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Abstract: In this paper, we consider and introduce methods for robust principal
component analysis (PCA), including also cases where there are missing values in
the data. PCA is a widely applied standard statistical method for data prepro-
cessing, compression, and analysis. It is based on the second-order statistics of the
data and is optimal for Gaussian data, but it is often applied to data sets having
unknown or other types of probability distributions. PCA can be derived from
minimization of the mean-square representation error or maximization of variances
under orthonormality constraints. However, these quadratic criteria are sensitive
to outliers in the data and long-tailed distributions, which may considerably de-
grade the results given by PCA. We introduce robust methods for estimation of
both the PCA eigenvectors directly or the PCA subspace spanned by them. Exper-
imental results show that our methods provide often better results than standard
PCA when outliers are present in the data. Furthermore, we extend our methods
to incomplete data with missing values. The problems arising in such cases have
several features typical for nonlinear models.
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1. Introduction

Principal component analysis (PCA) is a well-known standard linear technique
which is based on the second-order statistics of the data represented by the covari-
ance matrix of the data. PCA is used widely, especially as a preprocessing method
for whitening or decorrelating the data and compressing it optimally in the mean-
square error sense before application of more involved nonlinear data processing or
classification methods. But sometimes applying PCA alone is sufficient for getting
adequate results if the problem considered is simple enough. PCA is discussed from
various viewpoints for example in [7, 9, 18, 20]. In the next section, we consider
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the mathematical definition of PCA, the optimization problems leading to PCA,
and methods for computing it.

Robustness is a particularly important and desirable property of any method,
especially if the data contains exceptionally large values due to outliers, measure-
ment errors, or impulsive noise [14, 15]. For example, the standard mean-square
and least-squares error criteria are not robust against such atypical values, which
may cause large errors to the results or in extreme cases even render them useless.

This is easy to understand from a simple example. Assume for simplicity that
we have at our disposal a data set for which the error e for the first sample to be
considered is one measurement unit and for another sample 10 such measurement
units. Using the mean-square or least-squares error criteria, the error for the latter
sample gets a hundredfold (102) weight compared for the error for the first sample
(12) in computing the optimal solution. Thus, in an extreme case, a few very large
errors due to outliers can determine the optimal solution almost solely, with many
small errors corresponding to appropriate measurements having a small effect to it
only. This is clearly an undesirable situation.

Robustness is often achieved by using instead of standard squared criteria or
loss functions robust criteria which grow less than quadratically, and we also apply
this strategy later on. To this end, many different robust loss functions have been
introduced, see for example Tab. 2.1 in [9]. Absolute error | e | is in principle
a simple and natural first choice for a robust criterion function, but there are
two problems associated with using it. First, it is much more difficult to handle
mathematically than quadratic criteria, whose optimal solutions obtained using
differentiation lead typically to simple linear equations. Another problem is that
the derivative of the absolute error has a discontinuity at origin. Several of the
robust loss or criterion functions listed in Tab. 2.1 in [9] suffer from the same
problem.

Many authors have studied robust PCA using various approaches. Robust
PCA methods are briefly reviewed in the introductory parts of the papers [12, 31],
in which one can find more references on the topic. In particular, in [4, 12, 38]
Bayesian probabilistic approaches have been developed for the problem. These
methods require making assumptions on the distribution of the noise and outliers.
In the papers [4] and [38], the authors assume Student’s t-distribution, having
longer tails than the Gaussian distribution, and derive an EM (expectation max-
imization) algorithm for this model. Gao [12] replaces Student’s t-distribution
with double exponential (Laplace) distribution, and uses a variational Bayesian
approach leading to an approximative EM algorithm.

Torre and Black [31] use robust M-estimation developed in statistics to elaborate
the theory of robust subspace learning for linear models. In the early paper by
Xu and Yuille [35], entire data vectors are regarded as outlier vectors. In many
applications it is, however, more realistic to assume that only some components in
a data vector are contaminated (that is, outliers), while most of their components
are not outliers. Ding et al. [11] develop for robust PCA so-called R1-norm, which
is a kind of intermediate form between the standard Euclidean norm and L1-norm.

Another problem often appearing in practical data sets is that there are miss-
ing values in the data vectors. General methods for handling missing values are
presented in [2, 21]. Methods for treating missing values in PCA are discussed in
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Section 13.6 in [18]. We shall discuss them in more detail in Section 4. We have
developed probabilistic methods for missing values in PCA, and applied them suc-
cessfully to the huge Netflix data set in [26, 27]. This work is summarized in the
long journal paper [17]. There one can find also a general discussion of the prob-
lems arising with missing values in PCA, demonstrating several features which are
usually associated with nonlinear models, such as ovefitting and poor local minima.

There exist many papers on robust PCA methods and, on the other hand,
on treating missing values in PCA, but very few authors have considered both
these problems simultaneously. The only paper that we know is our own one [22].
There a variational Bayesian methods is developed for this problem, and applied
to a difficult real-world data set with very good results. This Bayesian method is,
however, mathematically involved and quite demanding. In this paper, we develop
simpler neural approaches for this combined problem.

The remainder of this paper is organized as follows. In the next section, we
discuss PCA from various viewpoints, which are then used in Section 3 for deriving
several robust methods. In Section 4, we discuss how missing values can be han-
dled in context with PCA and robust PCA. In the following section, we present
experimental results for both artificially generated data for which the theoretically
correct results are known, and for real-world forest fires data. The paper ends with
conclusions in Section 6.

2. Principal Component Analysis

2.1 Definition and batch estimation

Denote the n-dimensional i:th data vector by xi. We assume that there are available
a total of N such data vectors. They can be represented compactly using an n×N
data matrix

X = [x1,x2, . . . ,xN ]. (1)

For simplicity, the data vectors are assumed to have zero mean vector mx = E[x],
where E[·] denotes the expectation operator. If this is not the case, the mean vector
mx can be easily estimated from the data as the average of the data vectors and
subtracted from them as a preprocessing step.

