cambridge 1986,
Vol.1-2.

Literature Survey

The literature on neuroscience increases last few years
extremely fast. At present some estimations of more than
20000 existing papers, conference and symposium talks,
books and research reports are made. Evidently it is not
possible to inform the readers about all the interesting
publications, which currently appear. However, we would
like to use the existence of the computer oriented Scienti
fic Information System of the Institute of Computer and
Information Science in Prague for to present here almost
regularly the short survey of the last year records of this
base.

Of course, the readers are asked for to be so kind and
inform the Editors or the Institute about any publication,
which they recommend to insert in this literature survey.

Mundie D.B., Massengill L.W.: Weight Decay and
Resolution Effects in Feedforward Artificial Neural
Networks
IEEE Trans, on Neural Networks Vol.2, 1991 No.l pp.168-
170

Abstract: This letter presents results from a preliminary
study on the effects of weight decay and resolution on
the performance of typical three-layer, feedforward neural
networks.

Salam F.M.A., Wang Y., Choi Myung-Ryul: On
the Analysis of Dynamic Feedback Neural Nets
IEEE Transactions on Circuits and Systems Vol,38, 1991
No.2 pp.196-201

Abstract: We present some theoretical results pertai
ning to the dynamic properties of dynamic feedback (ar
tificial) neural networks. We also present some conditions
to SYSTEMATICALLY specify the equilibria for these ne
tworks. Our emphasis throughout will be on the design of
feedback artificial neural nets of the Hopfield type and
their potential use as classifiers.

Shoemaker P .A .: A N ote on Least-Squares Lear
ning Procedures and Classification by Neural N et
work M odels
IEEE Trans.on Neural Networks Vol.2, 1991 No.l pp.158-
160

Key words: Neural Network Models - Classification.
Abstract: In recent years there has been considerable

interest in the capabilities of neural network models app
lied to tasks such as classification, which typically require
some a posteriori judgment of likehood based upon proba
bilistic data. This has led to analyses of network learning
and function in a statistical context.

Shynk J.J., Bershad N .J.: Steady-State Analysis
o f a Single-Layer Perceptron Based on a System
Identification M odel with Bias Terms
IEEE Transactions on Circuits and Systems Vol.38, 1991
No.9 pp. 1030-1042

Key words: neural networks; single-layer; perceptron ba
sed; bias terms.

Abstract: A stochastic analysis is presented of the
steady-state convergence properties of a single-layer per
ceptron for Gaussian input signals. A system identification
formulation is presented whereby the desired response sig
nal (+ — 1) is modeled by an unknown linear FIR system
F plus an unknown bias, followed by a signum function
nonlinearity.

Sietsma J., Dow R .J.F .: Creating Artificial Neural
Networks That Generalize
Neural Networks Vol.4, 1991 No.l pp.67-79

Key words: back-propagation; pattern recognition; ge
neralization; hidden units; pruning.

Abstract: We develop a technique to test the hypothesis
that multilayered, feed-forward networks with few units on
the first hidden layer generalize better than networks with
many units in the first layer. Large networks are trained
to perform a classification task and the redundant units
are removed (“pruning”) to produce the smallest network
capable of performing the task.

354 G iin h a n ; P a tte rn C la ss ifier N N W 6 /9 1 , 349-354

ST A T IST IC A L M O D ELS A N D T E S T S
O F IN T R A F A S C IC U L A R N E R V E

F IB E R A R R A N G E M E N T S

Ovt Frank1

Abstract: In order to gain insight into the structure and
organization of human peripheral sensory nerve fascicles,
it is possible to use a microneurographic method descri
bed in a recent article by Hallin, Ekedahl and Frank. This
method uses a specially devised concentric needle electro
de for obtaining intrafascicular recordings of nerve activi
ty. The statistical analysis of such recordings is discussed
here, and stochastic models are developed for testing va
rious hypothesis on nerve fiber arrangements. The gene
ral approach is illustrated by analyzing experimental data
collected for studying particular segregation and clustering
phenomena of fibers in human sensory nerve fascicles.

Key words: nucroncurographic models, peripheral nerve
organization, nerve fiber segregation.

Received: September 4, 1991
Revised and accepted: December 9, 1991

1. Introduction

Peripheral nerve fascicles consist of bundles of nerve fi
bers of different modalities. The intrafascicular organiza
tion of bundles and fibers is of neurological and physiolo
gical interest [1,3,5,6,7].

A neuron can be described as a cell having short bran
ches or dendrites which receive information or impulses
from other neurons and a long branch or axon which trans
mits information to other neurons. The axon is the core
of a nerve fiber. It is surrounded by a myelinated isolation
except at certain points where impulses may pass along
the axon. These transmission points are called the nodes
of Ranvier.

In order to gain insight into the structure and orga
nization of human peripheral sensory nerve fascicles, a
microneurographic method was developed by Hallin and
Wiesenfeld [4]. This method uses a specially devised con
centric needle electrode for obtaining intrafascicular recor
dings of nerve activity. In two recent articles by Frank [2]
and Hallin, Ekedahl and Frank [3] the statistical analysis

*Ove Frank
Department of Statiscs, Stockholm University,
S-10691 Stockholm, Sweden

of such recordings is described. The findings give signi
ficant evidence against a random distribution of fibers of
different modalities and support the hypothesis of segrega
tion by modality of the fibers. These experimental results
should preferably be analyzed further to find our whether
or not there are random or systematic locations of the
nodes of Ranvier in neighboring fibers and bundles of fi
bers. For that purpose the previous statistical models and
methods have to be extended.

A possible extension is described in the following. The
next section specifies a stochastic model of intrafascicular
nerve fiber arrangement which makes it possible to alter
native fiber arrangement hypotheses. By comparing such
simulated results with real experimental results, the hy
potheses can be statistically tested as elaborated on in
Section 3. Section 4 illustrates the method by using da
ta from the experiments described in Hallin, Ekedahl and
Frank [3]. Further results using this method are presently
being analyzed and will be published elsewhere,

2. A Model of Intrafascicular Fiber Arran
gements

We consider k different modalities of nerve fibers in
a fascicle, and these modalities are labeled by integers
1. , k. Let P i , . . ., Pk be the relative frequencies by
which the modalities occur. Here 0 < Pj < 1 for j =
1. . . . , k and Pi + ... + Pk = 1.

A perpendicular path of the recording electrode through
a fascicle can be considered as a screening procedure by
which the modalities of the fibers encountered along the
path can be specified. Let U\,. . . , Un be such a sequence
of modality labels along a path crossing n fibers. All these
labels cannot be identified, through. The special recording
device can identify the modality label of a fiber only if this
fiber has a node of Ranvier sufficiently close to the path.
Therefore we introduce a sequence \\,,. ,, Vn of indicator
variables, such that V, is 1 or 0 according to whether or
not the modality of the ith fiber along the path can be
identified. Thus, for any fiber i, the modality Ut can be
identified if and only if the indicator \\ = 1. Consequently,
we can define a sequence of signals X \, . . . , A'„ such that
Xi is equal to the modality label of the ith fiber when it

N N W 6 /9 1 , 356-360 Frank; Intrafascicular Nerve Fiber

is identifiable and equal to 0 otherwise; the signal Ar, is
simply an ordinary product of Ui and V* :

X, = Ui Vi for i — 1, . . . , n.

If the path hits a fiber at a random location, the pro
bability p that the modality of the fiber can be identified
should be approximately equal to the proportion of the
internodal distance along a fiber that is covered by the
path.

Now the special recording device cannot observe the sig
nals A’i , . . . , X m one by one. Observations are obtained at
certain sites along the path. Each site records m conse
cutive signals, but the sites might overlap; that is, the
same signal might belong to several consecutive sites. If
we assume that the sites are regularly distributed along
the path with a displacement of h fibers and an overlap
of m — h fibers between neighboring sites, then a path of
n = m + rh fibers provides r + 1 observations. There is
the initial observation consisting of the signals A’i , . . . , X m
at site 0, the next observation consisting of the signals
A'i+/j, • • • , X m+h at site 1, the next observation consisting
of the signals X\+2h, ■ • •, X m+2h at site 2, et cetera. The
final observation consists of the signals X\+rh, ■.., X m+rh
at site r. At each site, there are m signals that can he
observed but the order between the signals cannot be ob
served. Thus, the observation at the ith site can be gi
ven as the frequency distribution Y’io ,... , YA ° f the signals
A'i+jh, • • ■ , Arm+ih ■ Here Ytj is the number of signals equal
to j at site i. The total is Yio + . . . + Ytk = m and the
subtotal V,i + . . . + Ytk — m — Yio is equal to number of
identified modalities at site i.

A general stochastic model for the frequencies Yij(i —
l , . . . , r and j = is obtained by considering
U\, . . . , Un and V \ , , Vn as stochastic processes with spe
cified properties and specified dependence. The properties
of the U%-process should capture the intrafascicular mo
dality distribution, and the properties of the Vi-process
should capture the distribution of the nodes of Ranvier.
For instance, a pure random distribution of the fibers of
different modalities can be specified by letting the Ui be
independent identically distributed random variables with
a common probability distribution given by the occurren
ce proportions Pi, . . . , Pk- A pure random distribution of
the nodes of Ranvier can be specified by letting the Vi be
independent identically distributed Bernoulli (p) variables
where p is that proportion of length of a fiber for which it
is identifiable by the recording device. A pure random dis
tribution of both modalities and nodes, with independence
between the two, can be considered as a basic hypothesis of
randomness. Interesting deviations from this randomness
include a modality segregation hypothesis and a node clus
tering hypothesis. Modality segregation implies that fibers
of the same modality tend to be neighbors more often than
under pure randomness. Node clustering implies that the
nodes of neighboring fibers of the same modality tend to
be close together more often than under pure randomness.

To specify these hypotheses, we have to make some
technical assumptions. Assumptions of varying degree of

sophistication can certainly be made to achieve modality
segregation and node clustering. The ones given here are
very simple but sufficient for illustrate purposes. We illus
trate later how the segregation and clustering tendencies
can affect the data. We also suggest statistics that might
be useful for discriminating between the hypotheses.

Modality segregation seems possible to describe by
letting the Ui-process be a Markov chain. Here we choose
with a probability 1 — 9 to repeat the previous modality
and with a probability 1 — 0 to select the new modality
independently of the previous one. The probability of a
transition from modality i to j is given by

Pij = Odij + (1 -0)P j

where is 1 or 0 according to whether or not i — j.
Node clustering seems possible to describe by specifying

the Vi~process as a Markov chain conditional on the 17,-
process. Here we choose the simple rule that Vi + i = Vi if
Ui+i — Ui] that is, all neighboring fibers of the same mo
dality have a common identification indicator. This means
that the nodes of Ranvier are at the same location along
neighboring fibers of the same modality. The values of V*
corresponding to distinct runs of values in the 17;-process
are assumed to be independent identically distributed Ber
noulli (p)-variables.

With the specifications of randomness, modality segre
gation and node clustering given above we need to know
the implied effects on the observed frequencies Yq of fibers
of modality j at site i for j = 1, . . . , k and i = 0, . . . , r.
We also need to find statistics that are useful for discrimi
nating between randomness and various hypotheses invol
ving modality segregation and node clustering.

3. Test Statistics

Under randomness, the waiting time for a site with at
least one identified modality is a random variable W with
probability distribution

P (W = 0) = 1 - qm
P (W = i) = qm+V-Vh(] _ qh) for i = l , . . . , r
P (W > r) = qm+rh

Here the waiting time is given as the number of scree
ned recording sites before the first identified modality is
encountered. If no more than r replacements from the ini
tial site are allowed, then the waiting can be in vain with a
probability qm+rh; and the waiting time distribution when
the waiting is not in vain is given by the conditional dis
tribution

P (W = 0 \ W < r) = (l - i m) / (l - 9m+r'1)
P { W - 1|W < r) = _ qh y (! _ qm+rh)

for i = 1, . . . , r.

Frank; Intrafascicular Nerve Fiber N N W 0 /9 1 , 355-300

Let a be the probability that at least one modality can
be identified. Under randomness it follows that

a = 1 - q m + r h .

For j = X , . . . ,k , let Zj = Ywj be the number of identi
fied fibers of modality j at the first site having any iden
tified modality. Let further

Z Zi + . -YZk^Tri — Ywo

be the total number of identified modalities at the first
site having any identified modalities. The probability dis
tributions of Z and Zj conditional on that at least one
modality is identified are denoted by

P (Z = z\W < r) ~ p(z)
P(Zj = z\ W < r) = 0j(z)

for z — 0 ,1 , . . . , m. Probabilistic arguments show that un
der randomness

Q(z\ - M i : m»P) gm(l - qrh)b{z\h,p)
] X - q m + r h (x - qh)(X - q m + r h)

for z — 1, . . . , m

where

is a binomial distribution. For 0j(z), z — there
is a similar expression with p replaced by p P j in the two
binomials. Furthermore

/ ? ; (0) = X ~ 0j(X) — . . . - fSj(m) > 0.

Modality segregation and node clustering can be expec
ted to cause the distributions of Z and Zj to be shifted
upwards.
For j — 1, . . . ,k, let

Tj - Yqj 4- . . . + Yrj

be the total number of identified fibers of modality j at
all visited sites possibly counting the same fiber more than
once), and let

Sj — YojYij 4- Y\jYij 4- . . . 4- Yr_ i jY rj

be the sum of pairwise products of the modality counts at
neighboring sites. Put

T = Ti 4- . . . 4- Tk

and

5 = 5 i 4 * . . . 4 - 5 * .

These statistics can be expected to give some quidance
for discriminating between randomness, modality segrega
tion and node clustering. The probability distribution of

T under randomness can be given as the distribution of a
linear combination of independent binomials:

*+i
T = ^ k bin{iik\p)

k=i

where Y lnk = n - m 4- rh and m = s h + t, 0 < t < h.
This leads to

ET = m(r 4- l)p

and

$ -j-1
V arT = E k2Ukpq < m(r 4- l)(s 4- 1)pq

kzi\
so that a value of T larger than

m(r 4- 1)p 4* 2 y m (r 4- l)(s 4- 1)pq

would be evidence against randomness. Similar arguments
can be applied to Tj.

We illustrate the distributions of Zj, Z, Tj, T, Sj and
S numerically by quoting some results from computer ex
periments according to the following four hypotheses:

H oo Randomness
Hoi Modality segregation
H io Node clustering
Hii Node clustering and modality segregation.

Lead by the application described in [3] we fix the pa
rameters at the following values:

k = 4 m = 8 r — 1 h — 3
p = 0.06 q = 0.94
Pi = 0.40 P2 = 0.25 P3 = 0.20 P4 = 0.15

Computer experiments provided the results given in
Tables 1-3.

According to the computer experiments it seems as if
the upper tails of the conditional probability distributions
of the statistics are useful for discriminating between the
hypotheses Hoo, Hoi, H io and H u . The probability of no
identified modality is quite different according to which
one of these hypotheses is true. It seems useful to consider
the probability distributions of S j, Tj, S and T condi
tional on T > 0. Tests could be based on the number of
experiments having at least one identified modality and
on the number of experiments having Zj, Z,Tj, T, Sj or
S above a chosen threshold. An illustration is given in the
next section.

4. An Illustration

Tables 4-6 present various results from the experiments
reported in [3]. Table 4 refers to the modality counts at
the first site with at least one identified fiber, Table 5 to
the sums of modality counts at all the sites, and Table 6

N N W 6 /9 1 , 355-360 Frank) Intrafaseicular Nerve Fiber 357

T a b .l.: Probability distributions (%) of the number of Tab.2.: Probability distributions (%) of the total number
identified modalities at the first site of activity conditio- of identified modalities conditional on at least one identi-
nal on at least one identified fiber. fied fiber.

