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Abstract: This paper proposes an immunity-based RBF training algorithm for
nonlinear dynamic problems. Exploiting the locally-tuned structure of RBF net-
work through immunological metaphor, a two-stage learning technique is proposed
to configure RBF centers and widths in the hidden layer. Inspired by affinity mat-
uration process of immune response, immune evolutionary mechanism (IEM) with
memory operations is implemented in the learning stages to dynamically fine-tune
the network performance. Experiment results also demonstrate that the algorithm
has reached good performance with relatively low computational efforts in dynamic
environments.
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1. Introduction

As a kind of typical feedforward artificial neural network, Radial Basis Function
(RBF) networks consist of neurons which are locally tuned. Due to their simple
structure and powerful approximation ability, RBF networks have been widely used
in various fields [1]. In recent years, RBF networks have also found applications
in nonlinear dynamic problems, and many RBF online training algorithms are
proposed [2,3,4,5].

It is justifiable that the key issue in configuring RBF networks is the determi-
nation of the centers and widths in hidden units. There is also a tradeoff between
the ability of an RBF network to learn a desired input-output mapping and its
ability to generalize [6]. However, many RBF online training algorithms tend to
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produce a local optimal network with excessive number of hidden units, degrading
their ability to generalize.

With their promising ability to search the global optimum in parameter space,
evolutionary algorithms (EAs) can produce a compact RBF network [7], and have
been employed in dynamic optimization problems [8,9,10]. However, EA training
strategy of RBF networks often incurs extensive computational requirements, mak-
ing it especially impractical in dynamic environments, where parameters of RBF
networks require to be continually adjusted according to changes in the training set.

With the properties of being adaptive, dynamic, diverse, inherently distributed,
highly robust and self-organized, natural immune system has been used as a rich
source of inspiration to solve complex engineering problems [11]. Algorithms incor-
porating immune operations have also been developed to design RBF networks. In
some RBF training algorithms, immune clustering techniques [12] are incorporated
to initialize the centers of RBF networks [13,14]. As a kind of improved evolution-
ary algorithms, immune algorithms [15,16] have also been implemented to design
the whole RBF network [17,18]. However, these immunity-based RBF training al-
gorithms did not fully exploit the locally-tuned nature of RBF network, and often
treated the RBF network as a whole. That will greatly increase the computational
overhead in dynamic environments.

Inspired by natural immunology, this paper presents a two-stage learning tech-
nique incorporating immune operations to configure RBF centers and widths in dy-
namic environment. Based on the analogy drawn between natural immune system
and RBF neural network, the proposed algorithm incorporates immunological ideas
that are suitable for dynamic problem solving. Compared to other immunity-based
RBF training algorithms, the proposed algorithm fully exploits the locally-tuned
nature of RBF network, and avoids the starting-from-scratch problem of nonlinear
learning models through immune operations, such as immune evolutionary mech-
anism (IEM) and immune repertoire. In the algorithm, the RBF hidden units are
determined in different learning stages with different adjusting frequencies, corre-
sponding to the stationary part and perturbation part of the training set. This
two-stage learning method also makes a good balance between network precision
and generalization. The experimental results also demonstrate that the algorithm
is a promising method for dynamic problems solving.

The paper is organized as follows. Section 2 reviews the fundamental knowledge
of natural immune system and RBF neural network, and draws analogy between
immune system and our proposed algorithm. Section 3 describes the algorithm in
detail. In Section 4, the proposed algorithm is applied to dynamic problems, and
the results are compared with those obtained by other algorithms. Conclusions are
presented in Section 5.

2. Background of the Algorithm

2.1 Immune system overview

The immune system defends the body against an ever-changing cast of antigens. In
order to succeed, it must perform pattern recognition tasks to distinguish molecules
and cells of the body (called “self”) from foreign ones (called “nonself”) [19]. Natu-
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ral immune system has many useful mechanisms from the viewpoint of information
processing. Among these we focus on the mechanisms that guide the design of our
algorithm.

1. Multi-layered: In natural immune system, multiple layers of different mech-
anisms are combined to provide high overall security. The immune system
is composed of innate immune system and adaptive immune system. Innate
immune system remains constant during one’s lifetime, and can handle most
common pathogens in the body. On the other hand, adaptive immune system
is adaptively adjusted according to the environments and is more specific to
corresponding antigens, eliminating new antigens as they appear.