For zero mean data vectors x, their covariance matrix is theoretically

Cxx = E[xxT ]. (2)

Its standard sample estimate is

Ĉxx =
1
N

XXT =
1
N

N∑

i=1

xixT
i . (3)

In principal component analysis (PCA) [7, 9, 16, 18], the data vectors are expressed
on the basis of the eigenvectors uj , j = 1, . . . , n, of the covariance matrix Cxx:

xi =
n∑

j=1

(xT
i uj)uj = UUT xi, (4)
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where the matrix
U = [u1,u2, . . . ,un] (5)

has as its columns the eigenvectors of the covariance matrix Cxx.
In practice, the theoretical PCA eigenvectors are usually not known, but they

must be estimated from the data (1) in one way or another. Denote these estimates,
computed for example from the sample covariance matrix (3), by ûj . Furthermore,
dimensionality is often compressed in context with the PCA expansion (4) from
n to m, where m is often a small fraction of n only, by using only the principal
eigenvectors u1, . . . ,um corresponding respectively to the m largest eigenvalues
λ1, . . . , λm, where λ1 ≥ λ2 ≥ . . . ≥ λm ≥ λm+1. Thus,

CxxU = UΛ, (6)

where the diagonal matrix

Λ = diag[λ1, . . . , λm] (7)

contains the PCA eigenvalues in descending order.
The equations (4), (5), (6), and (7) hold for the estimated quantities ûj , λ̂j ,

Û, Λ̂, and Ĉxx as well. Thus the truncated estimated PCA expansion of the data
vector xi is

x̂i =
m∑

j=1

(xT
i ûj)ûj = ÛmÛT

mxi, (8)

where the matrix Ûm = [û1, . . . , ûm] contains as its m columns the estimated m
first principal (PCA) eigenvectors of the covariance matrix of the data. These
estimates can be obtained from the eigendecomposition of the sample covariance
matrix (3), or from various iterative and/or adaptive algorithms to be discussed in
more detail later on.

There are two major classes of PCA methods: those which estimate the PCA
eigenvectors themselves and those which estimate a PCA subspace only. If the
column vectors of the matrix Ûm are the first m estimated principal eigenvectors
of the covariance matrix of the data, the approximation x̂i in (8) is optimal for every
m = 1, 2, . . ., as discussed in the next subsections. In the PCA subspace approaches,
the vectors ûj are some mutually orthonormal basis vectors of the m-dimensional
PCA subspace spanned by the estimated first m PCA eigenvectors only [5, 25].
In this case, the expansion (8) is optimal for that dimensionality m of the PCA
subspace only. There exist infinitely many bases of the PCA subspace, obtained by
applying any m×m rotation matrix Qm satisfying the property QmQT

m = QT
mQm

= I to the matrix Ûm. Because ÛmQm(ÛmQm)T = ÛmÛT
m, the expansion (8)

remains optimal in spite of the orthogonal transformation Qm. The true PCA
eigenvectors can be computed from a basis of the corresponding PCA subspace, as
explained in Section 2.4 in [17].

2.2 PCA from variance maximization

PCA eigenvectors directly or the PCA subspace spanned by them can be derived
as optimal solutions from several quadratic criteria. The first one is maximization
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of the variances of the basis vectors of the PCA subspace (assuming zero mean
data X) [16, 20]:

Jvar = E[‖ y ‖2] = E[‖ WT x ‖2] = tr(WT CxxW) (9)

under the constraint that the column vectors wj of the n×m weight matrix

W = [w1,w2, . . . ,wm] (10)

which constitute the basis vectors of the m-dimensional PCA subspace, are mutu-
ally orthonormal:

WT W = I. (11)

There
y = WT x (12)

is the m-dimensional feature vector which is, in this case, also the projection
[WT W]−1WT x of x onto the m-dimensional PCA subspace due to the orthonor-
mality constraints (11), and tr(A) denotes the trace of the matrix A.

Taking into account the orthonormality constraints (11) via Lagrange multipli-
ers, it is easy to derive the following Oja’s PCA subspace rule for estimating the
PCA subspace [16, 19, 20]:

∆W = µ[I−WWT ]xxT W = µ[x−Wy]yT (13)

where µ denotes the learning parameter. The corresponding stochastic gradient
algorithm utilizing one data vector xk only at each iteration is then

Wk+1 = Wk + µkekxT
k Wk = Wk + µkekyT

k (14)

where yk = WT
k xk, and the error vector

ek = xk −WkWT
k xk = xk −Wkyk (15)

Because Oja’s PCA subspace rule (14)–(15) is a stochastic gradient algorithm,
it converges slowly but anyway to some orthonormal basis of the PCA subspace
spanned by the columns of the matrix Um in (8). The corresponding algorithm for
estimating the PCA eigenvectors ui directly is the generalized Hebbian algorithm
(GHA) made popular by Sanger, see [29, 19, 20].

A problem with the GHA algorithm and its robust and nonlinear generalizations
[19, 20] is that they are deflation type algorithms. That is, the first PCA eigenvector
is estimated first, with the estimate of the second PCA eigenvector depending on it,
and so on for the subsequent estimates of PCA eigenvectors. Thus, for example the
estimate of the second PCA eigenvector cannot converge until the estimate of the
first eigenvector has converged. This is the basic reason for the undesirable property
which the deflation type PCA algorithms have, namely that the errors accumulate
so that they are larger for the estimate of the next principal eigenvector than for
the current one. This makes such deflation type algorithm inaccurate and slowly
converging in estimating more than just a few principal eigenvectors u1, . . . ,um.

