
A NEW DAMPING STRATEGY OF

LEVENBERG-MARQUARDT ALGORITHM

FOR MULTILAYER PERCEPTRONS

Young-tae Kwak, Ji-won Hwang, Cheol-jung Yoo∗

Abstract: In this paper, a new adjustment to the damping parameter of the
Levenberg-Marquardt algorithm is proposed to save training time and to reduce
error oscillations. The damping parameter of the Levenberg-Marquardt algorithm
switches between a gradient descent method and the Gauss-Newton method. It
also affects training speed and induces error oscillations when a decay rate is fixed.
Therefore, our damping strategy decreases the damping parameter with the inner
product between weight vectors to make the Levenberg-Marquardt algorithm be-
have more like the Gauss-Newton method, and it increases the damping parameter
with a diagonally dominant matrix to make the Levenberg-Marquardt algorithm
act like a gradient descent method. We tested two simple classifications and a
handwritten digit recognition for this work. Simulations showed that our method
improved training speed and error oscillations were fewer than those of other algo-
rithms.

Key words: Levenberg-Marquardt algorithm, damping parameter, Gauss-Newton
method, error backpropagation

Received: January 6, 2011
Revised and accepted: July 12, 2011

1. Introduction

The error backpropagation (EBP) algorithm for multi-layer perceptions (MLP)
has been used in many applications since it was proposed by many researchers in
the 1980s [1, 2]. Because it utilizes a gradient descent method for minimizing a
mean squared error, it can take a long time to escape from some flat error sur-
faces that make EBP slow. Recently, many people have proposed some heuristic
modifications to improve the training speed of EBP. In these methods, there are
adding momentum, variable learning rates [3, 4, 5, 6], scaling parameters [7, 8],
variable step search algorithms [9] and so on. Besides, some layer-by-layer algo-
rithms that train each hidden layer after defining an error function of its layer have

∗Young-tae Kwak, Ji-won Hwang, Cheol-jung Yoo
Department of Information Technology, Chonbuk National University, Dukjin-dong, Dukjin-gu,
Jeonju, Chonbuk, 561-756, Korea, E-mail: {ytkwak, hwangj, cjyoo}@jbnu.ac.kr

c©ICS AS CR 2011 327

Neural Network World 4/11, 327-340

been suggested [10, 11, 12]. However, these heuristic approaches need additional
parameters, and selecting improper parameters can influence the performance of
EBP in complicated applications.

To overcome the slow convergence of EBP and its variations, some researchers
have adapted numerical optimizations [13, 14] used in optimization theory which
calculate the second derivatives of error functions. There are the Conjugate Gradi-
ent (CG) method [15], the Quasi-Newton method [16], the Gauss-Newton method
and the Levernberg-Marquardt (LM) algorithm [17] in such optimization. The nu-
merical optimizations can train MLP faster than EBP does owing to approximating
the second derivatives instead of calculating them directly. However, the CG al-
gorithm has to conduct golden section search and be reset after passing a fixed
number of iterations. The LM algorithm must also calculate a Jacobian matrix to
approximate the second derivatives. Saving the Jacobian matrix and calculating its
inverse have been critical problems. To solve these problems, Costa [18] restricted
the norm of weight vectors to speed the LM algorithm up. Xu [19] used the rank
deficiency of a Jacobian matrix to prune MLP with the LM algorithm. Lera [20, 21]
also proposed a way to train local nodes of MLP to save both memory required
and expensive operations of the LM algorithm.

Generally, the LM algorithm can be regarded as a combination of a gradient de-
scent method and the Gauss-Newton method. The alternation between a gradient
descent method and the Gauss-Newton method is called a damping strategy and is
controlled by a damping parameter. If the damping parameter is large, it makes the
Jacobian matrix diagonally dominant, and the LM algorithm updates weights like
a gradient descent method. But the magnitude of updated weights is so small that
it takes a long time to train MLP. On the other hand, if the damping parameter is
very small, the LM algorithm updates weights by solving the normal equations of
a Jacobian matrix like the Gauss-Newton method. So the LM algorithm can train
MLP faster than EBP algorithm. This property is especially needed to converge
quickly when a weight vector is close to its target vector. Thus, the damping pa-
rameter becomes an important factor to speed up the LM algorithm and reduce
error oscillations. However, the methods for altering a damping parameter are not
rich, so we propose a new strategy altering a damping parameter.