Hypothesis Hq o (randomness) Hypothesis Hm (randomness)

Number of Modality All
indentified

fib es
1 2 3 4 modalities

0 57 72 78 83 0
1 41 27 22 16 87
2 2 1 0 0 12

>3 0 0 0 0 1

Number of
indentified

fibes
1

Modality
2 3 4

All
modalities

0 40 57 64 72 0
1 8 7 6 6 7
2 16 14 12 9 15

>3 35 22 18 13 77

Hypothesis Hl0 (node clutermg)

Number of Modality All
indentified

fibes
1 2 3 4 modalities

0 65 71 76 80 0
1 24 23 20 17 72
2 8 5 3 2 21

>3 3 1 0 0 7

Hypothesis H 10 (node clutering)

Number of
indentified

fibes
1

Modality
2 3 4

All
modalities

0 52 60 66 72 0
1 6 6 5 5 9
2 10 11 10 8 15

>3 32 23 19 15 76

Hypothesis Hoi (modality segragation)

Number of Modality All
indentified

fibes
1 2 3 4 modalities

0 58 73 80 84 0
1 40 25 20 16 89
2 2 1 1 1 10

>3 0 0 0 0 1

Hypothesis H01 (modality segragation)

Number of
indentified

fibes
1

Modality
2 3 4

All
modalities

0 42 60 67 74 0
1 8 6 5 4 7
2 17 13 11 9 17

>3 34 21 17 12 76

Hypothesis Hu (node clutering and modality
segregation)

Number of Modality All
indentified

fibes
1 2 3 4 modalities

0 65 73 78 81 0
1 16 14 12 11 49
2 10 8 6 5 28

>3 9 5 4 3 23

Hypothesis Hn (node clutering and modality
segregation)

Number of
indentified

fibes
1

Modality
2 3 4

All
modalities

0 59 68 72 77 0
1 3 3 3 2 7
2 5 6 5 5 13

>3 32 23 20 16 79

Franks Intrafascicu lar N erve F iber N N W 6 /9 1 , 355-360

Tab,3.: Probability distributions (%) of the total num
ber of identified pairs of egual modalities conditional on
at least one identified fiber.

Hypothesis Hoo (randomness)

Number of
indentified

fibes
1

Modality
2 3 4

All
modalities

0 49 64 70 77 9
1 17 14 12 10 18
2 21 16 14 11 26

>3 12 6 4 2 48

Hypothesis H10 (node clutering)

Number of
indentified

fibes
1

Modality
2 3 4

All
modalities

0 60 67 72 77 12
1 9 10 9 8 15
2 11 12 11 10 21

>3 19 11 7 5 52

Hypothesis H01 (modality segragation)

Number of
indentified

fibes
1

Modality
2 3 4

All
modalities

0 50 66 73 78 8
1 18 13 11 9 19
2 20 15 13 10 25

>3 13 6 4 3 48

Hypothesis H\\ (node clutering and modality
segregation)

Number of Modality All
indentified 1 2 3 4 modalities

fibes

Tab,4.: Distribution (%) of 30 experiments with at least
one identified fiber according to number of identified fibers
of each and every modality at the first site with at least
one identified fiber.

Number of Modality All
indentified

fibes
1 2 3 4 modalities

0 57 50 90 77 0
1 27 33 3 20 57
2 7 17 7 3 23

>3 10 0 0 0 20

Tab.5.: Distributions (%) of 30 experimens with at least
one identified fiber according to toal number of identified
fibers of each and every modality at all the visited sites.

Number of Modality All
indentified

fibes
1 2 3 4 modalities

0 30 33 83 70 0
1 30 37 3 23 17
2 17 23 13 7 23

>3 23 7 0 0 60

Tab.6.: Distributions (%) of 30 experiments with at least
one idetified fiber according to total number of identified
pairs of fibers of each and every modality.

Number of
indentified

fibes
1

Modality
2 3

All
4 modalities

0 77 80 97 97 43
1 7 13 3 3 10
2 3 3 0 0 20

>3 13 3 0 0 27

0 65 73 77 81 13
1 4 4 4 3 10
2 6 5 5 5 13

>3 25 17 15 11 63

N N W 6 /0 1 , 355-360 Prank: Intrafaseicular N erve F iber

to the sums of pairwise products of modality counts at all
neighboring sites. These experimental distributions should
be compared to the corresponding probability distribu
tions obtained according to the hypotheses IIoo, Hoi> Hio
and H\\ in order to discriminate between the hypotheses.

By comparing Table 1 and TAble 4 it is fairly evi
dent that hypothesis Hu yields a better model than does
//oo, //oi and H\q, A formal significance test based on the
number of experiments giving large values of Z, say Z > 2,
would under IIoo assing a probability of the order 4.10~G
to an experimental outcome at least as extreme as the ob
served one, while the same probability under i/oi, IIio
and Hu iS of order 4 .10“ 6, 3.10~2 and 8.it)“ 1 respective
ly. This means that data are strongly in favor of Hu.

The same conclusion can be drawn by considering for
mal tests based on S and T. The power seems to be higher
for tests based on Z.

Acknowledgem ents The numerical results for the va
rious models presented here were obtained by using com
puter programs developed by Mr. Martin Karlberg. The
experimental data were provided by Dr. Rolf Hallin.

References

[1] Dykes, R.W , Terzis, J.K.: Spinal nerve distribution in the upper
limb; The organization o f the derm atom e and afferent m yotom e.
Phil Trans R Soc London, Vol B 2 9 3 , 1981, 509-554.

[2] Frank, O.: S tatistical m odels of intraneural topography. In Procee
dings of the International Sym posium on Neural Networks and Ne
ural Com puting, N euronet’90, Czechoslovak Academy of Sciences,
Prague, 1990, 87-89.

[3] H allin, R., Ekedahl, R.., Frank, O.: Segregation by m odality o f mye
linated and unm yelinated fibers in human sensory nerve fascicles
Muscle and Nerve, Vol. 14, 1991, 157-165

[4] Hallin, R., VViesenfeld, Z.: A standardized electrode for percuta
neous recording of A and C fiber units in conscious man A cta
Physiol Scand, Vol. 113 , 1981, 561-563

[5] R ethelui, M., Szentagothai, J.: D istribution and connections of affe
rent fibers in the spinal cord. In A. Iggo (ed.)' Handbook of Sensory
Physiology, Vol.II, Springer - Verlag, Berlin, 1973, 207-252.

[6] Roberts, W .J., Elardo, S.M.: C lustering of primary afferent fibers
in peripheral nerve fascicles by sensory modality. Brain Research ,
Vol 3 70 , 1986, 149-152

m Schady, W.J L., Torebjork, H E,, Ochoa, J.L.: Peripheral projec

tions of nerve fibers in the human median nerve Brain Research,

Vol 277 , 1983, 249-261.

Book Alert
The following books can be interesting for the readers of
our Journal

Advances in Neural Inform ation Processing Sy
stems, 3. Edited by R.A.Lippmann, J.E.Moody and
D.S.Touretzky. San Mateo, Calif. 1991. ISBN 1-55860-184-
8. US $ 49.95,

AI and Expert Systems: C Language. R.I.Levine,
D.E.Drang and B.Edelson. New York, McGraw-Hill 1990.
289 pp, ISBN 0-07-037500-3. US $ 24.95.

AI and Expert Systems: Turbo Pascal. R.I.Levine,
D.E.Drang and B.Edelson. New York, McGraw-Hill 1990.
292 pp. ISBN 0-07-037500-3. US $ 29.95.

Analysis and Control o f Industrial Processes. Edi
ted by D.Popovic. Wiesbaden, Vieweg 1991. 281 pp. ISBN
3-528-06340-8. DM 98.00.

Artificial Intelligence at M IT . Vols.l and 2. P.H. Win
ston and S.A.Shellard. Cambridge, Mass. MIT Press 1990.
Vol.1,656pp., Vo).2, 634 pp. ISBN 0-262-23150-6. US $ 70
for both volumes.

Neural Networks and Speech Processing. Mor
gan, D.P., Scofield, Ch.L. and Cooper,L.N. Norwell, MA,
Kluwer Academic Publishers 1991. 416 pp. ISBN 0-7923-
9144-6. US $ 69.95.

Parallel Processing in Neural Systems and C om pu
ters. Edited by R.Eckmiller, G.Hartmann and G.Hauske.
Amsterdam, Elsevier Science Publishers 1991. 626 pp. IS
BN 0-444-88390-8. US $ 68.50.

The 119 contributions in this book cover a range of to
pics, including parallel computing, parallel processing in
biological neural systems, simulators for artificial neural
networks, neural networks for visual and auditory pattern
recognition as well as for motor control, AI, and examples
of optical and molecular computing.

The Perception o f M ultiple O bjects. A Connectionist
Approach. Michael C.Mozer. Neural Network Modeling
and Connectionism Series. Cambridge, MIT Press 1991.
176 pp. US $ 22.50.

Progress in Neural Networks. Edited by Omid M.
Omidvar. Nerwood, NJ Ablex Publishing Corporation
1990. 240 pp.ISBN 0-89391-610-2. US $ 45.00(Inst.) $
32.50(Pers.)

Symbols versus N eurons? Edited by Joachim Stender
and Tom Addis. Amsterdam, IOS Press 1990. 252 pp. IS
BN 90-5199-039-1. US $ 65.00.

Visual Perception: The Neurophysiological Founda
tions. Edited by Lothar Spillmann and John S.Werner.
London, Academic Press 1990. 531 pp.

Frank: In tr a fa sc ic u la r N e r v e F ib e r N N W 6 / 9 1 , 3 5 5 -3 6 0

A N A L Y SIS O F D E C IS IO N -M A K IN G P R O C E S S E S
IN D IS C R E T E SY ST E M S B Y F U Z Z Y P E T R I N E T S

V. Olej, J. Chmurný1

A bstract: This paper presents possibility of access to
uncertainty in analysis of decision-making processes in dis
crete systems by fuzzy Petri nets (FPN).

Key words: Petri nets, parallel algorithm, OCCAM, trans
puter

Received: November 11, 1991
Revised and accepted: November 11, 1991

1. Introduction

The analysis of decision-making processes in discrete
systems with uncertainty can be realized by neural nets
which are represented by FPN. Fuzzy Petri nets descri
bed [1,2,3] represent special kind of neural nets in which
transitions are neurons and places are conditions of the
realization [4] of neurons. To every condition and neuron
FPN va lue of the membership function [5] is assigned. Pa
rallel algorithm of the realization FPN (written in parallel
programming language OCCAM 2) represents a possibili
ty of technical realization of an analyzer on the basis of
transputers.

2. Fuzzy Petri Nets

For the analysis of decision-making processes in discrete
systems with uncertainty FPN can be applied. The pro
perties of FPN are described in [1,2,3,6,7,8],

Fuzzy Petri net is a bichromatic oriented graph defined
as 7-tuple

F PN = < C, N, I, Q ,M o ,T ,D >
where:

• C is a finite set of vertices called conditions represen
ted by circles, C = {c l, c2 ,. . . , ck} ;

• N is a finite set of vertices called fuzzy vector
of the neurons (FVN) represented by lines, N =
{n l, n2, . . . , n /}, C f\ N = 0,

* Doc.Ing.Vladimír Olej.CSc., Prof.Ing.Ján Chmurný,DrSo.
Departmen of Computer Science, Technical University,
031 19 Liptovský M ikuláš, Czechoslovakia

• / : CxN —► A, (A — {0 ,1 ,2 ,. . .}) is the forward inci
dence function. It states for each neuron n, E N a set
of input conditions 7(n), I(n) = {c E C/I(c, n) ^ 0};

• Q : NxC —► A, is a backward incidence function. It
states for each neuron n, C N a set of output condi
tions Q(n), Q(n) = {c E C/Q{n,c) ^ 0};

• Mo is a initial marking asssigned number of tokens to
conditions;

• T = { f i , t2, . . . tk] is the finite set of values of mem
bership function called fuzzy truth vector (FTV)
assigned to each condition c, £ C]

• D = {di ,d2). . . ,di] is the finite set of values of mem
bership function called fuzzy decision-making vector
(FDMV) assigned to each FVN n,- £ N .

Fuzzy set B C V is any representation of the set X into
interval < 0,1 > in the form

u g : X —+ < 0 , 1 > .

Function ug that is identified with the set B is called
a membership function [5] and the number ug(x) whe
re x £ X is called an element of fuzzy set B. A mem
bership function can be obtained by expert estimation or
modelling.

The discrete system with uncertainty is described by
a set of k conditions C = { c i ,c 2, . . . , c*} on the basis
of which its rules can be constructed. Conditions may be
conjuncted and disjuncted in a natural way to allow the
firing of the neurons. The conjunctions are represent by
operation MIN and disjunction are represent by operation
MAX [5,9].

The truth of the conditions (tokens in conditions
c, £ C in FPN) C — {ci,C2, . . . , c*} determines
FTV T = {t\ ,t2, . . . ,tk} by which is initialized FVN
N = {n j , n2, . . . , nj) assigned to neurons in FPN. Fuzzy
decision-making vector D — {di, d2, . . . ,d /} can be assig
ned to FVN. Fuzzy decision-making vector represents
threshold of feasibility of FVN.

3. Sequential Realization of Decision-
Making Processes in Discrete Systems
with Uncertainty

Sequential algorithm of analysis of the decision-making
processes in discrete systems with uncertainty by FPN can

N N W 6 /9 1 , 3 61 -3 64 O le j, C h m ú rn y : F u zzy P e tr i N ets 361

be described by the following way where input quantities • rules which result from conditions ci AND C2 =>
of algorithm are: C4; C4 -> c6; c5 C3; C5 => ci;

• FVN N initialized by value one, FTV T, FDMV D\

• forward incidence function I which is represented by
forward incidence matrix I (k tl);

• backward incidence function Q which is represented
by backward incidence matrix Q(l,k).

Forward and backward incidence function describes the
structure of discrete systems. Sequential algorithm can be
realized as follows:

begin
repeat

cycle for processing o f rows and colum ns
o f forward incidence m atrix /(Jfc, #)
for j — 1 to / do

begin
N N { j) = N (j)
for t — 1 to k do

realization MIN operation between F V N and FT V
if — 1 then begin

if JV N (j) > T (i)
then N N (j) - T (i)

end
end
cycle for com paring of j — th com ponents o f new FV N
N N and jf — th com ponents o f FDM V D
for j = 1 to I do

if N N (j) < D (j) then N N (j) = 0
cycle for assigning of j — th com ponents o f new FV N
N N to j — th com ponets o f FV N N
for j = 1 to l do

N (j) = N N (j)

cycle for processing of rows and colum ns
o f backward incidence m atrix Q(l , k)
for j = 1 to k do

begin
N T (j) = T (j)
for * = 1 to / do

realization M A X operation between F T V and FV N
if Q (i , j) = 1 then begin

if N T (j) < N (i)
then N T (j) = N (i)

end
end
cycle for assigning o f j — th com ponents o f new FTV
N T to j — th com ponents of FT V T
for j — 1 to k do

T (j) = N T (j)
cycle for up-to-dating of i-th com ponents of FVN N
for I = 1 to i do

if N (i) — 0 then N (i) = 1
until (T (k) yi 0 A N D N (l) 0)

end

4. Example o f Application Fuzzy Petri Net
in Analysis of Decision-Making Processes
with Uncertainty

The structure of a simple discrete system can be descri
bed by:

• set of conditions Ci, i — 1,2, . . . , 6;

On the basis of conditions and rules can be fuzzy Petri
net described (see Fig.l).

c3 C1 c2

F ig .l: Fuzzy Petri net of simple decision-making of sy
stems

- forward incidence matrix

J (M)

/ I 0 0 0 0 \
1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 1 0

\ 0 0 0 0 1 /

- backward incidence matrix

Q (l,k)

/ ° 0 0 1 0 °v
0 0 0 0 0 1

0 0 1 0 0 0

1 0 0 0 0 0
V o 0 0 0 0 0 /

-F T V 71,1 = 1,2,. . . , 6;
- FDMV D i , i = 1 ,2 ,. . .,6;

Then analysis of decision-making processes of discrete
systems by sequential algorithm is given in the table 1.