On the other hand, in the PCA subspace type algorithms like Oja’s subspace
rule (13) all the estimates of the basis vectors of the PCA subspace (column vectors
of the weight matrix W) are treated in a symmetric and equal way, which usu-
ally leads to a faster convergence and better accuracy than for the corresponding
deflationary algorithms.
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2.3 PCA from minimization of mean-square approximation
error

Oja’s PCA subspace rule can be derived also by minimizing the mean-square ap-
proximation error (MSE) [16, 19, 20, 34]

JMSE = E[‖ x− x̂ ‖2] = E[‖ x−WWT x ‖2] = E[‖ x−Wy ‖2]. (16)

Here

x̂ =
m∑

j=1

(xT wj)wj = WWT x = Wy (17)

is a similar approximation of the data vector x as (8) but now in terms of the m
weight vectors w1, . . . ,wm.

It can be shown that the MSE error in (16) is minimized when the weight
vectors w1, . . . ,wm constitute some orthonormal basis of the m-dimensional PCA
subspace [5, 25]. The mean-square error (16) is then the sum of discarded smallest
eigenvalues of the data covariance matrix Cxx:

JMSE = E[‖ x− x̂ ‖2] =
n∑

j=m+1

λj (18)

which can be compared to the total power of the data:

E[‖ x ‖2] =
n∑

j=1

λj . (19)

The mean-square error (18) is often rather small compared with the total power
(19) even though the dimensionality m of the PCA subspace is much smaller than
the dimensionality n of the data, allowing one to drop the dimensionality of the data
vectors quite significantly in data compression with a relatively small MSE error.
This, in turn, brings out large computational savings in subsequent processing
especially for methods whose computational load grows fast with the dimensionality
of the data.

The mean-square error criterion (16) is a more appropriate starting point for
deriving PCA solutions than the variance maximization criterion (9), because the
orthonormality constraints (11) are not needed in deriving the optimum solution
[5, 25].

Several authors (see [19, 20, 34]) have derived the following algorithm for min-
imizing the MSE error (16):

Wk+1 = Wk + µk[xkeT
k Wk + ekxT

k Wk]. (20)

The first update term xkeT
k Wk is proportional to the same vector, the data vector

xk, for all the weight vectors w1, . . . ,wm, and it is usually small. Therefore, it
can be in practice usually neglected [19, 20]. This approximation leads to standard
Oja’s subspace rule (14)–(15). It converges as quickly as the algorithm (20) to the
same solution. Again, one can derive the respective hierarchic (deflationary type)
algorithm for estimating the PCA eigenvectors directly, and approximating it in a
similar manner as above leads to Sanger’s GHA algorithm [20].
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2.4 Steepest descent and Newton type algorithms

In practice, the mean-square approximation error in (16) is not known, but it must
be replaced by its finite sample approximation based on the known data X in (1).
Thus, the data vectors are modeled as

xi = Wyi + ei = x̂i + ei. (21)

There ei is the n-dimensional error vector incurred by approximating the n-dimen-
sional data vector xi by x̂i = Wyi = WWT xi which lies in the m-dimensional
subspace spanned by the weight vectors wj , j = 1, 2, . . . , m.

The data model (21) can be written compactly for the entire data X as

X = WY + E, (22)

where the feature matrix Y = WT X and error matrix E are defined by

Y = [y1,y2, . . . ,yN ] (23)

E = [e1, e2, . . . , eN ]. (24)

Now the unknown mean-square error (16) is replaced by the squared Frobenius
norm of the error matrix E:

C = ‖ E ‖2F = ‖ X−WY ‖2F =
N∑

j=1

‖ xj −WWT xj ‖2 (25)

=
N∑

j=1

‖ xj −Wyj ‖2 =
n∑

i=1

N∑

j=1

(xij − bT
i yj)2 =

n∑

i=1

N∑

j=1

(xij − x̂ij)2,

where bT
i is the i:th m-dimensional row vector of the n×m weight matrix W, and

x̂ij = bT
i yj is the approximation of the element xij of the data matrix X.

In [17], Ilin and Raiko presented a variant of Oja’s PCA subspace rule which can
be derived by minimizing the error (25) with respect to both W and Y, without
using the relationship Y = WT X. Differentiating C with respect to W and Y
leads to the steepest descent PCA subspace learning algorithm

Wk+1 = Wk − µk
∂C
∂W

(26)

Yk+1 = Yk − µk
∂C
∂Y

, (27)

where the elements of the partial derivative matrices are

∂C
∂wil

= −2
N∑

j=1

(xij − x̂ij)ylj (28)

∂C
∂ylj

= −2
N∑

j=1

(xij − x̂ij)wil (29)
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and x̂ij is the element ij of the matrix X̂ = WY.
This algorithm can be represented compactly in matrix form as

Wk+1 = Wk + µkEkYT
k = Wk + µk[X−WkYk]YT

k (30)
Yk+1 = Yk + µkWT

k Ek = Yk + µkWT
k [X−WkYk], (31)

where the error matrix on iteration k is

Ek = X−WkYk (32)

and it should be recalled that Yk is treated in Eqs. (30)-(31) as an independent
variable, without resorting to the relationship Y = WT X.

The convergence speed and stability of this algorithm can be improved by de-
veloping the corresponding Newton type algorithm [17]. In this Newton version,
one first computes the second partial derivatives

∂2C
∂w2

il

=
N∑

j=1

y2
lj ,

∂2C
∂y2

lj

=
n∑

i=1

w2
il, (33)

The partial derivatives on the left hand side of equations (28) and (29) are then
replaced by

(
∂2C
∂w2

il

)−1
∂C

∂wil
,

(
∂2C
∂y2

lj

)−1
∂C
∂ylj

. (34)

In order to keep the computational load smaller, only the diagonal elements of the
Hessian matrices (33) are used especially in high-dimensional problems in practice.