2. Distributed: The adaptive immune system can be viewed as a highly dis-
tributed detection system which consists primarily of lymphocytes. Detection
of nonself occurs when molecular bonds are formed between a pathogen and
receptors that cover the surface of the lymphocyte. Each lymphocyte can
bind with several different kinds of (structurally related) pathogens, thus
covering a small part of antigen space. These lymphocytes function as small
independent detectors that interact locally to provide global protection.

3. Dynamic: Lymphocytes are continually created, destroyed and circulated
throughout the body, thus forming a dynamically changing coverage of the
space of possible antigens.

4. Adaptable: The immune system can learn to recognize and respond to new
antigens through adaptive immune response. If the immune system detects
a pathogen that it has not encountered before, it evolves a set of lympho-
cytes with high affinity for that pathogen through a process called affinity
maturation. These adapted lymphocytes are then retained as memory cells
to facilitate future responses. On subsequent encounters with the same anti-
gen pattern, the immune system mounts a secondary response, in which the
memory cells are re-stimulated and quickly reproduced in great numbers. In
this case, the pathogens are eliminated so rapidly that the symptoms of the
infection are not noticeable by the individual.

2.2 RBF network

Typical RBF network has a feedforward network structure with a single layer of
locally-tuned hidden units. Through linear combination of responses of these lo-
calized hidden units RBF network achieves universal approximation from given
input-output patterns and produces a sparse coverage of all the pairs of the train-
ing set. For an RBF network with p-dimensional input vector and a scalar output,
assume that a training set of L samples is available, where Y = {yi|i = 1, . . . , L}
is the desired network output corresponding to the network input X = {xi|i =
1, . . . , L,xi ⊂ Rp}. The actual output of RBF network can be computed by:

ŷi =
N∑

k=1

wk exp(− 1
σ2

k

‖xi − ck‖2), (1)

where ck and σk denote the center and width of each RBF hidden unit, respectively;
N is the number of centers; wk is the weight associated with the kth function.
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2.3 Analogy between immune system and proposed
algorithm

RBF network has a locally-tuned architecture in which only a part of the nodes
are affected by any given input [20]. So, during the training phase in dynamic
environment, when the input-output pattern changes, only a portion of the model
parameters may need to be adjusted, thus reducing the computational overhead.

Similar locally-tuned property can be found in immune system, although the
immune system is much more complicated in architecture and behavior. Further-
more, by the continual circulation of lymphocytes through the body and a continual
turnover of the lymphocyte population, immune system also provides a dynamically
changing coverage of the space of antigen patterns.

Based on the locally-tuned architecture of RBF network similar to immune
system, in our proposed algorithm RBF hidden units are treated as lymphocytes
in immune system, and immunity-based strategies are implemented dynamically
to fine-tune the parameters of RBF network according to changes in the training
set. These immunity-based strategies include:

1) Two-stage learning: RBF hidden layer is adjusted through two stages,
corresponding to innate immune response and adaptive immune response,
respectively. In first-stage learning, some RBF hidden units are determined
for overall generalization; while in second-stage learning, new hidden units
are added and replaced according to those training data with large errors,
thus improving the precision of the network to current training set.

2) Immune evolution: corresponding to affinity maturation process in adap-
tive immune response, immune evolutionary mechanism (IEM) is proposed
to adjust the centers and widths of RBF network.

3) Memory repertoire: inspired by immune memory mechanism, RBF hidden
units are extracted as memory cells to form the memory repertoire, which
helps to avoid the starting-from-scratch problem in dynamic environments.

The analogy drawn between immune system and our proposed algorithm is
shown in Tab. I.

3. The Proposed Algorithm

Flowchart of the proposed algorithm is depicted in Fig. 1, and the procedure for
the algorithm can be described in Tab. II. Parameters in Tab. II are denoted as
follows:

MSE: mean squared error (MSE) of RBF network for current training set. It
is defined as:

MSE =
1
L

L∑

i=1

(yi − ŷi)2 (2)

w: w = [w1, . . . , wN ]T , RBF output weight vector.
Tmin: threshold to determine whether RBF network needs adjustment. Tmin

reflects the desired performance of RBF network. A smaller Tmin implies better
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Prototype of Immune Mechanism Analogy in Proposed Algorithm
Immune System RBF Network

Innate Immune Response First-Stage Learning
Adaptive Immune Response Second-Stage Learning