Until now, only a few methods for a damping parameter have been proposed.
Lampton [22] used both additive damping and multiplicative damping. He showed
that additive damping can get better results than multiplicative damping. Hagan
[17, 23] also proposed the LM algorithm using additive damping and implemented
Matlab Toolbox with it. But Hagan’s method still makes error oscillations and
Matlab Toolbox does not include the LM’s trial weight updates in the number of
iterations. Chen [24] proposed a variable decay rate considering the linear changes
to the logarithm of error function, but its speed is slower in the beginning of
training. Amir [25] proposed a very simple method that a damping parameter is
multiplied by a squared error function, but it makes error oscillations more frequent.
Yamashita [26] and Fan [27] showed that if ‖ F (x) ‖ provides a local error bound
for the system of nonlinear equation F (x) = 0, the damping sequences generated
by µ = ‖ F (x) ‖2 or µ = ‖ F (x) ‖[1,2] converge to its solution quadratically. These
papers proved that a damping parameter should be varied along both error function
and the distance between a current error and a local minimum.

328

Kwak Y. T., Hwang J. W., Yoo C. J.: A new damping strategy of LM for MLP

Therefore, we will propose a new damping strategy that uses the inner product
of weights to decrease a damping parameter, and employs a diagonally dominant
matrix to increase it. The inner product of weight vectors can prevent error function
from oscillating in the early training, especially when the direction of a weight
vector is different from its target weight direction. The diagonally dominant matrix
can save iterations by making a Jacobian matrix to be positive definite. Unlike the
traditional damping parameter with a fixed decay rate, our approach uses a variable
decay rate adjusted by the direction of weight vectors.

In our simulation, we tested both two simple classifications and a somewhat
complicated recognition. The result of simulations confirmed that our approach
could improve training speed and reduce error oscillations. Especially in the prob-
lems with huge weight space, our method performed a fast and high-quality conver-
gence with fewer error oscillations. The rest of this paper is organized as follows.
Section 2 reviews the LM algorithm and introduces related works. In Section 3,
we propose a new damping strategy for converging the LM algorithm quickly. The
experimental results and analyses are shown in Section 4. Finally, we will give our
conclusion in Section 5.

2. Problem Formulation

This section briefly describes the LM algorithm and its problem. We will also
review some existing methods on damping parameter.

2.1 Levenberg-Marquardt algorithm

In spite of the large memory required and expensive operations, the LM algorithm
is estimated to be much faster than other algorithms if the size of MLP is not very
large. The error function to be minimized, the sum of squared errors for a weight
vector w, is defined as

F (w) =
P∑

p=1

[
K∑

k=1

(dkp − okp)2
]

, (1)

where w = [w1, w2, · · · , wN]T consists of all weights of the network, dkp is the
desired value of the kth output and the pth pattern, okp is the actual value of the
kth output and the pth pattern, N is the number of the weights, P is the number
of patterns, and K is the number of the network outputs. Eq. (1) can be written
as

F (w) = e(w)T e(w) (2)
e = [e11 · · · eK1, e12 · · · eK2, · · · , e1P · · · eKP]T

ekp = dkp − okp, k = 1 · · ·K, p = 1 · · ·P.

When considering a quadratic approximation of the error function, the weight
update of a Newton’s method is

∆w = −[H(w)]−1g(w), (3)

329

Neural Network World 4/11, 327-340

where H(w) is the Hessian matrix and g(w) is the gradient vector in relation to a
weight vector w. With the approximation to the Hessian matrix and the gradient
vector, the LM method is deduced:

H(w) = J(w)T J(w) + S(w) (4)
g(w) = J(w)T e(w),

where J(w) is the Jacobian matrix and S(w) is defined as

S(w) = e(w)T · 52e(w), 52ekj =
∂2ekp

∂wk∂wj
. (5)

In the Gauss-Newton method, the term S(w) can be left unconsidered. Finally,
the LM’s weight update is obtained as a modification of the Gauss-Newton method.

∆w = − [
J(w)T J(w) + µI

]−1
JT (w)e(w) (6)

= − [D(w)]−1 g(w),

where µ > 0 is called a damping parameter and I is the identity matrix. The
damping parameter is adjusted according to the evaluation of F (w). If F (w) is
lower than a trial error F (wtrial) that is calculated by the new weight, µ is divided
by a factor β(0 < β < 1) called decay rate. Reversely, if F (w) is higher, µ is
multiplied by β and the new weight update is accepted.