A Newton version of the standard Oja’s PCA subspace rule is obtained by using
only the first equations (26) and (28), and replacing the partial derivative (28) by
the first term in (34). In this case, the matrix Yk is computed from Yk = WT

k X.

2.5 Least-squares type algorithms for PCA

In 1995, Yang [36] introduced so-called PAST (Projection Approximation Subspace
Tracking) algorithm for adaptive estimation of the basis vectors (10) of the PCA
subspace. Using the same notation as above, in deriving the PAST algorithm the
unknown standard mean square-error E[‖ x−WWT x ‖2] used in (16) for deriving
PCA is replaced by the respective weighted least-squares error criterion

JWLS(k) =
k∑

i=1

βk−i ‖ xi −WkWT
k xi ‖2, (35)

where β, 0 < β ≤ 1 is the forgetting factor. A typical value of β is 0.99. If
β = 1, no forgetting takes place, corresponding to the case in which all the data
vectors x1,x2, . . . ,xN are weighted equally in the PAST algorithm. The forgetting
factor is useful in tracking the PCA subspace of mildly non-stationary data whose
statistical properties change slowly, as it weights the less each data vector xi the
longer back in time (or index value) it is from the current data vector xk. The
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index k denotes both iteration and data vector number. Note that if k = N and
β = 1, the criterion (35) coincides with the error criterion (25).

The key idea in developing the PAST algorithm [36] is to approximate the term
WT

k xi in (35) by WT
k−1xi. Because the weight matrix Wk−1 from the previous

iteration step k− 1 is known, the quantity WT
k−1xi can be computed and inserted

into the criterion (35). It turns then to a standard weighted least-squares criterion
which can be optimized recursively using the PAST algorithm below. Furthermore,
the approximation error is usually small after the first iterations because the weight
matrices Wk and Wk−1 from subsequent iterations are close to each other.

The k:th iteration of the PAST algorithm for estimating basis vectors of the
standard PCA subspace is [36]

vk = WT
k−1xk

hk = Pk−1vk

mk = hk/[β + vT
k hk]

Pk =
1
β

Tri[Pk−1 −mkhT
k ] (36)

ek = xk −Wk−1vk

Wk = Wk−1 + ekmT
k .

The notation Tri means that only the upper triangular part of the argument matrix
is computed and copied to the lower triangular part, thus making the matrix Pk

symmetric. The initial values of the matrices W0 and P0 can be taken n×m and
m×m “unit” matrices, respectively.

The PAST algorithm (36) has become quite popular and more or less a stan-
dard choice in adaptive estimation of PCA subspace especially in signal processing
due to its good properties. It converges faster than the respective steepest descent
and especially stochastic gradient type algorithms. The computational load of the
PAST algorithm per each iteration is quite tolerable though somewhat higher than
for stochastic gradient type algorithms because the most demanding operations
needed in it are just matrix-vector multiplications. Furthermore, the PAST algo-
rithm is truly iterative. One can attribute its good accuracy to the least-squares
optimization of the criterion (35), which leads to replacing the scalar learning pa-
rameter µk in gradient algorithms by the gain matrix Pk. Moreover, the asymptotic
convergence of the PAST algorithm has been proved in [37].

The sequential version of the PAST algorithm, called by its developer as PASTd,
estimates the principal PCA eigenvectors directly as follows [36]. On the k:th
iteration,

xk(1) = xk; (37)

For j = 1, 2, . . . ,m,

vk(j) = wT
k−1(j)xk(j)

dk(j) = βdk−1(j) + [vk(j)]2

ek(j) = xk(j)−wk−1(j)vk(j) (38)
wk(j) = wk−1(j) + ek(j)[yk(j)/dk(j)]

xk(j + 1) = xk(j)−wk(j)vk(j).
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This is again a deflation type algorithm which estimates the PCA eigenvectors
in a sequential manner, and may, therefore, be somewhat less accurate than the
PCA subspace version (36) of the PAST algorithm. However, this is not so great
problem as with the deflationary type gradient algorithms because the algorithm
(38) is clearly more accurate due to rougly optimal determination of the learning
parameter from the minimization of the least-squares error criterion. Also the
convergence of the PASTd algorithm is proved in [37].

2.6 Probabilistic PCA and Gaussianity

Roweis [28] and Tipping and Bishop [30] have shown that PCA emerges as the
maximum likelihood solution of a probabilistic latent variable model in which all
the stochastic variables involved are Gaussian. In this model, the data vectors are
again represented in terms of the equation (21), but now it is assumed that ei is a
zero mean n-dimensional Gaussian noise vector with covariance matrix σ2I. That
is, the components of the noise vector ei are mutually uncorrelated and have equal
variances σ2. Also the n-dimensional data vector xi and m-dimensional feature
vector yi are assumed to have Gaussian (marginal) distributions, see [7, 28, 30] for
exact assumptions. Thus, in the data model (21) xi is represented in the subspace
spanned by the non-random weight vectors wj , j = 1, 2, . . . , m.