Antigen Training Sample
Antigen Pattern Space Training Set

Lymphocyte RBF Hidden Unit
Simulation Field of Lymphocyte Width of RBF Hidden Unit
Concentration of Lymphocytes RBF Output Weights

Cross-Reactive Response Generalization of RBF Network
Immune Memory Memory Repertoire

Affinity Maturation Immune Evolutionary Mechanism

Tab. I Analogy between immune system and proposed algorithm.

precision of RBF network on current training set, but would incur greater com-
putation efforts since RBF hidden layer has to be adjusted more frequently. To
achieve better compromise between network performance and computation loads,
Tmin can be adjusted according to the training frequency of RBF hidden layer:
if frequency of MSE > Tmin is relatively low in past detection phases, Tmin can
be decreased to achieve better network precision; on the contrary, Tmin should be
increased to reduce training frequency.

max
MSE T

min
MSE T

min max
T MSE T

Fig. 1 Flowchart of the proposed algorithm in dynamic environment.
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Begin
%Step1: Detect changes in training set
if MSE ≤ Tmin, then return;
else w = LS(X,Y,Vp)
if MSE ≤ Tmin, then return;
else if MSE > Tmax, go to step2;
else go to step3;

%Step2: First-Stage Learning
Vp = V1;
popV1(0) = popV1(S1);
Gen=1;
repeat

V1 = max{affinity(popV1(Gen))}
MR1 = Update(MR1,V1)
popV1(Gen) = Clonal Selection(popV1(Gen))
popV1(Gen) = Clonal Expansion(popV1(Gen))
popV1(Gen) = Receptor Editing(popV1(Gen), MR1)
Gen=Gen+1

until Gen > S1

%Step3: Second-Stage Learning
Xm = {xi||yi − ŷi| > ξ1, i = 1, . . . , L}
V2 = Clustering(Xm)
Vp = [V1;V2];
popV2(0) = Clonal Expansion(Vp);
Gen=1;
repeat

V2 = max{affinity(popV2(Gen))}
MR2 = Update(MR2,V2)
popV2(Gen) = Clonal Selection(popV2(Gen))
popV2(Gen) = Clonal Expansion(popV2(Gen))
popV2(Gen) = Receptor Editing(popV2(Gen), MR2)
Gen=Gen+1

until Gen > S2 or affinity(Vp) > ς
return;
end if;

end

Tab. II Pseudo code for the proposed algorithm.

Tmax: threshold to determine whether RBF network needs first-stage learning.
Tmax influences the frequency of first-stage learning. If Tmax → Tmin, probability of
first-stage learning tends to 1, i.e., every RBF hidden unit has to be adjusted; that
would often incur additional computation loads. If Tmax →∞, probability of first-
stage learning tends to 0; that would reduce the adaptability of the algorithm to
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dynamic environments. In practice, Tmax ∈ [2Tmin, 10Tmin] is acceptable. Similar
to Tmin, Tmax can be also adaptively adjusted according to the training frequency
of first-stage learning.
V1: V1 = [ck, σk]Mk=1, M(M < N) hidden units determined in first-stage learning.
V2: V2 = [ck, σk]Nk=M+1, N−M hidden units determined in second-stage learning.
Vp: RBF hidden layer. In first-stage learning Vp = V1 = [ck, σk]Mk=1, while in
second-stage learning Vp = [V1;V2] = [ck, σk]Nk=1.
popV1: popV1 = {[V1]j |j = 1, . . . , n}, population of RBF hidden layers in first-
stage learning.
popV2: popV2 = {[V1;V2]j |j = 1, . . . , n}, population of RBF hidden layers in
second-stage learning.
MR1: memory repertoire for first-stage learning.
MR2: memory repertoire for second-stage learning.
S1: maximum number of iterations in first-stage learning.
S2: maximum number of iterations in second-stage learning.
Xm: input pattern in current training set that needs further approximation. The
size of Xm is determined by the dynamic environment that is reflected in the
training set. The size of Xm is also relevant to ξ1: for a specific training set, the
smaller ξ1, the more centers would be obtained for Xm.
ξ1: threshold to determine new pattern in current training set. In practice, ξ1 can
be set between [1.5

√
Tmin, 3

√
Tmin].

ς: desired affinity for termination in second-stage learning.

Main steps of the proposed algorithm can be described as follows:

1) Detect changes in current training set: In this step, RBF output weight
vector w is first adjusted with linear least squares (LS) method according to
new training set in dynamic environment. Then, calculate MSE of RBF
network for current training set. Preset threshold Tmin and Tmax are defined
to test whether RBF hidden layer needs further adjustment.