µ =

{ µ

β
if F (wtrial) ≥ F (w)

µ · β if F (wtrial) < F (w)
. (7)

The traditional damping strategies used until now have used a fixed decay rate
to control the damping parameter. That is, after a decay rate is initialized as
a constant, it does not change. Hagan’s algorithm and Matlab Toolbox also use
the fixed decay rate that set β = 0.1 as a default value. The fixed decay rate
does not reflect the direction and agreement between weight vectors to a damping
parameter. It just depends on an error function. Like Eq. (7), the decreasing µ by
only evaluating errors can make error function oscillate when the error function is
partially approximated to a quadratic error especially in the beginning of training.
The value of µ close to 0 can also get an error function to oscillate except for the
end of training. These error oscillations take more time to converge and raise a
possibility of training failure.

The LM algorithm can be thought of as a combination of a gradient descent
method and the Gauss-Newton method like Fig. 1. The LM algorithm with a
large µ trains like a gradient descent method so that it can guarantee to converge
but its speed is slow. In the case that µ is small, the LM algorithm becomes the
Gauss-Newton method that converges quickly. Thus, we expect the LM algorithm
to ideally train a nonlinear problem as follows. The algorithm plays the role of a
gradient descent method in the beginning of training when the direction of weight
vectors is not consistent or when the error function is not perfectly quadratic,
and gradually performs the Gauss-Newton method when the weight vector is close
to the neighborhood of a target vector. For the ideal LM algorithm, we need a

330

Kwak Y. T., Hwang J. W., Yoo C. J.: A new damping strategy of LM for MLP

Gradient

Fig. 1 Combination of gradient descent method and Gauss-Newton method.

new method that can decrease the damping parameter a little in the beginning of
training rather than in the end of training. Therefore, we propose a variable decay
rate for a damping parameter to adapt according to how much a training progresses.
The proposed method also uses a diagonally dominant matrix for increasing the
damping parameter instead of a fixed decay rate.

2.2 Review of related work

Chen [24] proposed a variable decay rate to prevent F (w) from oscillating in the
end of training when the error function F (w) approached to a target error. Here
F is the current error, F0 the initial error, and Fmin the target error.

β =
log(F)− log(Fmin)
log(F0)− log(Fmin)

× 0.8 + 0.1. (8)

Chen’s disadvantage is that the training speed is slow when it is at the start.
We expect the LM algorithm to train like a gradient descent method at its initial
training so that β has to be small to increase µ rapidly. But in the initial case
F = F0, β is 0.9 and larger than Hagan’s β(0.1), this β makes the LM algorithm
slow and we could find these results in our simulation.

Yamashita and Fukushima [26] established an attractive quadratic convergence
result µ = ‖ F (w) ‖2 for the LM algorithm without nonsingularity assumption.
Fan and Yuan [27] also extended the result of Yamashita and Fukushima to using
µ = ‖ F (w) ‖δ, where δ ∈ [1, 2] as a damping parameter. These methods converge
to a solution quickly when a current weight vector approximates closely to a target
vector. But it is difficult to establish a criterion on whether a current error is close
to its target or not.

Amir [25] considered that a damping parameter shows the state of training and
proposed Eq. (9). In the beginning of training when the LM algorithm does not
train enough, e(w)T e(w) is so large that it makes the damping parameter too
large. In the end of training when the target error is close to 0, e(w)T e(w) is so
small that it makes the parameter too small. So, Amir’s method rapidly changes
its parameters along e(w)T e(w) and induces irregular damping parameters. It has
also some difficulty in setting the maximum and minimum of damping parameters.

µ = µe(w)T e(w) (9)

331

Neural Network World 4/11, 327-340

3. Strategy of Damping Parameter

We will describe our method by dividing two cases, increasing a damping parameter
and decreasing a damping parameter.