5. Parallel Realization od Decision-
Making Processes in Discrete Systems
with Uncertainty

Development of the present computing systems is cha
racterized by increasing of their speed on the basis of pa
rallel realization of the computing process. The necessi
ty of parallelization follows from the need to realize the
response of a computing system in real time. This requi
rement is often so demanding that cannot be met even
by computing means designed on the basis of the most

O lej, G hm úrny: Fuzzy Petri Nets N N W 6 / 9 1 , 3 61 -3 64

advanced technology providing the computing process is
realized sequentially.

Tab.X: Analysis of a discrete system based on fuzzy Petri
net

The present development of the production technology
of elements with high scale integration (mainly transpu
ters) enabes to design parallel computing systems at rela
tively available prices in various architectures so that they
may suit particular applications to their best.

Parallel algorithm of analysis of decision-making pro
cesses in discrete systems on the basis of FPN can be rea
lized in parallel programming language OCCAM 2. The
structure of this programming language corresponds to
the hardware architecture of transputers. It enables pro
gramming of parallel computing transputer systems. Para
llel algorithm of analysis of decision-making processes in
discrete systems by means of FPN can be described as
follows:

SEQ
WHILE (T(Jb) $ 0 AND N(l) ? 0)

SEQ
PAR j = 1 F O R /

N N { j) = N (j)
PAR » = 1 FOR it

IF
/(*,/) = 1

IF
JVJV(j) > T(i)

N N (j) = T (i)
TRUE

SKIP
TRUE

SKIP
PAR j = 1 FOR J

IF
N N (j) < D(j)

N N (j) = 0
TRUE

SKIP
PAR j = 1 F O R l

N (j) = N N U)
PAR j = 1 FOR k

N T (j) = T (j)
PAR i = 1 FOR /

IF
Q (i , j) = 1

IF
N T (j) > N(i)

N T U) = N(i)
TRUE

SKIP
TRUE

SKIP
PAR j = 1 FOR k

T (j) = N T (j)
PAR * = 1 FOR /

IF
N(i) = 0

N(i) = 1
TRUE

SKIP

6. Conclusion

Fuzzy Petri nets which are special kind of neural nets
enable to analyze of decision-making processes in discrete
systems with uncertainty. Possibilities of this formal mean
are based on the knowledge of fuzzy matrices [9]. By means
of FPN can be modelling concurrency and conflict in dis
crete systems. Fuzzy Petri nets can be applied in fuzzy
rule-based reasoning and deducing of control systems for
real time decision-making with application to controls and
pattern recognition.

Technical realization of the design of FPN analyzer ar
chitecture on the basis of the transputers can be conside
red as highly perspective in the given field due to their high
performance, simplicity of multitransputer systems, sim
ple possibility of expansion and possibility of unified app
roach to the design of technical and programming means.

References

[1] Looney, C.G.. Fuzzy Petri Nets for Rule-Based Decision- Making.
IEEE Transactions on Systems, Man, and Cybernetics, Vol.SM C-
18, N ol, 1988, 173-183.

[2] Chmurný J., Olej V.: Application o f Fuzzy Petri Nets in Analy
sis of Decision-Making Processes o f Discrete Sys terns. Electrical
Engineering Journal, Vol.41, No.5, 1990, 388-392.

[3] Olej V., Chmurný J.: The Analysis o f Decision-Making Processes
in Discrete Systems. Proceedings o f Conf. Elektrotechnika 90, EF
SVT, Bratislava, 1990, 67-70.

[4] Peterson J.L.: Petri Net Theory and Modelling o f Systems. Prentice
Hall, Inc. 1981.

N N W 6 /9 1 , 361-364 Olej, Chmúrnyi Fuzzy Petri Nets 363

[5] Novak V. Fuzzy Sets and their Applications. SNTL, Praha, 1990.

[«] Chmurný J , Olej V., Mokříš I.: Analysis o f Discrete Systems by
Fuzzy Petri Nets. Electrical Engineering Journal, Vol.39, No.3,
1988, 226-230.

m Olej V., Chmurný J., Mokriš I.: Analysis o f Parallel Discrete Sy
stems by Discrete Stochastic and Fuzzy Petri Nets, Computers and
Artificial Intelligence, Vol 10, No.3, 1991, 221-237.

[8] Olej V,, Střelec J., Chmúray J.: Analysis o f Deterministic, Sto
chastic and Fuzzy Discrete Systems by Generalized Petri Net. In
ternational Fuzzy Engineering Symposium, Proceedings IFES“ 91,
Yokohama, Japan, 13.-15. Nov., 1991 (in Press).

[9] Chmurný J., Olej V.: Fuzzy Matrices and Possibility o f their App
lication. Electronic Horizont, Signals-Systems-Informatics, Vol,51,
No.9, 1990, 355-382.

Literature Survey

Smith H.L.: Convergent and Oscillatory Activation
Dynamics for Cascades of Neural Nets With Nea
rest Neighbor Competitive or Cooperative Inter
actions
Neural Networks Vol.4. 1991 No.l pp. 41-46

Key words; convergent dynamics; oscillatory dynamics;
cascade.

Abstract: It is shown that a cascade of the neural net NO
into the net N1 has oscillatory (convergent) dynamics if
the nets NO and N1 have oscillatory (convergent) dynamics
and the net N1 has a special structure.

Soucek B.: Neural and Intelligent Systems Integ
ration. Chichester
John Wiley & Sons LTD, 1991, 560 p.ISBN 0471 53676 8

Key words; intelligent systems.
Abstract: This hook discusses well-defined intelligent

modules that can be integrated into an intelligent system.
Among these modules are; intelligent algorithms and pro
grams, neural networks and computer elements, fuzzy da
ta comparators and expert systems. They are the result
of the 5th generation research effort mounted in Japan as
well as ongoing research.

Stark J.: A Neural Network to Compute the Hut
chinson Metric in Fractal Image Processing
IEEE Trans, on Neural Networks Vol.2, 1991 No.l pp.156-
158

Key words: Fractal Image Processing.
Abstract: The Hutchinson metric is a natural measure

of the discrepancy between two images for use in fractal
image processing. This paper describes a neural network
which can quickly calculate this metric.

Sudharsanan S.I., Sundareshan M.K.: Equilibrium
Characterization of Dynamical Neural Networks
and a Systematic Synthesis Procedure for Asso
ciative Memories
IEEE Transactions on Neural Networks Vol.2, 1991 No.5
pp.509-521

Key words; neural networks; dynamical; associative me
mories.

Abstract: Several new results cencerning the characteri
zation the equilibrium conditions of a continuous-time dy
namical neural network model and a systematic proce
dure for synthesizing associative memory networks with
nonsymmetrical interconnection matrices are presented.

Takefuji Y., Lee K.Ch.: Artificial Neural Net
works for Four-Coloring Map Problems and K-
Colorability Problems
IEEE Trans, on Circ. and Systems Vol.3, 1991 No.3
pp.326-333

Key words: neural networks - colorability problems.
Abstract: The computational energy is presented for sol

ving a fourcoloring map problem. The map-coloring pro
blem is defined that one wants to color the regions of a
map in such a way that no two adjacent regions are of the
same color.This paper presents a parallel algorithm ba
sed on the McCuloch-Pitts binary neuron model and the
Ilopfield neural network.

TVoudet T.P., Walters S.M.: Neural Network Ar
chitecture for Crossbar Switch Control
IEEE Transactions on Circuits and Systems Vol.38, 1991
No.l pp.42-56

Abstract: A Hopfield neural network architecture is pro
posed for the real-time control of a crossbar switch for
switching packets at maximum troughput. The network
performance and processing time are derived from a nu
merical simulation of the transitions of the neural network.

Tsao T.R., Shyu H.J., Libert J.M., Chen V.C.: A
Lie Group Approach to a Neural System for Three-
Dimensional Interpretation of Visual Motion
IEEE Trans, on Neural Networks Vol.2, 1991 No.l pp.149-
155

Key words: Neural Network - Visual Motion.
Abstract: This paper presents a novel approach to ne

ural network computation of three-dimensional rigid mo
tion from noisy two-dimensional image flow. It is shown
that the process of 3-D interpretation of image flow can
be viewed as a linear signal transform.

364 O le j, C h m u rn ý : Fuzzy Petri N ets N N W 0 /9 1 , 301-364

AN OPTIMAL STOPPING CRITERION
FOR BACKPROPAGATION LEARNING

Martin A. Kraaijveld, Robert P.W. Duin1

Abstract: A common problem of iterative learning pro
cedures like the backpropagation algorithm is the lack of
insight in the learning phase. Therefore, it is difficult to
decide at what moment the learning phase should be ter
minated, For many ad hoc criteria that are used in prac
tice, it can be shown that they suffer from serious defects,
especially for recognition problems in which the distribu
tions of the classes have some overlap. By the applica
tion of a technique from the statistical pattern recogni
tion literature, the editing algorithm [3], a learning set
can be transformed to a data set in which the overlap of
the classes is effectively removed. This results in an op
timal stopping criterion for iterative learning procedures,
and a number of experiments indicate a moderate improve
ment in learning speed for the backpropagation algorithm.
Moreover, because it can be proven that an edited data
set yields a performance which is close to Bayes-optimal
fqr the nearest-neighbor classifier, it is very likely that a
classifier which is based on an iterative learning procedure
and which classifies all samples in the edited learning set
correctly, is also close to Bayes-optimal.

Keywords: iterative learning procedm'e, statistical pattern
recognition, neural networks, backpropagation learning,
editing algorithm.

Received: May, 5, 1991
Revised and accepted: December 9, 1991

1. Introduction

In the last few years an enormous interest in learning
procedures for neural networks has emerged. An important
development in this area was the invention of the backp
ropagation algorithm by Rumelhart [9]. Practical applica
tions (e.g .[2], [4], [11], etc.) as well as benchmarking studies
(e.g.[8] have shown that classifiers based on the backpro
pagation algorithm have a good performance. Multi-layer
networks therefore seem to offer a reasonable alternative
for various parametric and non-parametric techniques of

' Martin A.Kraaijveld, Robert P.W Duin
Pattern Recognition Group, Faculty of Applied Physics, Delft University
of Technology, P.O.Box 5046, 2600 GA Delft, The Netherlands

the statistical pattern recognition literature. Especially
the feature that complex shaped decision functions can
be represented by a limited number of units and weights,
resulting in a very compact representation of a classifier,
facilitates fast operation for real time applications [7].

However, from a practical and theoretical viewpoint,
there are still some drawbacks:

1. Training a multi-layer network with the backpropa
gation algorithm is slow. In comparison with other
methods (e.g. the nearest-neighbor classifier), multi
layer networks require large amounts of CPU time to
obtain a reasonable classifier. This is due to a number
of specific properties of the algorithm:

• The algorithm is iterative in nature.
• The learning rate i/ should be small in order to

improve convergence. However, a small rj results
in a long learning phase.

2. The algorithm is essentially based on a gradient des
cent in an error space which contains local minima.
Therefore, the learning phase can get stuck into a lo
cal minimum, resulting in a suboptimal performance
of the classifier. It is important here to distinguish
the cases of recognition problems with overlapping
and non-overlapping classes (see Fig.l):
When there is no overlap between the classes in the
learning set, it is desirable that the network, for the
learning set as well as for any test set, finally correctly
classifies 100% of the samples. Getting stuck in a local
minimum implies that the performance is less than
100% , and is therefore suboptimal.
When the classes in the learning set do overlap, howe
ver the situation is completely different. When the
learning set has a Bayes error (i.e, an intrinsic over
lap) of e % , no classifier will ever achieve a perfor
mance higher than (100 - e)% . Therefore, when a
large multi-layer network has achieved a performance
of 100% on the learning set, it must have made ma
ny small decision boundaries around samples in the
overlapping part of the learning set and will certainly
have a suboptimal performance on a test set. As the
backpropagation algorithm tries to minimize the

N N W 6 /9 1 , 365-370 Kraaijveld, Duini Stopping Criterion for Backpropagation Learning 365

nnn-o\'erlapping classes : over U ipping classes:

Mean squared mapping error minimal Mean squared mapping error minima1

Classifier optimal Classifier SUBoptimal

F ig .l : For a learning set with non-overlappings classes, a global minimum in the mean squared mapping error
corresponds to an optimal classifier. For a learning set with overlapping classes, the global minimum in the mean

squared mapping error corresponds to a suboptimal classifier

mean squared mapping error, it does in fact tend to
a situation with decision boundaries around outliers,
because this corresponds to a lower point in error spa
ce.

From this we conclude that the optimal classifier for
a learning set with overlapping classes is surprisingly
found in a local minimum of the error space. For over
lapping classes it is therefore highly desirable that the
learning phase gets stuck in a local minimum! (N.B.
notice that for a learning set which is not sufficiently
representative for the underlying distributions of the
classes, the optimal classifier might not even corres
pond to a local minimum in error space).

Fig.2 : Ad hoc stopping criteria fail to stop the lear
ning phase at the correct moment.

3. A third problem is that there is no insight in the lear
ning process. Unless there is some explicit knowledge
of the underlying distributions of the classes in the de
cision problem, it is very difficult to decide in which
state the learning phase remains. Is the current state
the global error minimum? Is the current state close
to a ravine in error space? Is the network currently
learning an outlier of the classes in the learning set?,
etc.
Furthermore, it is not clear if learning should conti
nue until all samples are classified correctly (in the
case of separable classes), or until another stopping
criterion is reached (in the case of intrinsic overlap of
the classes). Due to the lack of a stopping criterion
that takes into account the state of the network in
error space, ad hoc criteria are applied. Examples of
these are (see Fig.2):

(a) continue the learning phase until the the mean
squared error is “sufficiently” low.

(b) continue the learning phase until the time-
derivative of the mean squared error is sufficient
ly low.

(c) continue the learning phase until a sufficient per
centage of the learning set is classified correctly.

Especially the first problem that is sketched above,
bears a close parallel to problems that are related to the
nearest neighbor classifier. For the nearest neighbor classi
fier, outliers of a different class will generate regions in
which samples will be assigned to the wrong class. This
deteriorates the performance of the resulting classifier. For
a multi-layer network, the learning procedure will try to

366 Kraaijveld, Duin: Stopping Criterion for Backpropagation Learning N N W 6 /9 1 , 366-370

separate these small regions around the outliers, because
this decreases the mapping error.

A solution for the problem of the outliers with the
nearest-neighbor rule is described by [3], and is called “edi
ting” . The editing algorithm effectively removes the over
lap in case of overlapping classes, i.e. it effectively separa
tes the classes. This results in a learning set from which
all outliers are removed. The main contribution of this pa
per is to investigate the behavior of the backpropagation
algorithm on edited data sets.