In [28, 30], an EM algorithm is derived for computing a basis of the PCA
subspace of chosen dimensionality m. It is obtained as a limiting case from a
slightly more general EM algorithm when the noise variance σ2 approaches zero,
see [7]. Using the matrix data model (22), this EM algorithm can be expressed
compactly as

E-step: Y = [WT W]−1WT X (39)
M-step: Wnew = XYT [YYT ]−1. (40)

This algorithm converges to a weight matrix (10) whose column vectors w1,w2, . . . ,
wm are estimates of basis vectors of the m-dimensional PCA subspace of the data
X. In general, these estimated basis vectors are not mutually orthonormal, and,
therefore, the inverse matrix [WT W]−1 is needed to form the m × n projection
matrix [WT W]−1WT onto the estimated PCA subspace. Furthermore, because
the EM algorithm (39)–(40) estimates a basis of the PCA subspace only, post-
processing is needed for estimating the PCA eigenvectors themselves. However,
Ahn and Oh [1] as well as Choi [8] have developed modified EM algorithm for PCA
which estimate the first PCA eigenvectors directly.

A prominent feature of the data model (21) used in probabilistic PCA is that
all the involved random vectors xi,yi, and ni are assumed to have Gaussian dis-
tributions. Thus, PCA is optimal for Gaussian data, but generally non-optimal
for otherwise distributed data. Intuitively, this can be understood from the fact
that PCA relies only on the second-order statistics, namely the covariance matrix
of the data [19, 20] for zero mean data. This suffices for Gaussian data because
its probability distribution is determined completely by its covariance matrix for
zero mean data. However, non-Gaussian data carries a lot of useful information
in its higher-order statistics which should also be utilized for getting better results
[16, 23].
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3. Robust PCA

3.1 Transforming the data vectors more robust

A rather simple and straightforward method of reducing the effect of outliers and
impulsive noise in the data is to suppress large elements in the data vectors them-
selves. After this preprocessing step, one can use the suppressed data vectors quite
similarly as the original ones in any methods and algorithms. One could simply cut
large values which exceed a suitably chosen threshold value [9], but a more refined
method which avoids drawbacks of a strict threshold value is to suppress them. In
the following, a simple but useful method for doing this is presented.

First, we estimate the standard deviation of each component of the data vectors
x. For zero-mean data vectors

xj = [x1j , x2j , . . . , xnj ]T , j = 1, 2, . . . , N (41)

the estimated variances σ̂2
i , i = 1, . . . , n, of their components are the respective

diagonal values of the sample covariance matrix (3), and the respective estimated
standard deviations are of course their square roots σ̂i, i = 1, . . . , n. The data
vectors xj , j = 1, 2, . . . , N , are now transformed to suppressed data vectors zj

whose components are

zij = αi tanh(xij/αi), i = 1, 2, . . . , n (42)

There, the scaling constant αi of each component is

αi = cσ̂i, (43)

where the constant c is typically chosen from the interval [2, 3].
The scaling function (42) is plotted in Fig. 1. There, αi = 3, c = 3 and σ̂i = 1.

Note that the curves in Fig. 1 behave qualitatively similarly for any σ̂i.
After the transformation (42), the covariance matrix Czz = E[zz]T of the trans-

formed data vectors zj is estimated quite similarly as for the original data vectors
xj from

Ĉzz =
1
N

ZZT =
1
N

N∑

i=1

zjzT
j , (44)

where
Z = [z1, z2, . . . , zN ] (45)

is the entire transformed data matrix having as its columns the transformed data
vectors zj , j = 1, . . . , N .

The limiting maximum value of the transformed component zij in (42) is αi =
cσ̂i when xij →∞, and minimum value −cσ̂i when xij → −∞. If, for example, c =
3, these values are equal to ±3σ̂i. Now recall that if zij were Gaussian distributed,
the probability that it has a value which is farther away than ±3σ from its mean is
only 0.0026. Thus, such values are highly probably outliers, and one can in practice
suppress also values that are in the interval [±2σ,±3σ] from the mean. However,
if there are many outliers, there could be a local maximum in the distribution of
zi’s near the values zi = ±cσ̂i, resulting into a somewhat U-shaped distribution of
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Fig. 1 The sigmoidal scaling function z = 3 tanh(x/3) (marked by x) compared
with the straight line z = x (marked by o) corresponding to no scaling.

zi. This can be avoided by using in (42) instead of the sigmoidal tanh function a
suitably scaled logarithmic function which does not saturate when xij → ±∞. An
example of such a function is the inverse hyperbolic sine function

sinh−1(x) = ln(x +
√

x2 + 1). (46)

3.2 Robust generalization of variance maximization

A robust generalization of the variance maximization problem (9), (11) can be
obtained by replacing the variance in (9) by a more robust cost function. For the
i:th weight vector wi, the generalized criterion is then [19, 20]

Jgenvar(wi) = E[f(xT wi)] (47)

under the constraints (11) that wi is normalized to unity and orthogonal to all the
other weight vectors wj , j 6= i, in the symmetric case. The function f(t) in (47)
is assumed to be a valid cost function that grows less than quadratically (that is,
proportionally to t2) at least for large t. More specifically, f(t) is even, nonnegative,
and continously differentiable almost everywhere. Examples of such cost functions
are f(t) = lncosh(t) and f(t) = |t| suitably scaled.

In the symmetric case, the criterion (47) can be expressed more compactly in
matrix-vector form as [19]

Jgenvar(W) = 1T E[f(WT x)] +
1
2
tr[Λ(WT W − I)], (48)

where the elements of the matrix Λ are Lagrange multipliers λij , and 1 = [1, 1, . . . , 1]T

is a ‘ones’ vector of compatible length, in this case m. When the argument of a
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scalar function, such as f(·) above is a vector or matrix, it means here and later
on that this function is applied separately to each element of its argument vector
or matrix.

Minimization of the criterion (48) with respect to the weight matrix W and the
Lagrange multipliers Λ leads to the following simple generalization of Oja’s PCA
subspace rule (14)–(15) [19, 20]:

Wk+1 = Wk + µkekg(xT
k Wk) = Wk + µk[I−WkWT

k ]xkg(xT
k Wk), (49)

where the error vector ek at iteration k is defined by (15). The function g(t) is
scaled suitably and grows less than linearly. It is the derivative of the function
f(t). Typically, for example g(t) = tanh(t) or g(t) = +1, t ≥ 0; g(t) = −1, t < 0.
The term I−WkWT

k keeps the matrix W orthonormal, so that the condition (11)
is satisfied.