3.1 Decreasing damping parameter

We expect the LM algorithm to train like a gradient descent method just after it
starts, because in general the solutions of error function are far from starting points
or unknown. There is also a possibility for a Jacobian matrix not to approximate
error function exactly. In this beginning of training, decreasing a damping param-
eter with a fixed decay rate like Eq. (7) invokes an oscillating error function. Even
though a trial error is reduced, we cannot be sure that the weight direction is op-
timal. Therefore, we introduce the weight inner product between a current weight
vector and a trial weight vector to maintain a weight direction to be constant.

We define the weight inner product as

wip =
dot(wtrial,w)
‖ wtrial ‖‖ w ‖ (−1 ≤ wip ≤ 1) (10)

µ = µ · βwip if F (wtrial) < F (w),

where wtrial is the new weight vector updated by Eq. (6), and β is fixed and
generally set as 0.1 in many algorithms such as Hagan’s method. Though β is
fixed, the term, βwip, plays the role of a variable decay rate because wip is varied
to the weight inner product. The weight inner product has the following properties:
in the beginning of training, the wip can be very small because the direction of an
initialized weight vector might be completely different from that of a trial weight
vector. This small wip increases µ and makes the LM algorithm behave like a
gradient descent method especially in the early training. However, as the training
evolves, the direction of an initial weight vector gradually accords with the direction
of its target weight vector. So, the wip approaches to 1. The fact that wip is equal
to about 1 means that µ is gradually close to 0, and the LM algorithm can perform
the Gauss-Newton method.

Our decay rate, βwip, is a variable decay rate depending on the weight inner
product rather than the fixed decay rate like Hagan’s method. Replacing Eq. (7)
with Eq. (10) can prevent a damping parameter from decreasing when the error
function is not quadratic, namely, the error is far from its target error. If wip
is negative, that is, when the direction of a current weight vector is opposite to
the direction of an updated weight vector, our method can increase a damping
parameter unlike Hagan’s method even though the error function evaluated by a
trial weight vector is reduced.

3.2 Increasing damping parameter

Let us consider the case when we have to increase a damping parameter because
a trial error is greater than the current error. When D(w) in Eq. (6) is singular
or not positive definite, the error function increases and we have to increase the
damping parameter. Therefore, we have to increase µ until D(w) is not singular

332

Kwak Y. T., Hwang J. W., Yoo C. J.: A new damping strategy of LM for MLP

or positive definite. To solve these problems, we use a strictly dominant matrix. A
matrix is said to be strictly diagonally dominant if in every row of the matrix the
magnitude of the diagonal entry in a row is larger than the sum of the magnitude
of all other (non-diagonal) entries in that row. More precisely, the matrix A is
diagonally dominant if

A = aij if |aii| >
∑

j 6=i

|aij | for all i. (11)

A strictly diagonally dominant matrix is non-singular. This result is known as the
Levy-Desplanques theorem. A Hermitian (Hessian) diagonally dominant matrix
with real non-negative diagonal entries is positive semi-definite. So we will make
D(w) in Eq. (6) diagonally dominant.

Firstly, we check whether D(w) is positive definite or not by Cholesky factor-
ization. If it is positive, we continue Hagan’s method. Otherwise, we make D(w)
diagonally dominant like Eq. (11) and choose the minimum of diagonal entities
as a new µ. This procedure can save the iterations needed to increase a damping
parameter until D(w) is positive definite.

if D(w) is positive definite
µ = µ/β (12)

else
make D(w) diagonally dominant

D = dij , dii =
∑

j 6=i

|dij | for all i

µ = min(dii) for all i

Though D(w) of Eq. (6) is positive definite, the reduction of error function cannot
be fully guaranteed because D(w) may not be modeling error functions exactly.
So we need to increase µ repeatedly.

The proposed LM algorithm can be summarized as follows:

1. Initialize the weights and parameter µ, β
(set µ = 0.1, β = 0.1 like Hagan’s fixed rate)

2. Stop if the number of iteration exceeds the maximum iteration or F (w) is
less than a desired error

3. After passing all training data, compute the sum of squared errors over all
inputs, F (w)

4. Compute the Jacobian matrix J(w)

5. Solve Eq. (6) to obtain the weight change ∆w

6. Recompute the sum of squared errors F (wtrial) using wtrial = w+∆w after
passing all training data again, and judge
IF F (wtrial) < F (w) in step 3 THEN

333

Neural Network World 4/11, 327-340

wip =
dot(wtrial,w)
‖ wtrial ‖‖ w ‖ (−1 ≤ wip ≤ 1)