2. Learning of Edited Data Sets

The editing technique [3] is an algorithm that is used
to improve the performance of the nearest neighbor classi
fier as well as to reduce the number of samples in the
learning set. The algorithm removes the intrinsic overlap
(if any) between the classes in the learning set in such a
way that it hardly affects the position of the optimal de
cision boundary. However, erroneously classified samples
are removed (see Fig.3). In the context of nearest neighbor
pattern classification this largely improves the performan
ce of the resulting nearest neighbor classifier. In fact it can
be proven that, provided that the learning set is sufficient
ly large, the performance of the 1-nearest neighbor rule on
an edited data set is very close to Bayes-optimal.

For the experiments described in this paper, a special
version of the editing algorithm was used, which is called
the multi-edit algorithm. It consists of 5 steps:

1. Diffusion: Make a random partition of the learning
set S into N subsets Si, . . . , S/v, N > 2.

2. Classification: Classify the samples in S, using the
1-nearest neighbor rule with Ŝ i+[\̂[od N as a training
set, i — 1, . . . , N .

3. Editing: Discard all samples that were misclassified
at step 2.

4. Diffusion: Pool all the remaining data to constitute
a new set S.

5. Termination: If the last / iterations produced no
editing then exit with the final set S, else go to step
1.

Using an edited data set instead of non-edited data set
for the training of a multi-layer network is expected to
have the following consequences:

• By editing the data set, a very deep minimum is in
error space is introduced. Because the learning set
is now completely separable (although not necessari
ly linearly separable), this error minimum is also a
global minimum and has an error value of zero. The
stopping criterion for the learning phase has now be
come trivial: as long as not all samples are classified
correctly the learning phase should be continued.

• Because all outliers in the region of the other class are
removed from the learning set, there is no danger that
the performance of the classifier will deteriorate by
learning outliers, even when the network has a (very)
large number of hidden units.

• Although it is somewhat difficult to measure, it
appears that learning an edited data set is faster than
learning a non-edited data set. The difficulties with
the measurements are caused by the fact that the
learning time of an non-edited data set is based on
a certain (ad hoc) stopping criterion. Any figure for
the learning time can be produced, however, when
the parameters of this stopping criterion are chan
ged. Learning is therefore certainly faster in the sense
that we can make an earlier decision to stop the lear
ning phase. Notice that this improvement in speed is
derived by pre-processing of the data instead of an
adaptation of the learning procedure.

■ class A
• class B

Fig.3 : Data set 1 (left), and the data set after editing

N N W 6 /9 1 , 305-370 Kraaijveld, Dulns Stopping Criterion for Backpropagation Learning

1.5

1.0 •

0.5 ■

0.0 ■

- 0.5

.*»■ * . .
**■*. .'ii '* .r ■».?
• + . ««. *>

• ■ / V \ „ ,
. • ; r ■
■;■ i * '
■ ' -'v-i ■•■;•. /

- 1,0 -

- 1.5
- 1.5 -1 0 - 0.5

I
0.0
X

0.5
T
1.0 1.5

■ class A
• class B

Fig-4 • Data set 2 (left), and the data set after editing

• When there is no overlap in the classes, the editing
algorithm will not affect the learning set. Therefo
re, the editing algorithm can be applied in any case,
overlapping or non-overlapping, to assure that the re
sulting set is separable.

• The editing algorithm can be considered to perform a
transformation of the underlying removing the over
lapping part of the densities. It is important to realize
that it is this transformation that enables the use of
the new stopping criterion. By transforming the ori
ginal densities to the edited densities we can solve
the problem uf the stopping criterion in the original
domain.

• The editing algorithm, applied to network training as
well as nearest-neighbor classification, can be conside
red as a pre-processing step. However, there are diffe
rences in the goals to be reached in both cases. For
the nearest neighbor classifier the goal is the decrea
se of the size of the learning set and the increase of
the performance of the nearest neighbor classifier. For
network training, however, editing a data set aims
at influencing the error space of the learning process
such that a good criterion to finish the learning phase
can be found.

3. Experiments

To investigate the behavior of the backpropagation
algorithm on edited data sets, some experiments were
performed on two heavily overlapping circular symmet
ric Gaussian distributions Dataset l (see Fig.3) has both
means on the origin (0,0) and standard deviations 0,4702
and 0,1736. Data set 2 (see Fig.4) consists of two classes

with means (0,2, 0.2) and (-0.2, -0.2) and equal standard
deviations 0.333. The Bayes error for both learning sets is
20% . Each set consists of 1000 samples.

For both learning sets, the original set and its edited
version were used as a training set for a number of multi
layer feedforward net works. The networks consist of 2 in
put units, 10,20,50 or 100 hidden units and 1 output unit.
The parameters of the backpropagation algorithm were:
learning rate rj and momentum term a. A sample was
considered to be correct when the difference between the
actual output and the desired output was smaller than 0,5.
The learning phase for the edited data sets was terminated
when all samples were classified correctly.

Table 1 shown the perfomance of a trained network on a
large test set. Figure 5 shows a plot of the average perfor
mance on the learning set as a function of the learning
time.

4. Discussion

From the experiments that were performed, it appears
that the backpropagation algorithm with an edited data
set is a factor three faster when compared to a non-edited
dataset, provided that we had a good criterion to stop the
learning phase for a non-edited data set. In practical situa
tions therefore, the optimal stopping criterion results in a
considerable improvement in speed. What we also gain
ed with editing is the relative certainty that a reasonable
classifier is found, due to the introduction of a large near-
Baves global minimum in the error space. Though, we are
still not able to guarantee that the learning process finishes
in the desired minimum; in fact for large networks one can
st ill imagine global minima which are very undesirable, see
[!]■

368 Kraaljveld, Quint Stopping Criterion for Backpropagation Learning N N W 8 /9 1 , 385-370

T a b .l: The average performance of 50 trained networks on a test set of 25,000 samples.

average perform ance data set 1 (figure 3) date set 2 (figure 4)
non-edited
(percent)

edited
(percent)

non-edited
(percent)

edited
(percent)

10 hidden units 80.7 79.1 80.1 80.0
20 hidden units 80.3 79.0 80.1 80.1
50 hidden units 80.2 79.0 80.1 80,0

100 hidden units 80.1 78.7 80.0 80.0

nearest neighbor
classifer

74.7 78.9 74.0 79.8

Furthermore, it is remarkable that the performance of
a multi-layer network is not seriously deteriorated by the
overlap in the learning set, as is the case with the nea
rest neighbor classifier. It is clear that the algorithm does
not form small decision boundaries around outliers, as can
be expected from a procedure that is based on the mini
mization of the mapping error. The search for a global
minimum of the backpropagation algorithm is apparen
tly constrained by a mechanism that prevents that too
small groups of outliers form a separate decision bounda
ry. If this is also the case for the Boltzmann machine [5]
is doubtful, since the search for an error minimum of the
Boltzmann machine is based on an optimization method
which was designed to escape from local minima in the
error space [6]. It is therefore to be expected that the
Boltzmann machine more seriously suffers from defects
as sketched in figure 1. However, it will therefore bene
fit even more from the editing procedure. Essentially, trai
ning a network with an edited data set provides a stopping
criterion for any iterative learning procedure which opti
mizes the mean squared mapping error, whether this is
backpropagation, some faster variant of backpropagation,
the Boltzmann machine or any other iterative procedure.
Furthermore, it is interesting to realize that our method

T3

«0

oV

£3«

non-edited
edited

Fig.5: The average performance of a network with 10
hidden units on the leraning set during the learning phase.
Notice that leraning the edited data set stabilises at t= l,
whereas leraning the non-edited data set stabilizes at t=3.
Every point in this plot was a averaged over 50 instances
of a network. The simulations where performed on a SUN
4/280 with a simulator written in C.

changes the behavior of the learning rule, not by chan
ging the learning rule itself, but by changing the data set.
It might therefore be interesting to search for othe&j*>pe-
rations on the data set which also influence the learning
rule.

Some additional remarks on the editing algorithm: In
the first place, the editing step requires a certain amount
of computational effort. This is for the data sets of figure
3 and figure 4 typically 20 seconds of CPU time on a SUN
4/280. Although this implies that the total requirements
with respect to CPU time for the presented method are
higher, the advantage is the certainty of the new stopping
criterion. Without editing, one could train the network
for minutes without ever being sure that the performance
could not be improved.

In the second place, the editing algorithm requires that
the data is sufficiently representative for the underlying
distributions of the classes; i.e. when the data set is divided
over N subsets, all these subsets must on their own be
representative for the distributions.

Returning to the nearest-neighbor classifier, the step
which usually follows the editing of a data set is called con
densing [3]. The condensing algorithm removes all samples
that are not close to the discriminating function, there
by heavily reducing the size of the learning set. For the
nearest-neighbor classifier this results in a dramatic im
provement in classification speed; instead of computing
the distance to all samples in the learning set, only the
distance to a few (discriminating) samples has to be de
termined.

It is interesting to notice a parallel of the condensing
algorithm and the multi-layer perceptron: both represent
the discriminating surface only (instead of the complete
learning set). This leads to a large reduction of data re
sulting in an improvement of classification speed.

One can wonder if it is possible to speed up the learning
phase of the backpropagation algorithm by training the
network with a condensed learning set. The small subset
containing the discriminating samples would concentrate
the learning effort on the discriminating surface only. A
little thought learns, however, that its is not always the
case; the Euclidean metric which is used by the nearest-
neighbor classifier to determine the distance to a sample,
is not used by a multi-layer network. This is caused by the

NNVV 0 /9 1 , 365-370 Kraaijveld, Duint Stopping Criterion for Backpropagation Learning 369

□ class A
+ class B

not-condensed
■ condensed

F ig .6 : A data set (left), and the data set after condensing. In both data sets the decision function of a network that
was trained with the original data set, and the decision function of a network that was trained with the condensed set

are drawn. Notice that the decison function of the condensed set does not correctly classify the original set

inherent non-linearities of a multi-layer network. Whereas
the backpropagation algorithm simply aims at separating
classes, the nearest-neighbor classifier aims at separating
the classes by drawing a line exactly in the middle between
two samples (resulting in a Voronoi-tesselation of the fea
tures space). For the backpropagation algorithm it is not
essential that the decision surface is exactly between two
samples. As figure 6 shows, the differences between these
metrics are so large that learning with a condensed lear
ning set can give rise to a suboptimal classifier.

5. Conclusions

The editing algorithm effectively introduces a near-
Bayes global minimum in the error space of the back-
propagation algorithm. This has the advantages that it
is very likely that the learning phase will end in this mini
mum and that the learning speed is moderately improved.
Furthermore this editing technique results in an optimal
stopping criterion. Since this stopping criterion is based on
an operation on the data, instead of a change of the lear
ning rule, it can be applied for any iterative learning pro
cedure which optimizes the mean squared mapping error.

Experiments indicate that the search for the global mi
nimum in the backpropagation algorithm is essentially
constrained by a mechanism that prevents the formation of
decision boundaries around small groups of outliers. This
results in a very good performance for overlapping classes.

Acknow ledgem ents This work was sponsored by the
Dutch Government as a part of the SPIN/FLAIR-DIAC
project, and by the Foundation of Computer Science in
the Netherlands (SION) with financial support from the
Dutch Organization for Scientific Research (NWO).

References

[1] Baum, E.B.: On the Capabilities o f Multilayer Perceptrons. Journal
o f Complexity, Vol.4, 193-215, 1988.

[2] Bounds, D.G., and Lloyd, P.J.: A Multi-Layer Percpetron Network
for the Diagnosis of Low-Back Pain. Proceedings o f the SGÂICO
conference 1988, University o f Ziirich, QCt., 1988.

[3] Devijver, P .A ., and Kittler, J.: Pattern Recognition, A Statistical
Approach. Prentice Hall, 1982.

[4] Gorman, R.P., and Sejnowski, T.J.: Analysis o f Hidden Units in
a Layered Network Trained to Classify Sonar 'Pargets. Neural Ne
tworks, Vol.l, No. 1 , 1988.

[5] Hinton, G.E., and Sejnowski, T.J.: Learning and Relearning Boltz
mann machines. Chapter 7 in; Rumelhart, D.E., and McClelland,
J.L.: Parallel Distributed Proceesing; Explorations in the miciro
structure o f cognition V ol.l, MIT Press, 1986.

[6] Kirkpatrick, S., Gelatt, C.D.Jr., and Vecchi, M.P.: Optimization by
Simulated Annealing. Science, Vol.220, 671-680, 1983.

[7] Kraaijveld, M.S.: On the Application o f Connectionist Models for
Pattern Recognition, Robotics and Computer Vision: a Technical
Report. Delft University Press, Delft, The Netherlands, 1989,

[8] Kohonen, T., Barna, G., and Chrisley, R.: Statistical Pattern Recog
nition with Neural Networks. Benchmarking Studies. Proceesdins
o f the Neuro ’88 conference, Paris, June 1988.

[9] Rumelhart, I) E , Hinton, G.E., and Williams, R.J.: Learning In
ternal Representations by Error Propagation. Chapter 8 in; Ru
melhart, D.E., and McClelland, J.L.: Parallel Distributed Pro
cessing: Explorations in the micro structure o f cognition. V ol.l,
MIT Press, 1986,

[10] Sejnowski, T.J., and Rosenberg, C.R.: Parallel Networks that
learn to Pronounce English Text. Complex Systems, V ol.l, 145-
168, 1987,

[11] Waibel, A., Hanazawa, T ., Hinton, G., Shikano, K. and Lang, K.
Phoneme Recognition Using Time-Delay neural Networks. IEEE
Trans, on ASSP, Vol.37, March 1989.

Kraaijveld, Duin: Stopping Criterion for Backpropagation Learning N N W 6 /9 1 , 365-370

M O L E C U L A R -L E V E L N E U R O E L E C T R O N IC S

A.V. Samsonovich1

Abstract: New ideas of modern neural network models
molecular-level (ML) implementation based on Coulomb
correlated electron tunneling in molecular media are pro
posed; estimations of reachable parameters have been ob
tained. The neuronet approach proves to be more relevant
for molecular-level computers than the von Neumann one.

Key words: network models; Coulomb correlated electron
tunneling; molecular media; molecular-level computers;

Received: June 15, 1991
Revised and accepted: December 9, 1991

1. New Promise in ML Information Pro
cessing

While the earliest ideas of molecular electronics have
aroused hopes of fantastic possibilities for ML computing
[1-5] (spatial density of logical or memory elements up to
1018cm~3 in conjunction with an operation frequency of
the order of 1012s_1),it has been recognized that there is
no promising way to make use of these ideas in the fra
mework of the von Neumann approach or its counterpart
- multi-processor architectures - in the future [6],

On the other hand, the most promising trends in infor
matics, knowledge engineering and artificial intelligence
concern quite a different possibility, namely, the neuro
net (NN) approach [7-9]. Its hardware requirements are
adequate to ML element base features: very large degree
of integration and high parallelism are claimed; randomly
generated architecture of interconnections and low relia
bility of elements are to be allowed.