The batch steepest descent version of the stochastic gradient algorithm (49),
which uses the entire data matrix X = [x1,x2, . . . ,xN ] in each iteration, can be
written as

Wk+1 = Wk + µkẼkg(X̃T Wk), (50)

where the normalized data matrix

X̃ =
1√
N

X. (51)

and the normalized error matrix

Ẽk = X̃−WkWT
k X̃ =

1√
N

(X−WkWT
k X) (52)

The scaling factor 1/N of the data covariance matrix (3) is, thus, divided evenly
to the data matrices X appearing in these two update formulas. One should pre-
process the data matrix X before any iterations by normalizing it using Eq. (51).

The variance maximization problem can be generalized in a similar manner
in the sequential (deflationary) case as well [20]. This sequential version of the
algorithm (49) is

wk+1(i) = wk(i) + µkek(i)g(xT
k wk(i)), i = 1, . . . ,m (53)

ek(i) = xk −
i∑

j=1

[wT
k (j)xk]wk(j) = ek(i− 1)− [wT

k (i)xk]wk(i). (54)

In these equations, wk(i) denotes the estimate of i:th basis vector (PCA eigen-
vector) at iteration k, and ek(i) is the respective error vector. Actually, this is
nothing but a generalization of Sanger’s generalized Hebbian algorithm (GHA)
[29] for robust variance maximization.

The batch steepest descent version of the algorithm (53)-(54) is obviously for
i = 1, . . . , m

Ẽk(i) = X̃−
i∑

j=1

wk(j)wT
k (j)X̃ = Ẽk(i− 1)−wk(i)wT

k (i)X̃, (55)
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wk+1(i) = wk(i) + µkẼk(i)g(X̃T wk(i)). (56)

In the linear case g(t) = t corresponding to the maximization of standard variance
in (53) and (56), the algorithm (53)-(54) becomes Sanger’s GHA algorithm for
standard linear PCA, and the algorithm (55)-(56) is simply the batch steepest
descent version of the GHA algorithm.

A topic that would deserve attention is the question which are the optima of
the criteria (47) and (48), but this has not yet been studied. Obviously, these
optima are different from PCA solutions because the derived algorithms perform
in practice worse than standard PCA in impulsive noise.

3.3 Robust generalization of minimization of MSE approxi-
mation error

The mean-square approximation error in (16) can also be taken as a starting point
for deriving robust algorithms [19, 20, 34]. The robust criterion corresponding to
the standard MSE error (16) is in the symmetric case [19, 20]

JGMSE = 1T E[f(e)] = 1T E[f(x− x̂)] = 1T E[f(x−WWT x)], (57)

where the robust cost function f(t) satisfies similar properties as before. Thus in
(57) the mean-square approximation error has been replaced by a robust approxi-
mation error.

Minimization of the robust approximation error criterion (57) leads to the fol-
lowing algorithm:

Wk+1 = Wk + µk[xkg(eT
k )Wk + g(ek)xT

k Wk], (58)

where again g(t) is the derivative of f(t), which grows less than linearly.
Comparing the robust algorithm (58) with its standard PCA subspace esti-

mation counterpart (20), we see that the only difference is that the error vector
ek defined already in (15) is replaced by robust error vector g(ek). In early ex-
periments [20], it was found that the algorithm (58) is prone to local minima.
Similarly as (20), the algorithm (58) can be approximated by dropping the first
term xkg(eT

k )Wk from its update inside the square brackets out. The resulting
algorithm

Wk+1 = Wk + µkg(ek)xT
k Wk (59)

ek = xk −WkWT
k xk, (60)

where the error vector ek in (60) is reproduced for convenience, is less prone to local
minima and converges at least roughly to the same solution as the exact algorithm
(58).

One should note here an important difference: in the approximative algorithm
(59) for minimizing the robust approximation error (57), the nonlinearity g(t) is
applied to the error vector ek, while in the algorithm (49) derived by generalizing
the variance maximization criterion it is applied to the transposed linear response
vector xT

k Wk. Thus, these robust algorithms are different and yield different re-
sults, while in estimating the standard PCA subspace they coincide because then
g(t) = t.
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The batch steepest descent version of the algorithm (59)–(60) is obviously

Wk+1 = Wk + µkg(Ẽk)X̂T Wk, (61)

where the error matrix Ẽk for the entire data set X is computed on each iteration
k from the formula (52).

The sequential version of the algorithm (59)–(60) is

wk+1(i) = wk(i) + µkg(ek(i))xT
k wk(i), i = 1, . . . , m (62)

where the error vector ek(i) corresponding to the estimate of i:th basis vector wk(i)
(robust PCA eigenvector) at iteration k is computed from (54). The algorithm
(62) is a generalization of Sanger’s generalized Hebbian algorithm (GHA) [29] for
minimizing robust error [20].

The batch steepest descent version of the algorithm (62), (54) is obviously for
i = 1, . . . , m

wk+1(i) = wk(i) + µkg(Ẽk(i))X̂T wk(i), (63)

where the error matrix Ẽk(i) for the i:th basis vector wk(i) at iteration k is com-
puted from (55).