µ = µ · βwip if F (wtrial) < F (w)

go back to step 2
ELSE

if D(w) is positive definite
µ = µ/β

else
make D(w) diagonally dominant

D = dij , dii =
∑

j 6=i

|dij | for all i

µ = min(dii) for all i

go back to step 2

4. Experimental results

We tested two simple classifications and a more complicated problem: an iris clas-
sification, a wine classification and a handwritten digit recognition. Iris and wine
classifications were cited from UCI Machine Learning Repository [28]. A handwrit-
ten digit recognition was done with CEDAR data from Hull [29]. We used MLP
with one hidden layer and tanh function for activation function instead of logistic
sigmoid function.

Our LM algorithm was implemented with Matlab scripts not using Matlab NN
Toolbox. There are three main reasons for not using the Toolbox. It does not
count trial iterations. That is, if a trial training error, F (wtrial), is greater than
the current one F (w), the Toolbox disregards (cancels) the weight vectors updated
by trial weights until it obtains the correct weight vectors that do not increase
the training error. Thus, we cannot measure how many epochs were spent for
increasing the damping parameter. In the following results, all iterations included
the number of trial weight updates.

Secondly, to compare our method with two other methods, we had to set the
initial weight vectors randomly and equally. But the Toolbox does not have a
function to load the saved initial weights for making the same conditions of other
algorithms. So we had to implement our method with Matlab scripts language.
Thirdly, when using the Toolbox, we first have to create a feed-forward network
with newff function. To speed training up, the newff function uses two default
functions (traingdx, learngdm) that update weights and biases according to gra-
dient descent momentum and adaptive learning rate. However, our implementation
did not use these techniques because we could not find out how such functions affect
damping parameters.

To measure each algorithm’s performance, we used mean squared error function
like the following Eq. (13), where P is the number of input patterns.

F (w) =
1
P

e(w)T e(w) (13)

334

Kwak Y. T., Hwang J. W., Yoo C. J.: A new damping strategy of LM for MLP

Number of Average epoch Average time (second) Number of failures

hidden nodes Hagan Our Way Chen Hagan Our Way Chen Hagan Our Way Chen

5 156.87 88.4 177.23 16.66 7.84 17.8 11 4 11

6 122 100.3 174.83 12.08 9.58 17.3 8 6 11

7 89.7 70.07 138.57 7.8 6.07 12.87 3 3 7

8 115.03 61.07 143.4 11.31 5 13.13 7 2 6

9 93.03 72.6 161.5 8.77 6.32 16.28 5 2 10

Tab. I Iris Results.

Number of Average epoch Average time (second) Number of failures

hidden nodes Hagan Our Way Chen Hagan Our Way Chen Hagan Our Way Chen

4 14.47 12.73 64.1 0.93 0.88 4.39 0 0 1

5 38.6 26.4 88.57 3.86 2.42 7.91 2 1 4

6 28.03 24.9 75.57 2.61 2.43 6.23 1 1 2

7 33.43 22.67 78.53 3.48 2.26 6.3 2 1 1

8 33.17 14.07 80.97 3.52 1.04 7.43 2 0 3

Tab. II Wine Results.

In the results of Tab. I, II and III, we tried MLP for 30 runs according to each
number of hidden nodes to get more general results. Our stopping criterion is
not classification accuracy but training error. The criterion to stop training was
that the maximum epoch was 300 or F (w) in Eq. (13) was less than 0.01. If
the iteration of a training exceeded the maximum, we considered the training as
a failure like Tables. To compare fairly with other methods, we equally initialized
the initial weights. In addition, our simulation was run in standard alone without
any running program to measure exact time.

4.1 Iris and wine classifications

An iris classification is a problem that MLP gets 4 input data (sepal length and
width, petal length and width) and classifies three types of iris. So MLP consisted
of 4 input nodes, 3 output nodes and 5-9 hidden nodes. We used 50 input patterns
for each iris type and ended up with 150 input patterns.

Tab. I shows the iris results according to the number of hidden nodes. In Tab. I,
average epoch and average time are the averaged results of 30 runs. This table tells
us that our approach outperformed other methods in training time as well as in
the number of failures. On the whole, the proposed method spent about 68% of
the iterations of Hagan and about 49% of the iterations of Chen. Especially, our
strategy got the minimum number of failures. Hagan’s failure rate was 2 times
higher than ours and Chen’s was 2.6 times higher. The cause was that our method
made the direction of weights consistent by the weight inner product. In addition, a
diagonally dominant Jacobian matrix could enhance the possibility that the matrix
could be positive definite.