No doubt, quite new hardware is necessary for the
successful development of the NN approach; but is ML
necessary? Usually the integration, or the number of in
ternal elements in the device, is restricted by the num
ber of interface channels, which should meet traditional
microelectronics requirements. For example, in Hopfield
type NN models [8,9] we need only Ns = 0(iV2) internal
elements - synapses where N is the number of interface
channels coinciding with the number of neurons, each of
which has its own interface channel in the case of parallel
input/output. In the planar scheme of the crossed-strips

* A.V. Samsonovich
Institute for Microelectronics Technology, USSR Academy of Sciences,
Chernogolovka, Moscow District, 142432 USSR

type the synapse dimension /, may be equal to the cross-
section of interface channel (a strip) In , which is usually
on a micron scale. Thus, ML gives no gain in this case.
When is ML NN implementation necessary? There are a
few possible scenarios:

1. to use a 3-dimensional scheme: in the case of surfa
ce interface, the requirement Ns ~ N 2 leads to
/, ~ l3tf 4L~1/3 <C In (disregarding the volume occu
pied by axons and dendrites), where L is the device
dimension, the volume per synapse, CN the area
of the surface per neuron; but due to the spatial pac
king problem the volume per synapse /3 appears to be
much larger than the volume occupied by the synapse
itself, see Section 2.3;

2. to realize a sequential interface at ML, taking the pro
per model - see Section 2.4;

3. to use new NN models in which the number of effec
tively used internal elements may be much more than

T h e cro ss -s tr ip s type s ch em e o f possib le su b m icrom -lev el
m olecu la r -e lec tron ic im p lem en ta tion o f the H opfield m odel
[4] : 1 . . . input term in a l, 2 . . . ou tput term in a l, 8 ...con d u ctin g
m eta llic strip , 4 .. con d u ctin g strip , 5 ...lea rn in g m olecu la r
la yer, 6 . . .su bstra te, 7 . . .n eu ron (C M O S based).

The latter possibility is more attractive because current
promising NN models are exactly of this type. There are
two interesting directions in this field:

1. high-order nets [10], in which Ns >• N 2 ; and Boolean
nets [14], requiring a large memory matrix per neu
ron. In these models the number of neurons (nodes
of the net) remains equal to the number of interface
channels.

NNVV G /91, 371-382 Samsonovich: Molecular-Neuroelectronics

2. multi-layer (perceptron-type) cascade or cyclic ne
ts [11] and multi-nuclear models [12]. Here internal
layers or nuclei are local subnets consisting of hidden
neurons having no direct interface. Hierarchical mo
dels [13] arouse a great interest in the framework of
the second direction.

Realization of the latter models may possibly be achie
ved on a basis of a neurolike medium, i.e. a macroscopical-
ly uniform structure consisting of neuron-like elements of
different sorts, each having a large number of random in
terconnections of restricted length. Such a model appears
to be more useful for ML realization than Hopfield’s nets
with global interconnections. It can involve interface via its
surface shell only. More generally, it may be any suitable
non-linear multi-stable active medium, in which informa
tion can be transmitted long distances and memorized. In
such a medium, the hierarchical or multi-nuclear structu
re can be obtained by a self-organization process. Possible
ML implementations of random cellular automata, which
are similar to this (except for that they are usually consi
dered to be non-learning), have been discussed by Conrad
[15]. In our case, the interface problem could be solved if
the path of excitation in the medium (produced by the
input pattern) would depend on its informational content.
A concept of the management of spatio-temporal trajec
tories of activity peaks in the neural network based on
a triangle lattice of analogous neurons has been introdu
ced by Eckmiller [16]. Unfortunately, he considers a model
involving global interconnections.

Another interesting way to effectively use a large-volume
neurolike medium can be based on a parallel interface with
its domains: each local subnet obtains the same input, but
due to subnet specialization, only one of them will answer.
The response (provided it appears) should be different for
different subnets. Subnet specialization can be achieved
by means of competitive conditions which should be es
tablished during the learning procedure. For this case, the
ART models introduced by Gross berg [17] and probably
their modifications appear to be very useful.

As for the neurolike medium architecture, besides the
contiguous subnets, it may be assembled from a large num
ber of separate small-size neuronet devices with standard
microelectronic interfaces between them - thus we can ob
tain “a neurotransputer” . Both possibilities can be inter
esting from the practical point of view.

Thus we have two tasks for NN hardware designing
which can be solved at ML: 1) a small-size, inexpensi
ve perception- or Hopfield-type net comprising about
103 4- ID5 neurons, which can be used as a nucleus in a
large network or as an expert part of an intelligent system;
2) a large-volume neurolike medium, possessing unboun
ded possibilities of development.

It should be noted that if we know how to obtain access
and effectively use a large-volume neurolike medium with
internal bonds of restricted length via its surface shell on
ly, arid if molecular element synthesis is mastered, then
a qualitative leap can be performed in the field of infor
matics tools. As for other models, ML implementations

can lead to a quantitative gain only; the integration de
gree will be restricted by the possibilities of interface or
global interconnections. Thus, following the principle used
by Hawking [23] in the development of his theory of to
pological space-time structures, “to seek the key under a
lamp” , we should believe in the concept of a neurolike me
dium.

2. Mathematical Principles of the NN
Approach and Possible ML NN Architec
tures

2.1. General Principles

In general, the task of ML neuroelectronics is to develop
an associative memory device based on an attractor neu
rolike system (ANS) consisting of molecular-size elements.
The concept of the ANS [12] implies that relaxation of the
system to an attractor can be treated as pattern recog
nition, while learning consists of attractors and its basins
adjustment. Hence, the system should have at least two
groups of dynamic variables, or two subsystems, repre
senting respectively the short time memory (STM) and
the long time memory (LTM). An input pattern should
be represented in the system as a state of the STM. Its
evolution, depending on the LTM state, should lead to
an output signal production. During learning, the STM
should adjust the LTM state to agree the STM input with
its desired output given from outside. In fact, the latter
point involves the adjustment of attractors itself as well
as its basins. This adjustment should be governed by local
learning rules, i.e. changes in each part of the LTM should
depend on the state of parts of the STM intermediately
connected with it.

2.2. Hopfield’s Networks and Beyond: A Brief Re
view and Statement of the ML NN Elements De
signing Task

First, let us briefly review the main principles of current
NN models [8-11], which will be used below.

The typical dynamic equations of a Hopfield type model
in discrete time t are

<r,,+ 1 = s g n (h l - i) ,) , (2 . 1)

= ’ (2-2)
j

where Jij is synaptic efficacies, hi the membrane (or po-
stsynaptic) potential; i?, the neuron activation threshold
and a\ the Boolean variable taking values ±1 (which may
also be gradual; in this case we should use a sigmoid fun
ction / instead of sgn), attributed to the i-th formal ne
uron; 7j = crj. The /i-th input pattern is represented as a
set of {cr?} = {£ f }.

372 Samsonovich ¡ Molecular-Neuroelect ron tea N N W 0 /9 1 , 371-382

The local learning rules for associative memory have a
typical form (for example, the Widrow-Hoff form)

(2.3)

where /i is the pattern number (which may coincide with
time during the learning process), A the increase in Jt;
after n — th learning cycle, v = ¡1, and {erf*} patterns to
be stored.

In the case of a high-order net aimed at temporal se
quences storing and retrieving [10] one introduces ran
domly chosen nonlinear and time-delayed synapses, i.e.,
substitutes into (2.2),(2.3) the vector 7 assembled from
randomly chosen few-argument Boolean functions:

{7j} = K , a j
t - i

aiak
t„t- 1
iak

A f»T V , (2.4)
and substitutes i> = /i + 1 into (2.3).

In the case of the Boolean net [9] the state of each node
crsi+l is a Boolean function of c randomly chosen (once
and for all) other nodes (Tjt i . ..oy (o . In contrast to the
high-order Hopfield-type model, these Boolean functions
are learning themselves and we need 2C bits of memory
per node.

In layered feed-forward (or perceptron-like) models [6]
one usually chooses gradual tr, and writes instead of
(2.1.),(2.2)

N,

j
(2.5)

• cell body, or the neuron itself, which is either a
threshold/bistable or a non-linear amplifying element;
it receives the input signal from the dendrite and
supplies the output signal to the axon, in some mo
dels this element can also have an LTM (there may be
different sorts of these elements in the same network);

• synapse, which is a learning bond, transmitting the
signal with a definite weight (or probability) between
two neurons, either intermediately or with a given ti
me delay; in the case of a high order model it should
perform some non-linear transformation on signals re
ceived from source neurons and send the weighted re
sult to the destination neuron; its learning consists
in adjustment of its output weight, controlled by the
neurons connected;

• dendrite, or the dendritic tree, which should collect
signals coming to a neuron from synapses and sum
them; the function of non-linear signals mixture can
be attributed as well to the dendritic tree incorpora
ting synapses;

® axon, the counterpart of the dendrite, which distri
butes the signal coming out of the neuron to synapses
attributed to other neurons.

But this point of view may be not suitable for ML NN
implementations. Alternative possibilities can be based on
the dynamic and/or distributed rather than structural rea
lization of these elements. In a definite sense models which
we consider below are of that type.

where / = 1 .. . L is the layer number. Hence, now only
neighbouring layers interact with each other. The learning
rules are analogous to (2.3).

Hierarchical structure may be set by dividing layers into
clusters: now each hidden (internal) neuron receives sig
nals from neurons of one cluster of the lower layer and
sends output to only one neuron of the upper layer [13];
intralayer interactions are inhibitory.

The rnultinuclear net [12] consists of local subnets des
cribed by dynamic equations similar to (2,1 ,),(2.2.) inter-
nuclear connections are usually feed-forward and may be
introduced by different ways: 1) as copying of output sta
te of one nucleus to another using it as input state; 2) as
adding output of each neuron of one nucleus to the mem
brane potential of the corresponding neuron of another
nucleus at each moment of discrete time; 3) as adding to
membrane potentials hi, (2.2) the term given by (2.5),
where J/ • corresponds to internuclear communications.
The rules, by which learning and retrieval processes as
well as internuclear communications are switched on and
off, can be controlled by some special neurons inside the
nuclei.

The equations (2.1)-(2.5) can be simply reformulated in
terms of cr, taking values { 0, 1}.

Now we can say what kinds of elements are necessary
for ML NN implementations, In the case of a completely
parallel processing architecture they are:

2.3, Scaling Laws and the Hausdorf Dimension of
ML Neurolike Structures: Global vs. Local Inter
connections

Let us assume that we want to realize a Hopfield type
network, i.e. a network with global interconnections, as a
D-dimensional scheme (D=2 or 3). In the models under
consideration, the number of interconnections Ns should
be of the order of TV2, or more generally, TV, ~ N x (TV is
the number of neurons, x > 2 for high-order networks).
The LTM is provided by synapses, and TV, ;> TV. Without
loss of generality we may assume that synapses are im
plemented as separate localized objects or space domains.
It seems to be natural to suppose that integration degree
will be restricted by synapse dimensions r. The value of r
may be of the order of lOnm in the case of ML synapses
implementation and is taken as unity in our further consi
deration. Another significant value is axon/dendrite cross
section dimension d. It will be assumed to be of the sa
me order or less. The question is: how large may be the
effectively used part of the device volume V = LD, or how
large may be the number of effectively used ML elements
(synapses) contained in the device volume at given device
dimension L >■ 1 (in units of r)?

To proceed in the analysis of this question we intro
duce some general notations and relations. We denote by
TV0 ~ Ld the maximum number of synapses which may

N N W 6 /9 1 , 371-382 Samsonovich; Molecular-Neuroelectronics 373

be packed in the volume V = L ° . A half set of synapses
connected with the same cell body via axons and dend
rites together with these axons, dendrites and cell body
we call “a neuron” . Let us imagine that the volume LD
is divided into unitary cells by introducing any regular or
random space lattice with cell dimension a ~ r = 1. The
Hausdorf dimension [20] H o f a neuron can be defined by
the relation Vn ~ lH at / —► oo, where Vn is the number of
imaginary cells occupied or crossed by the neuron and / is a
typical neuron maximal size which in the case of global in
terconnections should be of the order of L. We assume that
neurons are closely packed in the device volume, but not
superimposed (i.e. the whole device volume is divided into
neurons). It leads to the relation N ~ LD~H. On the other
hand, N* ~ N, < No ~ LD, hence N < Nmax * LD,X.
Regardless of the spatial packing problem we can obtain
the optimal value of H from the condition that N reaches
its maximum: Hopt = (1 — l/x)D . Thus, the result is: If
H — H0pt and the spatial packing problem is solved, then
the volume is effectively used, i.e., a significant part of the
volume is occupied by actually used synapses.

But the spatial packing problem remains open. It invol
ves accomplishment of the next conditions: 1) the condi
tion of connectivity of a neuron; 2) the condition at which
each neuron should touch a large part of the other neu
rons (or different couples of other neurons in the case of
high-order models) by its synapses. These conditions lead
to some restrictions on the possible value of H.

Let x — 2: this case corresponds to “linear’ synapses. In
the planar case (D — 2, Hopt = 1), geometrical solution of
the packing problem is straightforward and is given by the
scheme of crossed strips (see Fig.O). As for D = 3 case, at
least one (rather involved) solution of the packing problem
providing H = Hopt — 3/2 does exist. But in general some
disorder in ML elements packing is unavoidable. When
we put neurons into the volume randomly to a certain
extent, we obtain H > Hopt (for example, in the case of
random closely packed linear chains H = 2 [21]). It leads
to N ~ LD~H < Nmar — LDi1opt .

How close can be H to Hopt? In general, the solution
of this question demands computer simulations [1G]. The
answer depends not only on a geometry itself but also on
technology of ML device assembly, Another restriction ari
ses from the condition that a signal path along an axon
(dendrite) should not be too long. For example in the case
o f linear chains their length in our units is Ls ~ LH. If
l ~ 1cm, r ~ lOnm and H = 2, we obtain L, ~ IQkm. It
would take a long time to transmit a signal along such a
chain. Thus, dendritic trees are necessary rather than li
near chains. This circumstance also enlarges the minimum
possible value of H .

If H > Hopt, then the effectively used volume N, be
comes negligibly small in comparison with LD at L —*
oo, because Ns ~ LX̂ D~H\ N,/No — Lx(d ~h)~d _

jn 0ther words, the Hausdorf dimension of
the effectively used device volume Htj = x(& — H) beco
mes less than D. In this case the total volume per sy
napse is V, = Lx(H-Hopt) ^ 1. In contradiction with

our previous assumption the volume LD appears to be
occupied by axons and dendrites rather than by synapses,
and volume per synapse is not of ML. In this case, the
integration degree is restricted by dendrite/axon cross-
section size d (which in fact has been taken as unity in
our considerations) rather than the synapse dimension r
- the latter is not relevant until it becomes considerably
large, r > Jj(h - h»pO x/d jn the units of d.

The situation is quite different if we use a model with in
terconnections of restricted length. In this case, obviously,
Hef = D, and ML can be retained in the limit L —+ oo. A
small fraction of global interconnections can be admissible
if we suppose that the characteristic neuron dimension is
/ ~ L°, c* < 1. It involves some constraint on the inter
connections length distribution. In this case we obtain in
a similar way that Hopt — (1 — \/x)-D/a. Hence, we may
admit the Hopt to be sufficiently large.

2.4. An Equivalent NN Model with Local Inter
connections

The main disadvantage of the models described in Se
ction 2.2 is the necessity of global interconnections which,
due to the spatial packing problem and the interface pro
blem, makes it unsuitable for ML implementations (see
Sections 1 and 2.3). In spite of the existence of NN models
based on the cellular automaton principles [13], the aim
of this Section is to describe a possible physical-like mo
del, or net, with local interconnections between nodes and
time distributed signal processing, i.e., a learning cellu
lar automaton model, which may be equivalent to models
with global interconnections, but is more suitable for ML
implementation.