3.4 Robust Newton type algorithms

Robust versions of the algorithms discussed in subsection 2.4 can be developed by
replacing the squared norm ‖ · ‖2 in (25) by a suitable cost function f(t) which
grows less than quadratically, for example

f(t) =
1
α

lncosh(αt), (64)

where α is a suitably chosen scaling parameter. The derivative of this function is

g(t) =
df(t)
dt

= tanh(αt) (65)

and its derivative is, in turn,

g′(t) =
dg(t)
dt

= α[1 + g(t)][1− g(t)] (66)

The robust versions of the steepest descent Oja’s PCA subspace rule and the
modified algorithm (30)–(31) are now obtained simply by replacing the error matrix
Ek by g(Ek). Scaling the data matrix then yields the steepest descent version (61)
of robust Oja’s PCA subspace rule for generalized error minimization, and similarly
for the modified algorithm (30)–(31). For clarity, we give the update formulas for
this latter algorithm here. They are

Wk+1 = Wk + µkg(Ẽk)ỸT
k (67)

Ỹk+1 = Ỹk + µkWT
k g(Ẽk), (68)

where the normalized error matrix is

Ẽk = X̃−WkỸ (69)
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and X̃ = 1√
N

X. In robust Oja’s PCA subspace rule, only the first update equation

(67) is used, and Ỹk is computed instead of (68) from Ỹk = WT
k X̃. Of course,

one can use the scaled quantities X̃, Ẽk, and Ỹ in the standard PCA algorithm
(30)-(31), too, which can be then obtained by dropping the nonlinearity g(·) from
the equations (67)–(68).

It is straightforward to see that when the quadratic error in (25) is replaced by
a more general robust error criterion f(xij − x̂ij), the second partial derivatives in
(33) are replaced by

∂2C
∂w2

il

= 2
N∑

j=1

g′(xij − x̂ij)y2
lj ,

∂2C
∂y2

lj

= 2
n∑

i=1

g′(xij − x̂ij)w2
il (70)

and the Newton type counterpart of the robust PCA subspace algorithm (67)-(68)
takes the form

∆wil =
(

∂2C
∂w2

il

)−1 N∑

j=1

g(xij − x̂ij)ylj (71)

∆ylj =

(
∂2C
∂y2

lj

)−1 N∑

j=1

g(xij − x̂ij)wil. (72)

The respective Newton type robust Oja’s PCA subspace algorithm is obtained by
using only the first update formula (71), and computing values of ylj from the
relationship Y = WT X. In practice, we use the normalized data matrix X̃ from
(51), so that also Y is replaced by Ỹ and X̂ is computed from the formula X̂ =
WỸ.

However, this algorithm did not work well in preliminary experiments because
it zigzags between iterations and becomes rather easily unstable. Therefore, we
used approximative robust Newton algorithms where the second partial derivatives
in (71) and (72) are computed from (33) instead of (70). These approximative
robust Newton algorithms perform much better, maybe because the values of the
second derivatives in (33) do not depend on the index i and j, respectively.

3.5 Robust least-squares type algorithms

Similarly as for the mean-square error (16), we can generalize the weighted least-
squares error criterion (35) by replacing the squared error ‖ xi −WkWT

k xi ‖2 in
(35) with its robust counterpart. This leads to the criterion

JGWLS(k) =
k∑

i=1

βk−if(xi −WkWT
k xi), (73)

where the function f(t) satisfies the same properties as in (47). That is, f(t) is
even, nonnegative, and continously differentiable almost everywhere, and grows
less quadratically at least for large t. Our selection for such a cost function is f(t)
= lncosh(t) scaled suitably.
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A robust version of the subspace PAST algorithm is now obtained simply by
replacing the error vector ek in (36) by the nonlinear error

g(ek) = g(xk −Wk−1vk) = g(xk −Wk−1WT
k−1xk), (74)

where the nonlinearity g(t) grows less than linearly with | t |. If f(t) = lncosh(t),
g(t) = tanh(t). Otherwise, the robust version of the subspace PAST algorithm
remains the same as the original least-squares algorithm (36). This robust PAST
algorithm usually performs definitely better than standard PCA when impulsive
noise is present in the data.

This algorithm can be justified as follows. Due to the properties of the cost
function f(t), f(e) is minimized when the norm ‖ e ‖ (or the squared norm ‖ e ‖2)
of the linear error e is minimized. Thus, we can minimize the robust cost function
(73) with respect to this linear error using the standard PAST algorithm (36), and
take into account the nonlinearity f(t) by replacing the error vector ek in (36) by
its robust counterpart g(ek) in (74), where g(t) is the derivative of f(t). While this
derivation of the robust PAST algorithm is somewhat heuristic, the algorithm is
well justified by its good performance in practice.

A robust version of the sequential PAST algorithm is obtained quite similarly by
replacing the linear error vector ek(j) in (38) by its nonlinear (robust) counterpart
g(ek(j)). The other steps of this algorithm remain the same, too.

We have earlier developed a nonlinear PCA version of the PAST algorithm for
independent component analysis and blind source separation, which also converges
much faster than respective stochastic gradient type algorithms, see [16, 24].

4. Missing Values in PCA

General remarks. In real-world data sets there are often missing values. This
problem and methods for handling it are considered on a general level in [2, 21].
Various methods for treating missing values in PCA are discussed in Section 13.6 in
[18]. If there are only a few missing values, the usual method is to omit completely
from the computations the data vectors for which at least one of their components is
missing. But if the data contain a significant amount of missing values, this simple
method wastes too much information. Another simple customary method is to
estimate each element of the sample covariance matrix only over such component
pairs of the data vectors for which both the components have values. However,
this method can yield a sample covariance matrix that is not valid because it is no
longer positive (semi)definite [17].