335

Neural Network World 4/11, 327-340

In Fig. 2, (a) indicates the training epochs obtained by MLP with 5 hidden
nodes for 30 runs. As the figure shows, our approach got better results than both
Hagan’s and Chen’s methods. (b) illustrates the comparison of training errors on
the 21st run among the results of (a). We can also find that our method saved
training epochs best, and Hagan’s method was next. As we pointed out before,
Chen’s method took more training time because it needed a lot of iterations to
increase the damping parameter in the beginning of training, which we could see
in (c). The figure (c) shows the changes of damping parameters about the result
of (b). The y axis is a log scale here. Our approach had a few oscillations in
the damping parameter. But Hagan’s method was still oscillating until the end of
training.

As the second classification, the wine problem classifies three types of wine after
taking thirteen chemical attributes as inputs. Thus, we constructed MLP with 13
input nodes and 3 output nodes, and trained it by changing 4-8 hidden nodes. The
total 178 input patterns were used, and other conditions for training were the same
as those of the iris problem. Tab. II shows the results of wine classification. We
expected this problem to be more complicated because the number of input nodes
was large. But we knew that the wine problem was easier than the iris problem
because the number of failures was low and the training time was shorter. We can
also find that the training time of our method was shorter than those of others as
well as the possibility of failures was lower.

Fig. 3 (a) indicates the results acquired by MLP with 7 hidden nodes, and
both (b) and (c) are the results of the 23rd run. In (a) and (b), both Hagan’s
method and our method showed similar results. Our method, however, saved a few
iterations when we referred to Tab. II. In (c), our damping parameter was changing
like our expectation that it is to rise to behave like a gradient descent method in
the beginning and lessen to do like the Gauss-Newton method in the end. On the
other hand, Hagan’s parameter was oscillating even in the end of training.

4.2 Handwritten digit recognition

To test a more complicated problem and get more general results, we applied
our strategy to a handwritten digit recognition. We used 1000 input patterns, 100
patterns of each digit. Each digit was 12x12 pixels and each pixel had a hexadecimal
value by gray level. MLP had 144 input nodes and 10 output nodes, and we trained
it by changing 10-14 hidden nodes. These MLPs cost a lot of time because of huge
weights. Table III shows the results of CEDAR data. We can see that our strategy
obtained better results than other methods in training time and the number of
failures. Our method needed about 37% of the iterations of Hagan and about 41%
of the iterations of Chen. In addition, Hagan’s failure was 4 times higher than ours
and Chen’s failure was 2.3 times higher. It is noteworthy that Chen’s failure was
lower than Hagan’s in this intricate problem.

In Fig. 4, (a) is the results of MLP used 13 hidden nodes. (b) and (c) represent
the evolution of the 28th run among 30 runs. Here, we can also find that our
approach had few oscillations in the end of training so it could train CEDAR data
faster than others. Using the weight inner product and a diagonally dominant
matrix brought us these good results. Our strategy can lead to better results in

336

Kwak Y. T., Hwang J. W., Yoo C. J.: A new damping strategy of LM for MLP

0 5 10 15 20 25 30
0

50

100

150

200

250

300

(a) Run

T
ra

in
in

g
 E

p
o

ch

Hagan
Our Way
Chen

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

(b) Epoch

T
ra

in
in

g
 E

rr
o

r

Hagan
Our Way
Chen

0 20 40 60 80

10
−2

10
0

10
2

(c) Epoch

M
u

Hagan
Our Way
Chen

Fig. 2 Comparison of results on iris data.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

(a) Run

T
ra

in
in

g
 E

p
o

ch

Hagan
Our Way
Chen

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

(b) Epoch

T
ra

in
in

g
 E

rr
o

r

Hagan
Our Way
Chen

0 10 20 30 40 50 60

10
−2

10
−1

10
0

10
1

(c) Epoch

M
u

Hagan
Our Way
Chen

Fig. 3 Comparison of results on wine data.