2) Adjust hidden units for generalization: RBF hidden units are decom-
posed as V1 and V2. In first-stage learning V1 are updated with immune
evolutionary mechanism (IEM) to produce a compact RBF network for gen-
eralization.

3) Create initial hidden units for fine-tuning: In second-stage learning
initial V2 are generated to cover those training data with large errors de-
noted as Xm. Xm reflects new input pattern in current training set that
need further approximation. Initial V2 is produced from Xm using k-means
clustering algorithm [21].

4) Adjust hidden units for fine-tuning: V1 and V2 are concatenated to
form a prototype RBF hidden layer Vp; and then IEMs are performed to
adjust V2, while V1 remains constant during the process. After second-stage
learning, go back to step 1.
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3.1 Immune evolutionary mechanism for adjusting RBF hid-
den layers

In the first- and second-stage learning, immune evolutionary mechanism (IEM) is
proposed to adjust V1 and V2, respectively. IEM corresponds to affinity mat-
uration in natural immune system, a process very similar to adaptive biological
evolution. In IEM algorithm, RBF hidden units are treated as “lymphocytes”, and
extracted as memory cells to form the memory repertoire (MR). IEM algorithm
can be described as follows, where n is the population size, m is the size of memory
repertoire, and P is the number of units for receptor editing:

1) Create initial population: In first-stage learning, the initial population of
V1 comes from the last population in previous training epoch. In second-
stage learning, the initial population of V comes from prototype Vp by clonal
expansion, which is composed of reproduction of Vp and mutation on V2.

2) Evaluate affinity: Each RBF hidden layer in current population is decoded
to form an RBF network, and corresponding output weights w is determined
by LS method. Corresponding to antigenic affinity between antigen and lym-
phocyte in natural immune system, affinity is introduced here to evaluate the
performance of RBF network, and is defined as:

affinity =
1

MSE
=

1
1
L

∑L
i=1(yi − ŷi)2

(3)

3) Update memory repertoire: Hidden units of the RBF hidden layer that
has highest affinity are extracted to update memory repertoire (MR). Old
memory cells in MR that have the highest similarities with these new hid-
den units are replaced. Here the similarity between hidden units is defined
according to Euclidean distance:

similarity([ci, σi], [cj , σj ]) =
1

‖ci − cj‖+ |σi − σj | (4)

4) Clonal selection: Select k highest affinity RBF hidden layers from current
population for further operation.

5) Clonal expansion: This process is composed of reproduction and muta-
tion. For each RBF hidden layer, the reproduction rate is proportional to its
affinity, and mutation rate is inversely proportional to its affinity.

6) Receptor editing: “Receptor editing” is an idea borrowed from natural
immunology [22]. Here it means the operation of substituting certain hidden
units in RBF hidden layer with those in the memory repertoire, providing the
possibility for performance improvement. Randomly selected P memory cells
from MR and P hidden layers in current population. Each selected memory
cell is added in corresponding hidden layer, and replaces the hidden unit that
has the highest similarity with it. If the affinity of corresponding hidden layer
has improved, the operation of receptor editing is confirmed.
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7) Termination: In first-stage learning, stopping criterion is predefined maxi-
mum number of iterations S1; in second-stage learning, stopping criterion is
met when desired affinity ς or maximum number of iterations S2 has been
reached.

3.2 Discussion

Our proposed algorithm is suitable for the training of RBF network in dynamic
environments for the following reasons:

1) The adjustment of linear output weights is performed before the adjustment
of nonlinear parameters in hidden layers, i.e., different type of parameters are
adjusted by different methods with different frequencies. This method can
improve the efficiency of the training algorithm.

2) The two-stage learning of RBF hidden units corresponds to stationary part
and perturbation part in dynamic environments, respectively. This kind of
partition reduces the parameter optimization space. Furthermore, second-
stage learning is adjusted according to the changing part of the training set,
and is performed more frequently than first-stage learning, thus reducing the
computation load in dynamic environments.

3) IEM has global optimization abilities similar to evolutionary algorithms,
which guarantees the performance of the algorithm. Immune memory op-
eration helps to avoid the starting-from-scratch problem, thus improving the
convergence speed and adaptability of the algorithm for dynamic problems.