Let us consider a multilayer system consisting of V ~
n.L internal nodes described by Boolean variables 7¡j £
{0 ,1 }, 1 = 1 . . .L, j = l , . . . N h Ni = m, N2 . . . N L = n,
and some other variables w\j providing { 7} is the STM,
while {w} is the LTM. We assume that these nodes are dis
tributed in a given volume V with mean nearest-neighbor
distance a, which we take as unity. For example, in the
case of molecular single-electronic implementation (see Se
ction 3.2) we can consider these nodes as molecules having
electron localization centers, and 7 ’s the electron occupa
tion numbers of these centers. The values w can be att
ributed to the chemical structure of the molecules or to
its conformation. We assume that the p-th input pattern
{<7,} = is introduced into the system bit at bit each
moment of discrete time t as a state of the interface layer

7i j = at> j - l , . . . m , t = l , . . . N . (2.6)

Initially, all 7 ’s are set to zero, and the system obeys
such evolution equations that the value of 7 each node
(except for nodes of the last layer L) is copied to another
neighbouring node at each moment of discrete time (which
may be given by external field impulses):

374 Samsonovich: Molecular-Neuroelectronics N N W 6 /9 1 , 371-382

i ,Kj' = y',i’ (2.7)

/' = ('(', j , t) € { l , l ± l] , /' # 1;) (2.8)

with nodes (/ ,j) , being neighbors. We suppose that
the mapping (2.8) is randomly generated for each moment
of time (it can be determined by molecular structure and
external field Et). Thus, the total set { 7} is mapped on
to itself with randomly chosen local displacements each
moment of time. For the sake of simplicity, we assume
that this mapping is non-degenerated, i.e., there exists
an unambiguous inverse reproduction / — /(/ ', / ,<) , j =
j (l \ j \ t) for each t. We may say that the input signals are
subjected to a diffusion process in the volume, hence, the
mean distance < rj > between the input point (1, jo) and
the current signal (or electron) location point is of
the order of t l!2 in units of a. The mean distance between
two subsequent signals (electrons) originating from the sa
me node is of the same order. We assume that input nodes
are spread uniformly in the input layer with mean distance
of the order of L between them, rn ~ n/L2.

Hence, at the time t = T ~ L 2 , we obtain an approxima
tely uniform, linearly decreasing to zero with l —> L, distri
bution of N input bits {a }, represented by {7} (~ 7717’s
per ď) in the volume V ~ m l? with the mean concen
tration c ~ N/L3 per node. If these signals move fur
ther according to (2.7), (2.8) during the time T ' — N ,
the each node may by passed by a signal approximately
cT‘ ~ N 2/L3 times. The last value can be close to unity,
if we take n ~ L3!2. Then we can say that each node is
related to approximately one signal, and each signal being
duplicated in m copies, passes approximately N.m nodes
during the time T' = N.

Each node (1 j) produces an output signal proportional
to tvij each time, provided that its occupation number
7¡j — 1. This signal may be: an electric current measu
red in the external circuit, which occurs due to an electron
displacement from one layer to another; an optical charac
teristic of the molecular center, depending on its charge,
etc. We assume the interface to be spatially non-sensitive
and sequential, i.e., that the total output signal h% is mea
sured in each moment of discrete time t during output,

= t = T + l . . . T + r. (2.9)
hi

These values {/**} can be stored in some additional me
mory and used for determination of {cr*} according to
(2.1) during the next retrieval cycle. We also might use
it without storing, immediately for the next moment of
time, using a slightly different variant of input. Thus, we
obtain a model which can be equivalent to the Hopfield-
type model (2.1)-(2.3), provided that the learning rules
have the form

< A w jj > = 0(6 - (2.10)

where £* is the desired output and < A wj j > denotes
mean value. Fortunately, these learning rules are local in
the physical sense, because each node should know only its
own occupation number and some global agent strength
which is proportional to — /** and can be supplied by
some external tools.

Now we can summarize the general characteristics of
this model. The density of actually and independently
used memory elements is of the order of molecular centers
(nodes) density - the very ML density in 3 dimensions.
The time of one input/output or retrieval cycle may be
of the order of t N 4!3 in units of our discrete time.
The number of electron tunnel jumps (as well as ML out
put signals) occurring in the volume at each moment of
discrete time is of the order of mN. The redundancy of
information representation is m.

One disadvantage of this model is that input/output
and retrieval time is too long (of the order of N 4̂ 3). This
difficulty can be overcome in a similar model involving a
small fraction of long-distance interconnections. By that,
we may achieve the input time T ~ N,

There are some reasons why this model is non-physical.
First, in real system, the states of y^J, , would depend
not only on the given yj j , but also on other 7*8. Thus we
obtain a high order model rather than the Hopfield one,
because y's represent some Boolean functions (2.4) depen
ding on several input bits. Second, information should not
be lost during the evolution process (2.6). But in a real
system the randomly generated transition rules (2.7),(2.8)
cannot be truly reversible. If the transition rules are com
pletely randomly chosen, then each signal should encoun
ter approximately cT ~ Lx? ‘ 1 other signals during the
input time T. If we want the information to be conserved
under these collisions, and if we want the model to be of
a not too high order, we should provide proper rules for
signals passing through each other at a node. This leads to
nodal elements being more complicated than simple elec
tron localization centers. Finally, all processes at ML are
probabilistic, Hence, we need sufficient redundancy rn 1
and should write equations in terms of occupation proba
bility distributions rather than occupation numbers. Des
pite that, in principle it is possible to implement such a
model on the basis of a partially ordered system assembled
from ML elements having sufficiently good reliability for
this purpose. But there exists another possibility, which
will be discussed in Section 4.

2.5. A Neurolike Medium Model

Here we consider a model, which in some respects is
close to the model of the brain cortex proposed by Eck-
miller [11]. Our model consists of two subnets (or layers)
of neurons, both involving interconnections of restricted
length. One of them, the transport layer, is a random
ly connected synchronous cellular automaton, consisting
of Boolean “neurons” , while the other, the master layer,
is exactly the hidden layer of the perceptron-type model
(except for some special dilution providing the restricted

N N W 6 /9 1 , 371-382 Samsonovich! Molecular-Neuroelectronics

bond length). Its input is the state of the transport layer,
while its output is a master field having its own nonli
near spatio-temporal dynamics. The master field controls
the activity level of the transport layer: it may arouse an
activity wave (AW) propagation, or even deflect, split or
eliminate it. The wave carries not only activity, but al
so information significant for the master layer. Hence, its
evolution may strongly depend on this information.

The results of the numerical simulations are shown in
Fig. 1. One sees the stat ionary states of the transport layer
(after approximately 10 iterations) at two different in
put patterns, which were introduced into the interface
shell (top rectangles). These simulations have been ma
de without any training of the master layer: the synaptic
efficacies have been chosen randomly once and for all. But
spatial configurations of the AW in the medium prove to
be dependent on its informational content (compare A and
B patterns). Sometimes splitting of the AW self-focusing
trajectory occurs (B).

u fv
: I

\ i 1
LI 1 1

FI J 1
I 1 II I

1 1 II
i U II

1 U II
! LI IJ

f v r
fv fv

fv f v
V f V 1 1

ÎV f v IV
v fv ' . r

'V '
\ '

V... \

IJ fv
V ; t; X . .

iy:!•■ i *•«' ■ *, ^
•vv& .. -ï4fv :

LI . & . !$; 'te-.' -
. 1 * -A* 7»; y •

v ... M : i %
a, 'jf*- • v. i> ¿C v A j i ,

F ig .l: Computer simulated activity wave propagation in
the two-layer nturolike medium. The transport layer is re
gular m the top patterns and randomly interconnected m
the bottom layers.

It should be noted that even in the case of the randomly
interconnected transport layer, the information of the in
put is not lost and reaches the bottom side of the square,
where it may be restored or processed by some additional
learning network

The rate of information decay during AW propaga
tion can be investigated using a simplified model of the
transport layer. Let us consider a chain of 7-bit arrays
{rr, i = 1 ,. . . , n, j = 1 ,... ,7), ffij € {0, 1). Let the
input pattern be represented by {<7] j) , and let the “dy
namic equations” be the next:

+ (2. 11)

wdiere XOR is exclusive “or” and we mention the periodi
cal

Fig.2: Informational correlation decay on distance in the
simplified model of the transport layer. 1 — I(n), normalized
on 7 bit; 2 - the values of mean activity < <Jn j >j .C —
0.05.

boundary conditions imposed on a in j. Then we introduce
a static noise: at some nodes (i* , j*) the rules will different:

Vt+\,j = <?ij *< T ij+1, (i , j) = (2.12)
We choose these nodes randomly with a density C.

Then we measure the information correlation between in
put {<7ij} and output {<7nj } defined as follows:

I (n) = £>({<Ti},{<rn})log2 p d i j j lp iK }) ’ (2'13)
{al

where P is the probability of realizing {a}. After all,
we average this value by realizations of the static noise

j") } -
The result is shown on Fig.2. We see the logarithmic

decay of the information correlation, while the activity
decay rate obeys the exponential law.

3. Possible Physical Bases of ML NN Im
plementations

3.1. General Statement o f the Task

There are a few conceptions of ML NN implementation,
each involving a definite choice of the class of NN models
and mathematical tasks, basic physical phenomena and
technological methods. All questions should be considered
jointly. After having made the choice, we come to the task
of designing the elements and architecture which has been
outlined in Section 2.

Despite a large variety of physical systems exhibiting
some neurolike features, there are too few physical pheno
mena which can be taken as basis for well-known NN mo
dels ML implementations, providing relatively good cha
racteristics. General questions are:

• what class of physical systems can be considered as
self-learning ANSs?

376 Samsonovich: Molecular-Neuroelectronics N N W 0 /9 1 , 371-382

• what groups of degrees of freedom can be considered
as the STM and the LTM?

• in what manner can a pattern be represented by the
STM at ML?

• how can we provide the interface?

• how can the local learning rules be fulfilled, providing
the adjustment of attractors and its basins?

• how can the learning process be switched off, provi
ding the LTM state be conserved for a long time?

• etc.

In this Section we present some physical possibilities of
answering these questions.

3,2. Molecular Single-Electronics

Here we consider the physical model of a single
electron tunnel transition in organic molecular structu
res. The term “single electronics” , introduced by Likha
rev, implies Coulomb-correlated single-electron tunneling
between submicron metallic particles at low temperatures
[24]. There exists a counterpart of this phenomenon at ML
which has slightly different physical origin: electron loca
lization at a molecular center in organic medium is due to
electron-vibron interactions rather than electron-electron
or electron-phonon relaxation. We may speak about the
small-radius molecular polaron as a localized unitary char
ge, which moves from one center to another by instanta
neous tunnel jumps (the localization time rjoc is usually
less than 10~14s).

Now we describe a physical model (which is a little
rough, but nonetheless clear), which can be taken as a
basis for the development of the electron localization cen
ters i and j of one (or two neighbouring) organic mole
cule^), incorporated in organic environment. We assume
the following:

£r > T > W > Iij, (3.1)

where £r is the molecular center reorganization energy,
determined by the electron-vibron interactions; T the tem
perature (we make use of units h = e = ks = 1); u> the
vibron mode frequency and 7tJ the electron tunnel Hamil
tonian matrix element. In semiclassica! approximation a
large distance between the centers r,j we have [26]

Iij - h exp[- a,j (rtJ - a)], (3.2)

here, a is the well dimension, is the tunneling electron
energy [26], rn is its effective mass (the effective tunnel
mass we assume to be on the order of the free electron
mass); ec, ev are respectively the conduction and the va
lence band energies of the environment or the first free and
the last occupied energy levels of the molecule. The value
of / o in the case of donor-acceptor coupling and/or in the
case of polar environment (like water) can be evaluated as
[25]

lo =: 1 /Hr*’ , (3.4)

while in the case of homogeneous centers in non-polar envi
ronment for hydrogen-like potentials we have

I0 ~ (q,j rtj)3/ 6Hrtj, (3.5)

where 71 is the dielectric constant.
The electron tunnel jump probability from the center i

to the center j under conditions (3.1) can be written as

Wij ~ v exp rp 2a iji’ij

where (omitting the numerical multiplier)

(3.6)

/ 0-exp(2 aa)
(erT)'n- ' ' '

is the activation energy, which can be taken in the
following form [28]:

■i]
(A*n-Mr)2

4er ’

-f (A fjj)© (A f,j),
|Afij j < 2fr,
lAe.-jl > 2£r ,

(3.8)

Acij = £j — and a is the electron energy level at the
center i regarding the electric field (the external field E
and local fields):

= e? + , V[j = In - rj |, (3,9)
j Hrij

where is the intrinsic energy level and r i j , rj are respec
tively the occupation number and the coordinates of j th
center, nj E {0,1}, r;- = (*,-, y j , zj).

These relations represent the formulation of the phy
sical model, which will be used in our further considera
tion. Usual values of parameters for typical organic mo
lecules and dielectric organic environments are [27-31]:
£r ~ 0.1 4- 0.5 eV, 7i ~ 2 t 4,w ~ 0.01 -f- 0.08 eV, a >
0.8.4-1 ,a ~ a -1 ; and the last inequality in (3.1) is appro
ximately equivalent to the condition [27]

or > 7. (3.10)

Rough estimations of relative transition probabilities
can be obtained without regard to non-exponential depen
dence of v on £i — £j, ¡'¡j and Ojj, as well as to the depen
dence of a ¡j on the electric field (global or local field). We

N N W 6 /9 J, 371-382 Samsonovich; Molecular-Neuroelectronics

also neglect the electron cloud polarization effects produ
ced by electrons jumping to electron energy levels due to
exchange interactions [32] because as the distance r grows,
the exchange interactions vanishes in comparison with the
Coulomb one.

Now let us consider the 3-center chain i — j — k with
the valent electron initially located at the ¿-center (if the
k-celiter is occupied by an electron, we may consider the
situation in terms of holes rather than electrons). There
are three main possibilities of the transition i —► k —► j :

1. Two successing transitions i —+ k,k —* j : according
to (3.2)-(3.8) we obtain the rough estimation

Wijk ~ min{lT,jb, Wkj } ~ r'exp{ - e amax/T - 2ar)
(3.11)

where £ îax, a, r are taken for the pair of centers, (i, k)
or (k , j), possessing the smallest W .

2. Virtual transition through the /-level (now its occu
pation number is irrelevant). A simple quantum-
mechanical consideration leads to the rough estima
tion

Wikj ~ T 7T~7 2 v exP(-~£ij ! T ~ 2aikrik ~ 2akj rkj),
(3-12)

where a is due to the ¿-level energy fluctuations and
may be taken as a value of the order of er .

3. Transition via thermal activation to the k-level, but
without thermalization on it. According to Dogo-
nadze h Kuznetsov [28], and omitting numerical and
logarithmic multipliers, we can write

W vikj ^ {v2/u)exY>(~£amax/T - 2a ikrik - 2akjrkj)
(3.13)

where e*lar = max{eg,- + A e ,;}.

3.3. ML Quantum Electronics

Electrons are not the only pretenders to information
carriers at ML. An alternative possibility concerns the uti
lization of some cooperative excitations in extended mole
cular structures. They may be chemically or eleetromag-
netically pumped coherend oscillations and boson fields
in one-dimensional extended molecular chains, which can
form a net. Similar things can be found in the realm of
molecular biology.

There exist a few types of one-dimensional biological
intracellular structures - components of the cytoskele-
ton, called filaments. They are: microtubules (MT), ac-
tin microfilaments intermediate filaments, microtabecular

lattices, etc [34]. It is difficult to say whether coherent ex
citations exist in these structures and carry any biological
function in the cell. Meanwhile, the soft collective vibratio
nal modes should exist in any extended ordered molecular
structure; and as soon as the environment is strongly non
equilibrium (i.e., the pumping into the hard modes take
place), the soft modes can be activated above the thermal
level, and various non-linear phenomena concerning these
kind of excitations should exist at proper conditions. They
can be used for ML signal transmission and processing. In
other words, we can create a laser-like situation (the inver
se occupation of modes) in a single molecular chain and
thus realize various phenomena of non-linear optics at ML:
soliton, propagation along the chain (whether altering the
state of the chain or not), bistability of the chain as a
whole, amplification of a ML signal, etc. These phenome
na can be considered as a possible physical basis for ML
MN model implementations.