337

Neural Network World 4/11, 327-340

Number of Average epoch Average time (second) Number of failures

hidden nodes Hagan Our Way Chen Hagan Our Way Chen Hagan Our Way Chen

10 212.37 107.7 179.37 2317.02 1209.82 1952.68 20 9 14

11 151.2 52.27 158.37 2062.73 732.68 2152.55 13 3 11

12 120.27 46 136.87 1966.78 773.51 2235.38 10 2 8

13 102.5 34.23 74.77 1920.21 661.27 1393.57 8 1 0

14 117.8 20.77 86.53 2662.19 481 1946.95 10 0 2

Tab. III CEDAR Results.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

(a) Run

T
ra

in
in

g
 E

p
o

ch

Hagan
Our Way
Chen

0 20 40 60 80
0

1

2

3

4

5

6

7

8

9

10

(b) Epoch

T
ra

in
in

g
 E

rr
o

r

Hagan
Our Way
Chen

0 20 40 60 80

10
−15

10
−10

10
−5

10
0

(c) Epoch

M
u

Hagan
Our Way
Chen

Fig. 4 Comparison of results on CEDAR data.

the problems with huge weight space like this complicated problem. Especially,
the weight inner product plays an important role in searching for a target weight
vector.

We got other noticeable simulations, even though we did not present them in
this paper. We tested the same three problems by either the weight inner product
(decreasing µ) or a diagonally dominant matrix (increasing µ). As a result, the
results with decreasing µ by the weight inner product got better performance than
those with only increasing µ. Therefore, we can recommend using only the weight
inner product when you want to implement our approach simply. On the whole,
the range of µ changed by our approach was smaller than that of Hagan’s method
and similar to that of Chen’s method. It means that the proposed method makes µ

338

Kwak Y. T., Hwang J. W., Yoo C. J.: A new damping strategy of LM for MLP

increase or decrease flexibly according to both training situation and the direction
between a current weight vector and its target weight vector.

5. Conclusion

The LM algorithm is a combination of a gradient descent method and the Gauss-
Newton method, and its damping parameter switches between two methods in this
algorithm. Changing the damping parameter by a fixed decay rate makes training
errors oscillate and takes much time to finish training work. Therefore, we pro-
posed the weight inner product to decrease damping parameter and a diagonally
dominant matrix to increase damping parameter. The proposed method strength-
ens a gradient descent method when a weight vector is far away from its target
vector, and the Gauss-Newton method when it is close to its target vector. In our
experiment, we have found that our approach converges faster than other methods
and is less likely to fail in trainings. The improved damping strategy can save
iterations and raise the rate of training success in problems with large weight space
because it can keep weight directions toward its target weight direction.

Acknowledgements

This paper was supported by research funds of Chonbuk National University in
2010.

References

[1] Lippman R. P.: An Introduction to Computing with Neural Nets, IEEE ASSP Magazine,
4, 2, 1987, pp. 4–21.

[2] Rumelhart D. E., McClelland J. L.: Parallel Distributed Processing, MIT Press, Cam-
bridge, MA, 1986, pp. 318–362.

[3] Vogl T. P., Mangis J. K., Zigler A. K., Zink W. T., Alkon D. L.: Accelerating the
Convergence of the Back-Propagation method, Biological Cybernetics, 59, 1988, pp. 256–
263.

[4] Xiao-Hu Yu, Guo-an Chen, Shi-Xin Cheng: Dynamic Learning Rate Optimization of the
Backpropagation Algorithm, IEEE Trans. on Neural Networks, 6, 3, 1995, pp. 669–677.

[5] Nied A., Seleme Jr. S. I., Parma G. G., Menezes B. R.: On-line neural training algorithm
with sliding mode control and adaptive learning rate, Neurocomputing, 70, 2007, pp.
2687–2691.

[6] Magoulas G. D., Plagianakos V. P., Vrahatis M. N.: Globally Convergent Algorithms
With Local Learning Rates, IEEE Trans. on Neural Networks, 13, 3, 2002, pp. 774–779.

[7] Behera L., Kumar S., Patnaik A.: On Adaptive Learning Rate That Guarantees Con-
vergence in Feedforward Networks, IEEE Trans. on Neural Networks, 17, 5, 2006, pp.
1116–1125.

[8] Behera L., Kumar S., Patnaik A.: Corrections to On Adaptive Learning Rate That
Guarantees Convergence in Feedforward Networks, IEEE Trans. on Neural Networks,
19, 6, 2008, pp. 1141.