4. Experiments

Our proposed method was applied in dynamic function approximation and channel
estimation of orthogonal frequency division multiplexing (OFDM) communication
systems to test its performance in dynamic environments.

4.1 Dynamic function approximation

Multimodal function approximation has been widely used to assess the performance
of neural networks. In our experiment, the multimodal function used to evaluate
the performance of the proposed algorithm can be expressed as follows:

z = f(x, y) = 3(1− x + a)2e−x2/2−(y+1)2−a

− (10 + b)(
x

5
− x3 − y5)e−x2−y2+c − 1

3
e−(x+1)2−y2

, (5)

where a ∈ [−1, 1], b ∈ [−2, 2], c ∈ [−1, 1], a, b, c are time-varying coefficients that
are uniform distributed. In the experiment, parameters a, b, c were stochastically
changed after each training phase, and new samples were regenerated: both training
set and test set were equi-distributed in the input interval [−3, +3]2; training set
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contains 289 data and test set contains 2401 data. All the samples had a signal-
to-noise ratio (SNR) of 14 dB.

In simulation, our proposed RBF training algorithm was compared with other
RBF training algorithms including: 1) clustering algorithm [21]; 2) least mean
square (LMS) algorithm [3]; 3) memory enhanced genetic algorithm (MEGA) [9];
4) genetic algorithm with memory-based immigrants (MIGA) [10].

Parameters in our proposed algorithm were set as follows: Tmin = 0.05, Tmax =
0.1, N = 30, M = 10, ξ1 = 0.5; for first-stage learning, parameters of IEM were set
as follows: n = 15, m = 20, P = 3, S1 = 50; for second-stage learning, parameters
of IEM were set as follows: n = 40, m = 20, P = 4, S2 = 80; σk(k ∈ 1, . . . , N) ∈
[0.01, 6]. These parameters were chosen in ad hoc fashion, being only adequate
choices, but perhaps not the optimal ones.

Algorithm Training Error(MSE) Test Error(MSE) Hidden Training
Mean StD Mean StD Units Time(sec)

clustering 0.3231 0.0432 0.3751 0.2354 40 10.2
LMS 0.1238 0.0285 0.3493 0.2052 35 14.8

MEGA 0.0279 0.0223 0.0546 0.0803 31 39.7
MIGA 0.0176 0.0195 0.0339 0.0569 31 42.2

Proposed 0.0103 0.0145 0.0295 0.0321 30 34.2

Tab. III Performance comparison for dynamic function approximation.

All simulations were implemented with Matlab 7.0.4 and were executed on
IBM compatible PC in which AMD Athlon 64 X2 2.2G CPU and 1GB RAM were
mounted. 100 Monte Carlo were performed, and parameters a, b, c went through
50 permutations in each run of simulation. Experimental results of different RBF
training algorithms are shown in Tab. III, where mean and standard deviation
(StD) of MSE are compared. From Tab. III it can be seen that the proposed
algorithm has reached very high precision with robustness. The training time of the
algorithm is also less than other evolutionary algorithms for dynamic environments,
such as MEGA and MIGA.

4.2 Channel estimation for OFDM systems

RBF networks have been widely used in adaptive channel equalization [3], which
presents a typical nonlinear dynamic problem to evaluate the performance of RBF
online training algorithms. In this section, our proposed algorithm is applied to
channel equalization of the frequency-selective fading channels in orthogonal fre-
quency division multiplexing (OFDM) systems.

Orthogonal frequency-division multiplexing is a multicarrier digital modulation
technique for high-speed wireless communication systems. In OFDM systems, the
entire channel is divided into many narrowband subcarriers, through which data
are transmitted in parallel, thereby increasing the symbol duration and reducing
the effect of intersymbol interference.
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Accurate channel estimation is the key to reliable coherent OFDM communi-
cations. In [3] RBF network has been developed for pilot-symbol-aided channel
estimation in OFDM systems in relatively fast multipath fading channels, where
LMS algorithm is applied to adjust the parameters of RBF network.

In our experiment, we used the same channel model and parameters as in [3],
i.e., a six-ray multipath fading channel in Standard ITU R M.1225-Vehicle test
environment was considered; the parameters were set as follows: the relative de-
lays are 0, 300, 8900, 12900, 17100 and 20000 (ns); the average powers are -2.5,
0, -12.8, -10 -25.2 and -16.0 (dB). The Rayleigh fading process is simulated by
using the harmonic decomposition method [23]. The OFDM signal was also con-
structed according to [3], and quadrature phase shift keying (QPSK) modulation
with coherent demodulation was used.