From general arguments we can claim the following.
1) An energy pumping along the whole length of the fi
lament is necessary to obtain non-dissipative long-range
signal propagation along the filament. It may be bioche
mical pumping produced by the GTP or the ATP hyd
rolysis, etc. 2) The system should be close to the exci
tation threshold (or, in general, to a some kind of phase
transition) to be sensitive to a ML signal. 3) The intercon
nections between chains forming a net should be provided
by some other ML subunits, for example, the microtubule
associated proteins (MAPs) in the case of MT-based ne
twork. 4) The interface should be assisted by some external
agent (light, microwave irradiation, hypersound, etc), in
teracting with the soft cooperative modes. 5) The learning
process can be imagined as changing the network structu
re due to polymerization/depolymerization controlled by
the soft mode excitation.

There are a lot of possibilities for constructing models
of the Fröhlich type. The reader should believe that it is
possible to construct an abstract theoretical model star
ting from a Hamiltonian similar to (3.15), but involving
some additional high-order interactions, providing its so
lutions possess desired properties under the proper choise
of parameters. A more difficult question is its validity for a
particular physical system. The following situations can be
necessary for NN implementations, based on the network
of randomly connected ML chains: 1) The chain should
conduct non-decaying soliton-like waves, which are able to
pass through each other and to interact with some ML ele
ments incorporated into the chain. These ML inserts may
serve as memory, interface and/or valve elements in the
architecture, like the one considered in Section 2.4. 2) On
the contrary, the whole chain can be considered as the cell
body, if it is bistable by nature and can be switched from
one state to another depending on the total signal power
coming to it from adjacent chains via local ML learning
bonds. In this case, we may obtain the neurolike medium
architecture.

378 Samsonovich i M olecular-Neuroelectronics N N W 8 /9 1 , 371-382

4, Physical Models of ML Neurolike Sy
stems

4.1. A Multilayer LB-Film Based ANS

First, let us consider the Langmuir-Blodgett (LB) four-
layer fragment structure shown in Fig.3, bearing in mind
that we are dealing with a periodical multistructure com
posed of such chains. This hypothetical multistructure is
of the Y-type, 2-4 layers are composed of molecules having
conducting tails (i.e., the potential energy U of an elect
ron in this tail is less than that of the environment, see
Fig.3b). For example, this tails may be chains with conju
gate bonds. There are three sorts of molecular heads: deep
donor, shallow acceptor and intermediate acceptor. Mole
cules with acceptor heads are the main components of the
structure. They are diluted by the molecules with donor
heads with concentration c. Some donors are occupied by
electrons and hence are neutral, others are free and po
sitively charged. The compensating negative charges can
be located anywhere within layers and are supposed to be
fixed (deep acceptors, not shown). The layer number 1 in
Fig.3a differs from the others only by molecular tiles: he
re molecules with donor heads have only conducting tails,
while the molecules with acceptor heads have tails with
saturated hydrogen bonds (not shown). This is the static
picture.

Dynamics begins when we apply the electric field E —
(0,0, F1.), E = E, to the structure. First, each elect
ron can jump from one head (or localization center) to
another in the vertical direction z provided that it gains
energy when jumping. Otherwise the jump probability is
exponentially small. We suppose that deep donors have
different energy levels, due to the local environment or
to variations in its chemical structure. Hence, the condi
tion of jumping depends on the center. Let us suppose
that the electric field is applied during a short time t\,
which is sufficiently large in comparison with the time of
the allowed vertical transition rv, but small in comparison
with the intralayer relaxation time 77, . This condition im
plies the good inequality tv <C 77, , which can be met by
an appropriate choice of potential barrier heights between
molecules. See Section 3.1.

After the electric fields is removed, electrons which have
jumped begin move from center to center in the layer. The
probability of coming back to the previous layer is small
due to the energy loss during the localization process. This
motion, consisting of tunnel jumps, can be roughly consi
dered as a deterministic one if local fields inside the layer
produced by charged donors are sufficiently large. Hence,
we may speak about intralayer electron drift in the local
field. This drift terminates when the electron achieves a
donor. It can be the same donor each time when this pro
cess occurs for a given initial electron location. For the

O O O 0 O O O O O O O O # O O O O O O O O O 0 O
o □ 0 0

2

0 0 0 0 0 0 0 0
□ a o 1

I I I I I I I
o o o o o o ♦ o o

o

□ □ □ □

0 0 0 0 0 0 0 0 0 0 0 0
□ n a

n
0 0 0 0 0 0 0 0 0 0 0 0

□ □

Fig.3: A fragment of the LB multistructure (a) and its
energy diagmm (b). Vertical lines are conducting tails,
deep donors 0 intermediate aceptors, dots - a possible
electron trajectory in the alternating electric field { Et} =
{ E0, — E„> E0], □, • - points of localization of the electron.

N N W 6 /9 1 , 371-382 Samsonovich: Molecular-Neuroelectronics

probability of error to be sufficiently small, the concentra
tion of donors' c should lie within definite limits.

Now let us suppose that we have the multistructure
composed from the fragments considered above, which is
put between two electrodes. Electrons are injected into the
first layer from the top electrode every time the electric
field E exceeds some threshold value E0. The field of diffe
rent signs and values in a quasi-random sequence is applied
periodically by pulses with the period t0 = 1. Their fur
ther motion is similar to that of the model described in
Section 2.4, but is like a drift with diffusion rather than a
pure diffusion. Due to this feature we need a large number
of extra layers (of the order of TV4/ 3) which cannot be used
for learning (the main principles of usage of this structu
re have been described in the Section 2.4). On the other
hand, the number of layers is restricted by admissible de
gree of the stochasticity of the electron trajectory. The
problem can be solved by using the cross-strips scheme, in
which the interface becomes sequentially-parallel. In this
case the necessary number of layers can be less than N.

4,2. A bou t subm icron level im plem entations o f NN
m odels

There exist many possibilities for molecular based NN
model implementations at the micron and submicron le
vels, which are more realistic than the ML ones. Optical
implementation seems to be the most promising among
them. But in this Section we describe some other ideas.
Namely, we consider a few variants of the synaptic chip
based on crossed strips geometry (see Fig.5). The task
is to provide a variable element (resistor or capacitor) in
each cross. Sandwich structure of the cross is preferab
le, but it is not always admissible in physics. For exam
ple, let us consider a superionic materials based structure
(see Fig.4). We have a variable layers at the interfaces 1-2
can be the crossed strips of Fig.5, and electrode 4 should
be connected with another strip via a threshold element
(MOSFET, diode, etc). The learning rules realization is
straightforward. Learning is provided by passing a defini
te electric charge in the circut 3-4. The problem is to cut
off the electrode 4 after learning for a long time.

Another possibility concerns electron beam access asso
ciative memory. We can realize the operation (2.2) of mul
tiplying a vector by a matrix if we store the matrix as a
property of the surface which is subjected to the electron
beam, and if we cause the beam to scan this surface in di
rection x during vector input and in direction y during the
readout of the result. The application of the cross-strips
scheme together with the matrix of catodes may enlarge
the degree of parallelism.

5, Discussion: The NN vs, the Von Neu
mann Approach in ML Electronics

In conclusion, we can say that the NN approach is more
appropriate to ML electronics than the von Neumann for
many reasons.

• It appears that the ML computer cannot be compe
titive with traditional semiconductor based compu
ters in usual calculational tasks in the near future.
On the other hand, artificial intelligence tasks, which
appear as ones of exponential complexity for von Ne
umann computers, became more and more topical to
day. They demand application of the NN approach,
based on a non-traditional hardware.

• The von Neumann architecture and methods of infor
mation processing encounter many problems at ML:
1) it is impossible to build a macroscopic device of a
given architecture with atomic accuracy in the near
future, even using biotechnology and self-assembling
methods; 2) lesion at ML is unavoidable during ex
ploitation (at least due to cosmic radiation effects);
3) problems of organizing parallel logical operations
become too difficult as the number of computing ele
ments increases. On the other hand, the NN approach
is consistent with high parallelism and partially disor
dered architectures and allows a relatively large frac
tion of defects to arise during exploitation.

• Possible physical principles of information representa
tion, transmission, processing and storing at ML are

Fig.4: A superionic conductor (1) based variable capacitor
which can be used as a synaptic element. 2,3 - passive
electrodes, 4 ~ reversible electrode, 5 - dielectric substrate.

380 Samsonovich! Molecular-Neuroelectronics N N W 0 /9 1 , 371-382

more consistent with the NN approach rather than
the von Neumann due to its probabilistic and analog
nature.

• The traditional von Neumann type computer deman
ds a high degree of reliability of its elements: the pro
bability of error per logical operation should be less
than 10” 25 for a large present-day computer. This
is physically impossible for ML elements. The situa
tion becomes more dramatic when the integration de
gree N increases. Of course, we can introduce a lar
ge redundancy and make use of different self-control
methods, but it means returning to non-ML. As for
ML NN computer, its reliability increases with N, and
a high reliability of each element is not necessary.

• The addressing problem is very difficult to solve at
ML, when it is necessary to send a given signal to a
molecule located at a given space point. But in the
case of an NN device, only the reproducibility of ran
domly generated addressing is necessary. We need not
know where the destination molecule is located, and
the destination molecule need not know from which
source the received signal originates.

• This ML interface problem is rather complicated for
the von Neumann computer. The number of interface
terminals of a traditional chip grows with N faster
than AT1/ 2, when N is the integration degree. Thus,
N is restricted by interface possibilities even for sub
micron level device. As for ML neurocomputers, we
have seen that the interface problem in principle can
be solved.

• Another aspect of the ML interface problem is am
plification of a ML signal to the macroscopic level. It
is rather difficult when the signal is produced by one
molecule. But in the case of NN ML computer a sig
nal received by a neuron is the sum of a large number
of ML signals, hence, it is not of ML.

• Present-day basic ML technological methods, such as
the LB technique, are inconsistent with the demands
of the von Neumann approach at ML, but can be used
for ML NN computer assembling, as we have seen in
Section 4.

References

[1] Carter, Forrest L., ed. (1982) Molecular Electronic Devices, Marcel
Dekker, New York.

[2] Carter, Forrest L., ed. (1987) Molecular Electronic Devices-Il, Mar
cel Dekker, New York.

[3] Carter, Forrest L., et al., eds. (1988) Molecular Electronic Devices,
North Holland, Amsterdem.

[4] Emerging technologies no.9. (1983) Molecular electronic: beyond
the silicon chip, Technical Insights, Fort Lee, New Jersey, Libary
of Congress Catalog No.83-050975.

[5] Aizava, Masuo, ed. (1985) Proc. o f the International Symposium on
Future Electron Devices (FED BED/M ED Symposium). Chiyoda-
ku, Tokyo.

[6] Haddon, R.C., and Lamola, A.A. (1985) The MED and the biochip
computers: present status. Proc. Natl. Acad Sci. 222, 1874.

[7] Haken, Hermann, ed. (1988) Neural and Synergetic Computers,
Springer-Verlag, Berlin,

[8] Hopfleld, John J. (1982) Neural networks and physical systems with
emergent collective computational abilities, Proc. Natl. Acad. Sci,
79, 2554-2558.

[9] Hopfleld, John J. (1984) Neurons with graded response have collec
tive computational properties like those o f 2-state neurons, Proc.
Natl. Acad. Sci. 81,3088-3092.

[10] Personnas, L,, Guyon, I., and Dreyfus, G. (1987) High-order neural
networks: information storage without errors, Europhys. Lett. 4,
863-867.

[1 1] Amari, Shun-ichi, (1988) Associative memory and its statistical
neurodynarnical analusis, in ref. 2, 85-99

[12] Amit, Daniel J. (1990) Attractor neural networks and biological
reality , associative memory and learning, Proc. of Intelligent Au
tonomous Systems, Univ. of Amsterdam (in press).

[13] Dotsenko, Victor S. (1986) A layered hierarchical model of memory,
Sov. Phys. JETP Lett. 44, 151-153.

[14] Wong, K. Y. M., and Sherrington, D. (1989) Theory of associative
memory in randomly connected Boolean neural networks, J Phys,
A 22, 2233-2263.

[15] Conrad, Michael, and Hong, Felix T (1985) Molecular computer
design and biological information processing: an electrochemical
and membrane reconstitution approach to the synthesis of a cellular
automaton, in ref. [le], 89-94.

[16] Eckmiller, R. (1988) Neural Nets for the Manajement o f Sensory
and Motor Trajectories, in ref. [2], 229-239,

[17] Carpenter, G.A , and Grossberg, S. (1988) Self-organizing neuronet
architectures for real-time adaptive pattern recognition, in ref. [2],
42-75

[18] Proc. of the IEEE International Joint Conference on Neural Ne
tworks. San Diego, July 1989

[19] Rujan, P. (1988) Cellular automata and moddels of memory, in
Jeam Delacour and J.C.S. Levy (eds), Systems with learning and
memory abilities, North Holland, Amsterdam, 571-596.

[20] Mandelbrot, Benoit B. (1976) The Fractal Geometry o f Nature,
Freeman, New York.

[21] de Gennes, Pierre-Gilles (1979), Scaling Concepts in Polymer Phy
sics, Cornel Univ. Press, Ithaka

[22] Pietronero, Luciano, and Tosatti, Erio, eds (1986) Proceedings of
the Sixth Trieste International Symposium on Fractals in Physics,
North Holland, Amsterddam.

[23] Hawking, Stewen W ., Euclidean theory of gravitation, in Recent
Developements in Gravitation, Plenum Press, Carges, 1978.

[24] Likharev, Konstantin K., Mikroelekronika 16, 195-209, 1987.

[25] Kuznetsov, Alexander M , priv. comm.

[26] Ivanov, G.K., and Kozhushner, M A,, Theory o f interimpurity elec
tron tunneling in solids, Sov. Solid Science, 20, 9-16.

[27] Kapinus, Eugene I. Photonics o f Molecular Complexes, Naukova
Dumka, Kiev (in russian), 1988.

N N W 6 /0 1 , 371-382 Samsonovich: Molecular-Neuroelectronics 381

[28] Dogonadze, K.R., Kuznetsov, A M., and Marsagishvili, T.A. The
present state o f the theory of charge transfer processes in condensed
phase Electrochim A cta 25, 1-28, 1980

[29] Movaghar, B., J Mol., El., 3, 183, 1987.

[30] Volkenstein, M.V. Biophysics, Nauka. Moscow, 1988.

[31] Simon, J , and Abdre, J J. Molecular Semiconductors Photoelec-
trical Propesrties and Solar Cells, Springer-Verlag, Berlin, 1985.

[32] Wilson, S. Electron Correlation in Molecules, Clarendon Press,
Oxford, 1984

[33] Larkin, A.I., and Matveev, K.A Current-voltage characteristics
o f mesoscopis semiconductor junctions, Sov.Phys. JETP 93, 1030-
1038, 1987.

[34] Bershadsky, A D., and Vasiliev, J.M. Cytoskeleton, Plenum Press,
New York and London, 1988 Alberts, B, et al. Molecular Biology
o f the Cell. Garland Publishing, Inc., New York &c London, Vol. 3,
Chap.10, 1983.

Literature Survey

Utsugi A ., Ishikawa M .: Construction o f Inner Spa
ce Representation o f Latticed Networks Circuits
by Learning
Neural Networks Vol.4, 1991 No.l pp.81-87

Key words: parallel sensor; analog resistive circuit.
Abstract: A position-detective sensor with an intrinsic

inner coordinate system using a parallel calculation sche
ma is proposed. The schema keeps the calculation time
independent of the resolution or the size.