[9] Kordos M., Duch W.: Variable step search algorithm for feedforward networks, Neuro-
computing, 71, 2008, pp. 2470–2480.

[10] Chen H. H., Manry M. T., Chandrasekaran H.: A Neural Network Training Algorithm
Utilizing Multiple Sets of Linear Equations, Neurocomputing, 25, 1-3, 1999, pp. 55–72.

339

Neural Network World 4/11, 327-340

[11] Ergezinger S., Thomsen E.: An accelerated learning algorithm for multilayer perceptrons
optimization Layer by Layer, IEEE Trans. on Neural Networks, 6, 1, 1995, pp. 31–42.

[12] Sang-Hoon Oh, Soo-Young Lee: A New Error Function at Hidden Layers for Fast Training
of Multilayer Perceptrons, IEEE Trans. on Neural Networks, 10, 4, 1999, pp. 960–964.

[13] Nocedal J., Wright S.: Numerical Optimization, Springer 2nd edition, 2006.

[14] Nocedal J.: Theory of algorithms for unconstrained optimization, Acta Numerica, 1,
1992, pp. 199–242.

[15] Charalambous C.: Conjugate gradient algorithm for efficient training of artificial neural
networks, IEEE Proceedings, 139, 3, 1992, pp. 301–310.

[16] Setiono R., Chi Kwong Hui L.: Use of a Quasi-Newton Method in a Feedforward Neural
Network Construction Algorithm, IEEE Trans. on Neural Networks, 6, 1, 1995, pp. 273–
277.

[17] Hagan M. T., Menhaj M.: Training feedforward networks with the Marquardt algorithm,
IEEE Trans. on Neural Networks, 5, 6, 1994, pp. 989–993.

[18] Costa M. A., Braga A. P., Menezes B. R.: Improving generation of MLPs with sliding
mode control and the Levenberg-Marquardt algorithm, Neurocomputing, 70, 2007, pp.
1342–1347.

[19] Xu J., Ho D. W. C.: A new training and pruning algorithm based on node dependence
and Jacobian rank deficiency, Neurocomputing, 70, 2006, pp. 544–558.

[20] Lera G., Pinzolas M.: Neighborhood Based Levenberg-Marquardt Algorithm for Neural
Network Training, IEEE Trans. on Neural Networks, 13, 5, 2002, pp. 1200–1203.

[21] Toledo A., Pinzolas M., Ibarrola J. J., Lera G.: Improvement of the Neighborhood Based
Levenberg-Marquardt Algorithm by Local Adaptation of the Learning Coefficient, IEEE
Trans. on Neural Networks, 16, 4, 2005, pp. 988–992.

[22] Lampton M.: Damping-undamping strategies for the Levenberg-Marquardt nonlinear
least-squares method, Computers in Physics, 11, 1, 1977, pp. 110–115.

[23] Hagan M. T., Demuth H. B., Beale M.: Neural Network Design, PWS Publishing Com-
pany, 1995.

[24] Tai-cong Chen, Da-jian Han, Francis T. K Au, Tham L. G.: Acceleration of Levenberg-
Marquardt Training of Neural Networks with Variable Decay Rate, International Joint
Conference on Neural Networks Proceedings, Portland, Oregon, 3, July 2003, pp. 1873–
1878.

[25] Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi: Modified
Levenberg-Marquardt Method for Neural Networks Training, Proc. of World Academy of
Science, Engineering and Technology, 6, June 2005, pp. 46–48.

[26] Nobuo Yamashita, Masao Fukushima: On the rate of Convergence of the Levenberg-
Marquardt Method, Computing (Suppl. 15), 2001, pp. 237–249.

[27] Jin-yan Fan, Ya-xiang Yuan: On the Quadratic Convergence of the Levenberg-Marquardt
Method without Nonsingularity Assumption, Computing, 74, 2005, pp. 23–39.

[28] Aha D., Asuncion A., Newman D.: UCI Machine Learning Repository, Availabe:
http://archive.ics.uci.edu/ml/index.html

[29] Hull J. J.: A Database for Handwritten Text Recognition Research, IEEE Trans. on
Pattern Analysis and Machine Intelligence, 16, 5, 1994, pp. 550–554.

340