In simulation, our proposed RBF training algorithm was compared with other
RBF training algorithms including: 1) 1-D RBFN in [3]; 2) 2-D RBFN in [3];
3) MEGA [9]; 4) MIGA [10]. Except for 1-D RBFN, all RBF estimators used
two-dimensional channel estimation as in [3]. The symbol error rate (SER) in
different normalized Doppler frequency (fdT ) and SNR conditions is employed as
the performance index.

Parameters in our proposed algorithm were set as follows: Tmin = 0.001/fdT ,
Tmax = 0.004/fdT ,N = 15, M = 6, ξ1 = 2

√
Tmin; for first-stage learning, parame-

ters of IEM were set as follows: n = 15, m = 20, P = 3, S1 = 40; for second-stage
learning, parameters of IEM were set as follows: n = 40, m = 30, P = 3, S2 = 60;
σk(k ∈ 1, . . . , N) ∈ [0.005, 10].

All simulations were implemented with Matlab 7.0.4 and were executed on
IBM compatible PC in which AMD Athlon 64 X2 2.2G CPU and 1GB RAM were
mounted. Fig. 2 shows the SER performance of the five RBF channel estimators
in a channel with fdT = 0.003. Fig. 3 shows the SER performance of the five
RBF channel estimators in a channel with fdT = 0.008. Fig. 4 shows the SER
performance of the five RBF channel estimators as a function of the normalized
Doppler fdT , with SNR=12dB.

Tab. IV compares mean and standard deviation (StD) of SER and MSE for
different RBF channel estimators, where fdT = 0.008 and SNR=10dB. In all the
above simulations 100, Monte Carlo (MC) realizations were done for each value.

Algorithm SER MSE Hidden Training
Mean StD Mean StD Units Time(sec)

1D-RBF 0.1404 0.2510 8.21e-3 1.21e-2 15 21.2
2D-RBF 0.1188 0.2140 7.62e-3 1.32e-2 15 20.8
MEGA 0.0868 0.0892 1.63e-3 0.87e-3 15 44.7
MIGA 0.0715 0.0642 1.03e-3 0.55e-3 15 50.2

Proposed 0.0298 0.0272 0.62e-3 0.24e-3 15 41.2

Tab. IV Performance comparison for OFDM channel estimation.

From the above simulations it can be seen that RBF network designed with the
proposed algorithm is robust against environmental changes, and has reached best
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performance in various conditions. The proposed algorithm offers better perfor-
mance especially in relatively fast fading channels, and its computation overhead
is also less than that of MEGA and MIGA.

5. Conclusions

In this paper, a two-stage learning method based on immune operations is proposed
to configure RBF centers and widths. The algorithm fully exploits the locally-tuned
structure of the RBF network, and is specially designed to adapt to dynamic prob-
lems solving. Applications in dynamic problems demonstrate that the proposed
algorithm has made good compromise between network precision and computation
overhead. Experiments in channel estimation of OFDM systems prognosticate that
the proposed algorithm can offer good performance especially in rapidly changing
environments.

As future work for this paper, it would be interesting to apply the proposed
algorithm to other dynamic signal processing problems, which include automatic
control, wireless communication (such as channel equalization, multiuser detection,
adaptive power control), dynamic system modeling and prediction, speech signal
processing, dynamic function approximation, adaptive filter design, etc.

Another future task involves the parameter setting of the algorithm. As a key
part of the proposed algorithm, the two-stage learning strategy introduces many
user-defined parameters besides its improvement on the algorithm efficiency in
dynamic environments. Although some parameters can be adaptively adjusted as
suggested in the paper, it is interesting to study the selection of parameters in
different kinds of dynamic environments (such as periodically returning dynamic
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Fig. 2 SER versus SNR with fdT = 0.003.
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environments, where memory schemes might be more useful) for better operation
of the algorithm.

While in this paper immunity-based operations are incorporated in the design
of RBF neural network, the interaction between neural networks and immunity-
based systems is not confined to this architecture. Since both neural networks
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and immunity-based systems are biologically inspired techniques that exhibit com-
pelling parallel adaptive information-processing abilities, this paper just prognos-
ticates a tempting idea of incorporating neural networks and immune operations
for solving complex dynamic information processing problems.
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