W ang J.F ., W u C h-II., Chang S-H., Lee J-Y .: A
Hierarchical N eural Network M odel Based on a
C /V Segm entation A lgorithm for Isolated M anda
rin Speech R ecognition
IEEE Transactions on Signal Processing Vol.39, 1991 No.9
pp.2141-2146

Key words: neural networtks.
Abstract: A novel algorithm simultaneously performing

consonant/vowel (C /V) segmentation and pitch detection
is proposed. Based on this algorithm, a consonant enhan
cement method and a hierarchical neural network scheme
are explored for Mandarin speech recognition.

W ang L .X ., M endel J.M .: Cum ulant-Based Para
m eter Estim ations Using Structured Networks
IEEE Transactions On Neural Networks Vol.2, 1991 No.l
p p . 7 3 - 8 3

Key words: structured networks.
Abstract: This paper develops a two-level three-layer

structured network to estimate the moving-average (MA)
model parameters based on second-order and third-order
cumulant matching.

Yan H.: Stability and Relaxation T im e o f Tank and
H opfield ’s Neural Network for Solving LSE P ro
blem s
IEEE Transactions on Circuits and Systems Vol.38, 1991
No.9 pp. 1108-3110

Key words: neural networks; LSE problems; stability;
transformations; eigenvalues.

Abstract: The network can also be used for solving li
near least squares error problems. It is shown here the
stability of the network is guaranteed even under weaker
conditions. More accurate formulas are derived for deter
mining the relaxation time of the network.

Yao Y ., Freeman W .J ., Burke B ., Yang Q.: Pattern
R ecognition by a D istributed Neural Network: An
Industrial A pplication
Neural Networks Vol.4, 1991 No.l pp.103-121

Key words: autoassociator; back propagation; chaos;
feature enhancement; olfactory system; pattern recogni
tion.

Abstract: In this report, a distributed neural network
of coupled oscillators is applied to an industrial pattern
recognition problem. The network stems from the study
of the neurophysiology of the oilfactory system.

Zak M .: A n U npredictable-D ynam ics A pproach to
Neural Intelligence
IEEE, 1991 pp.4-10

Key words: dynamics; neural intelligence; neural net
works.

Abstract: This dynamic neural-network architecture ta
kes advantage of the notion of terminal chaos to process
information in a way that is phenomenologically similar
to brain activity.

Zhou D .N ., Cherkassky V ., Olson D .E .: A Neural
Network A pproach to Job-Shop Scheduling
IEEE Trans, on Neural Networks Vol.2, 1991 No.l pp.175-
179

Key words: analog computational network.
Abstract: This paper presents a novel analog compu

tational network for solving NP-complete constraint sa
tisfaction problems, i.e., job-shop scheduling.

382 S am son ov ich : M o lecu lar-N eu roe lectron ics N N W 6 /9 1 , 371-382

TUTORIAL

A VIEW ON NEURAL NETWORK
PARADIGMS DEVELOPMENT

(Part 6)

J.Hořejš 1

Here we continue in the tutorial paper concerning
the neural network paradigm, which first part was
published in the Neural Network Word. No. 1,
1 9 9 1 .

Fig.30 shows a possible coverage of two input space
classes by the fields of influence. Those hyperspheres, which
cover one of them are connected to the same output neu
ron. Note also the existence of black areas, in which fields
intersect (while A and B do not).

While the main idea is simple and hopefully has been
fully understood, there are still some intricacies to be awa
re of. When a field of influence (hypersphere) has to shrink
because of a newcomer y *, it may happen that some of for
mer input vectors (x' in Fig. 31) except the ’’ founder” -
prototype X\ can fall out off the field. In that case the ’’ ex
pelled” inputs simply establish new fields of their own with
radius equal or slightly less to 1 or to the biggest distance
which will not cover alien vectors (y in Fig. 31); by this

^Prof, Dr. Jiří Hořejš.CSc.,Department of Computer Science,
Charles University, 118 00 Prague 1, Malostranské nám.25,
Czechoslovakia

expansion they can of course cover other inputs of their
own category (x ") so that not everybody who was just ex
communicated from the paradise is necessarily compelled
to build its own field.

Anyway you have to check sooner or later, but before
the working mode is entered, whether shrinking and ex
panding process has placed all learned inputs in the proper
category. The algorithm itself is however so simple and effi
cient that this can easily be accomplished even in real time
applications, when the two modes are interleaved. Compa
red to iterative methods like back-propagation, it is very
quick and if you extend it by canceling fields that are no
more necessary (when the remaining ones cover the whole
classification classj, it is even memory effective. Note al
so that it does not require complete cross connection of
neurons between two adjacent layers, namely hidden and
output one.

The only drawback of RCE paradigm is that it is prima
rily classification oriented, so that it gives boolean outputs
only. This lack of generality is on the other hand (partially)
compensated by ability of easy and ’’ natural” generaliza
tion: if a previously unknown input pattern x is covered
by some hypersphere h, then: if the radius of h is small,
then it is close (in sense of Euclidean metrics) to the pro
totype of h] if it is big, there were in the training set T no
counter examples which would justify why not to answer
in the same way as to the prototype of h. Of course in a
particularly messy environment full of exception, even the
best net might be confused.

The RCE net is simple to program and this provokes to
build the whole hierarchy of them. Given together, they
form the so called NESTOR system, which will be now
briefly described. Let us emphasize that, as you have pro
bably noted, even with RCE networks, there are many
variants possible; also here we will describe general strate
gies rather than the particular system (version etc) which
may have been chosen when releasing a specific product
[described in a company manual].

N N W 6 /9 1 , 383-384 HořejŽ: Neural Network Paradigma Development

Note. If you are not afraid of more complicated calcu
lations, you can replace hyperspheres by other covering
hyper objects, like ellipsoids, intersections of hypersphe
res etc. Thus in -b) above you could instead of shrinking
hi use the difference of hi and h2,

III.The Nestor Development System, NDS.
Assume now that you have several ECE nets - modules.

Every module is assigned a priority level. A Class Selec
tion Device, CSD, combines the results of single modules
to elaborate the final answer.

From the CSD function we can easily see, that the mo
dules should be different.

One possibility how to make use of it is the following. In
order to categorize the input space, several different views
can be taken; then we also get different characteristics of
the objects to be classified and arrive thus to different
input vectors and the features they use. Or, possibly, to
divide one big feature vector into several subvectors.

For example we can distinguish different features of
people: one sort of input vectors will care about their phy
sical properties, the other will prefer psychological ones;
or, if you like to recognize a person just entering the room,
one point of view may concentrate on his/her voice, the
other on visual appearance, the third one on his/her odor.
When recognizing an illness, you may distinguish results of
simple X-ray, computer tomography, magnetic resonance
and sonar examinations. In the technical control or quali
ty tests you can have data measured by sensors based on
different principles or different wave bands. In recognizing
true signatures/ underwritings (on checks, say) from for
geries [one of the first commercially success of NESTOR],
you can take the whole sequence of direct digitized han
dwritten characters, or various measures of signing pro
cess like total time spent, maximal acceleration of the pen,
number of pen lifts, proportion of highest and lowest letter
etc.

All of them can be evaluated by different modules; and
from the examples it should be also clear that some da
ta are naturally more relevant then others, giving thus
natural priority assignments. On the other hand a quite
unambiguous statement of several generally less perfect
devices can be decisive in case of unconvincing judgment
of a more sophisticated one.

And here comes another property of modules into the
game. In some cases, the RCE algorithm is not able to co
me to the unique answer: introducing in working mode an
input not from T, more than one or none output neurons
can be stimulated; this is due to the fact that you can
almost never cover a given input class by finite number
of hyperspheres exactly. When several such classes almost
touch each other (euclidean distance between them is very
small) and their shape is highly irregular, it may be prac
tically problematic even in the adaptive mode requiring to
create too small fields of influence! [Typically, prototypes
with thresholds below some minimum size are after some
time deleted from the memory.] Thus particular modules
can - besides showing excited output neurons - also give a

summary answer " confused-c” or "unidentified-**” [while
we expected "identified-*” tag].

There can be several selection strategies of CSD. If one
or more highest priority modules produce the *-tag, their
answer is probably correct. If several high priority modules
(even confused) share the same class C as an answer, whi
le others at the same priority level share anther one C’,
simple voting can be accepted. Otherwise you go to the
next lower priority level and repeat the procedure. You
can however design another strategy, depending among
others how important the final verdict is.

There is the possibility to introduce other modules (of
low priority, say), if you feel that the answer is not convin
cing etc.

Again, the described system can be extended to the
case, when two or more fields deliberately intersect, see
Fig.32. This corresponds to the case that we are not dea
ling with a single unique classification (a partition of input
space into disjoint classes), but admit two or more classi
fication criteria. If for example cars are sorted according
to price, motor power, color,.. . , there may be [expensive,
big, blue ...] cars along with [cheap, small, orange ...], [ex
pensive, small, orange, ...] ones etc. Two or more hidden
neurons covering in their influence fields all of them can
then be attached to more than one categories, i.e. to mo
re than one output neurons. In Fig.32 two classes A nad
B are shown, the members from the intersection of which
belong to two categories.

y
Fig.32: Objects belonging to two categories

It is also possible to introduce some fuzziness; in that ca
se the hidden neurons will produce not a boolean output,
but any number between 0 and 1, say, where this number
is given by a measure of closeness of incoming new input
vector x' to the prototype vector x of the hidden neuron
h with threshold p (or its original size p — 1). The output
f of h is 0 for d(x',x) > p and 1 for d(x',x) = 0 while
for 0 < d(x',x) < p will assume a value from the interval
(0,1); there are many eligible transfer function of this sort
and you can generally choose. Also the role of CSD will
be more complicated and you can be inspired by expert
systems how to add credibility contributions coming from
particular hidden neurons to establish the credibility of
the summing category output neuron. [Let us recall that
this description does not distinguish between a concrete
commercially available product of NESTOR, Inc. and ge
neral ideas which do or might solve in a different way the
tasks under consideration.]

(Continuation)

H oře jš í N eu ra l N e tw o rk P a ra d ig m s D e v e lo p m e n t N N W 6 /8 1 , 383-384

Instructions to authors

1. Manuscript
Two copies of the manuscript should be submitted to the Editor-in-Chief.

2. Copyright
Original papers (not published or not simultaneously submitted to another journal) will be reviewed. Copyright for published papers will be
vested in the publisher.

3. Language
Manuscripts must be subm itted in English

4. Text
Text (articles, notes, questions or replies) double space on one side of the sheet only, with a margin of at least 5 cm, (2 “) on the left. Any
sheet must contain part or all o f one article only. Good office duplication copies are acceptable. Titles o f chapters and paragraphs should
appear clearly distinguished from the text.
Author produced (camera ready) copy is acceptable if typed on special sheets which are available from the Editor, and adnerence to the
Typing instructions (also available from the Editor) has been taken care of, is emphasized that camera ready text should be typed single
space (i.e. with no space between the lines), Complete text records on 5 1/4” floppy discs are also acceptable, if typed according to the
instructions available from the Editor.

5. Equations
Mathematical equations inserted in the text must be clearly formulated in such a manner that there can be no possible doubt about meaning
of the symbols employed,

8. Figures
The figures, if any, must be clearly numbered and their position in the text marked. They will be drawn in Indian ink on white paper or
tracing paper, bearing in mind that they will be reduced to a width of either 7,5 or 15 (3 or 6 “) for printing. After scaling down, the normal
lines ought to have a minimum thickness of 0,1 mm and maximum of 0,3 mm while lines for which emphasis is wanted can reach a maximum
thickness of 0,5 mm. Labelling of the figures must be easy legible after reduction. It will be as far as possible placed across the width of
the diagram from left to right. The height of the characters after scaling down must not be less than 1mm. Photographs for insertion in
the text will be well defined and printed on glossy white paper, and will be scaled down for printing to a width of 7,5 to 15 cm (3 to 6”).
All markings on photographs are covered by the same recommendations as for figures. It is recommended that authors o f communications
accompany each figure or photograph with a descriptive title giving sufficient information on the content of the picture.

7. Tables
Tables of characteristics or values inserted in the text or appended to the article must be prepared in a clear manner, preferably as Camera
Ready text. Should a table need several pages these must be kept together by sticking or other appropriate means in such a way as to
emphasize the unity o f the table.

8. Summaries
A summary of 10 to 20 typed lines written by the author in the English will precede and introduce each article.

9. Required information
Provide title, authors, affiliation, data of dispatch and a 100 to 250 word abstract on a separate sheet. Provide a separate sheet with exact
mailing address for correspondence.

10. Reference
References must be listed alphabetically by the surname of the first author. List author(s) (with surname first), title, journal name, volume,
year, pages for journal references, and author(s), title, city, publisher, and year for the book references. Examples for article and book
respectively:

[1] Dawes, Robyn M. and Corrigan, Bernard: Linear models in decision making, Psychological Bulletin, 81 (1974), 95-106.

[2] Brown, Robert G.: Statistical Forecasting for Inventory Control, New York: McGraw-Hill, 1959.

All references should be indicated in the manuscript by the author's surname followed by the year of publication (e g., Brown, 1959).

11. Reprints
Each author will receive 25 free reprints o f his article.

b î-bô

This is
KNIHOVNA AV CR

PE 6738 ?
1 (1991) c . 1-6

Technology
S e a g a t e ' s l i n e o f h a r d d i s c
d r i v e s i s p a c k e d w i t h
h i g h t e c h n o l o g y . A n d
e v e r y o n e i s b u i l t t o t h e
h i g h e s t q u a l i t y a n d
r e l i a b i l i t y s t a n d a r d s i n
t h e i n d u s t r y .

A n d n o w , S e a g a t e
d r i v e s a r e a v a i l a b l e
l o c a l l y f o r a l l y o u r
P e r s o n a l C o m p u t e r a p p l i c a t i o n s .

O n l y S e a g a t e c a n o f f e r
v o u f u l l t e c h n i c a l/
s u p p o r t , a n d a
o n e - y e a r w a r r a n t y .
t h r o u g h o u r a u t h o r i s e d
r e p r e s e n t a t i v e s i n
y o u r c o u n t r y .

C o m p l e t e t e c h n i c a l
a n d i n t e r f a c e d e t a i l s a r e
i n c l u d e d i n t h e S e a g a t e
p r o d u c t b r o c h u r e s , w h i c h

a r e f r e e o f c h a r g e t o
p r o f e s s i o n a l P C b u y e r s

a n d u s e r s . S i m p l y u s e t h e

c o u p o n b e l o w t o r e q u e s t

y o u r c o p i e s .

Y o u ' l l s o o n s e e w h y S e a g a t e
h a s b e c o m e t h e w o r l d ' s l e a d i n g
i n d e p e n d e n t m a n u f a c t u r e r
o f d i s c d r i v e s .

<SP Seagate
Seagjte Technology Europe
Seagate House, Fieldhouse Lane, Globe Park, Marlow SL7 lLW Great Britain
1C 0628 890366 Fax 0628 890660 Telex 846218 SEAGAT G

To: Seagate Technology Europe,
Seagate House, Fieldhouse Lane,

Globe Park, Marlow SL7 1LW Great Britain.
Please send me technical details of Seagate disc drives

Name
Job Title
Organisation
Address------ -

Country-------------------------- ------- — --------
Type of business
Number of employees Number of PCs
L. I use a PC L2 I authorise the purchase of PCs

. I am a technical support manager

l_