Although the PCA problem in the presence of missing values may, at first sight,
seem as easy as standard PCA, there are some important distinctions [17]. Because
of them the situation actually resembles in many ways nonlinear modeling prob-
lems. First, there is no analytical solution available for PCA with missing values
because even the estimation of the data covariance matrix is nontrivial. Second,
the optimized cost function typically has local minima, which makes finding of the
global optimum more difficult. Regularization is often required in probabilistic
approaches because standard PCA approaches can easily lead to overfitting. And
algorithms may have a heavy computational load especially in large-scale problems.
There are still a few more problems that are mentioned in [17].
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All the methods studied in this paper assume that missing values appear at
random in each component of a data vector. Similarly, outliers appear at ran-
dom in each component of a data vector. Contrary to this, in some probabilistic
methods at least [4] entire data vectors are assumed to be outliers. One should
use a correct model for the presence of missing values and outliers in the data set
analyzed because this is critical for the performance of a method; see for example
our experimental results in [22].

Imputation method. A typical method for handling missing values is so-
called imputation method [2, 21, 18]. In its simplest form, this means in PCA
replacing the missing values in the data by the mean value of that component.
Because we use data preprocessed to have zero mean, in our case the missing
values are replaced by zeros. After this, one can estimate the sample covariance
matrix and compute its PCA in the usual manner.

A more advanced imputation method uses suitably designed iterations for re-
placing the missing values. Let the current estimate of the data covariance matrix
be Ĉxx in (3), where the missing values in the data vectors have been substituted
by their values obtained using the imputation algorithm. Then new estimates of
the missing values in the data vectors are computed from (8). Only the missing
values are replaced by the values estimated from this formula, while the existing
non-missing components of the data vectors are retained to have their original
values. The data vectors completed in this way are then used to re-estimate the
sample covariance matrix in (3), and this iteration is continued until it converges.
This method was proposed already in [3], but using only the first (principal) PCA
eigenvector.

Nearest neighbor method. One method for handling missing values in real-
world data sets is to look for such a data vector that is as similar as possible to the
data vector to be handled which has missing value(s), and then replace the missing
values with the respective components of that most similar another data vector.
A natural method is to seek for such a data vector by computing the Euclidean
distances between the data vector to be handled and the other data vectors in the
data set, and then select the nearest neighbor that has minimum distance. This
simple idea was developed by the current author, but similar techniques have been
used in collaborative filtering [6]. Another possibility is to compute the angles
between the data vectors, and replace the missing component from the respective
one of the vector that has the smallest angle to the data vector to be handled.

Probabilistic methods. We have developed probabilistic methods for miss-
ing values in PCA, and applied them successfully to the huge Netflix data set
in [26, 27]. This work is summarized in the long journal paper [17]. There one
can also find a general discussion of the problems arising with missing values in
PCA as well as more references. Treatment of missing values is in probabilistic
and Bayesian methods usually straightforward, but these methods are often both
mathematically demanding and have a heavy computational load. Furthermore,
they require tailoring of the developed method to an appropriate data model with
assumptions on the probability distributions of the random variables involved.
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5. Experimental Results

We do not show results for the robust steepest descent algorithms (50) and (55)–
(56) obtained by generalizing the variance maximization problem in a symmetric
and hierarchic manner, respectively, because they performed worse than standard
PCA in impulsive noise. The reason is obviously that the optimum of the criterion
(47) or more completely (48) which these algorithms try to achieve is different from
PCA.

We also tried robust version of the EM algorithm (39)–(40), where the E-step
(39) is replaced by the respective robust step Y = [WT W]−1g(WT X). The re-
sulting algorithm requires orthonormalization of the weight matrix W after each
iteration (40) to perform appropriately. But it suffers from the same problem as ro-
bust generalizations of the variance maximization problem, namely that the robust
EM algorithm performs worse than standard PCA in impulsive noise. Obviously,
the basic reason for this is also the same, that is, the optimum of this algorithm is
something else than the PCA subspace. The same remarks apply to similar robust
generalizations of the EM type PCA algorithm introduced by Ahn and Oh [1] as
well as the wake-sleep PCA algorithm by Choi [8]. For the robust generalization
of Ahn’s and Oh’s algorithm it suffices to normalize the weight vectors (column
vectors of the weight matrix W), and for the robust wake-sleep PCA algorithm
not even this normalization is needed.

We do not show any experimental results for the robust Newton type algo-
rithm (71)–(72) either because it seems to be too complicated, zigzagging between
the subsequent iterations and becoming unstable rather easily. For the remaining
algorithms, we present in the following experimental results for simulated and real-
world data vectors containing impulsive noise, and after this when also missing
values are present in addition to the impulsive noise.

5.1 Simulated data

Experiment 1: Estimation of PCA subspace in impulsive noise

In this experiment, the data vectors xi are 5-dimensional. They are first gener-
ated so that their components are zero-mean statistically independent Gaussian
distributed random numbers with variances σ2

1 = 5.0, σ2
2 = 3.0, σ2

3 = 2.0, σ2
4 = 1.0,

and σ2
5 = 0.6. The covariance matrix of the data is, thus, a diagonal matrix with

the above variances, and its eigenvectors are simply unit vectors. Hence, the two
first PCA eigenvectors are u1 = [1, 0, 0, 0, 0] and u2 = [0, 1, 0, 0, 0], and the projec-
tion of the normalized weight vectors wj onto the two-dimensional PCA subspace
consist simply of the two first components of the weight vectors wj . However, the
algorithms tested, of course, do not utilize and know this information, but use the
generated data vectors only, and treat them as data vectors having any possible
distribution. In this experiment, we tried to estimate this two-dimensional PCA
subspace using different methods.

Furthermore, a certain amount of impulsive noise is added to the data. The
impulsive noise is modeled and generated by adding with a certain fixed probability
pv uniformly distributed random numbers lying in the interval [−a, +a] indepen-
dently to each component of the data vectors, which increases theoretically the
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variance of all the components of the data vectors by the same amount pva2/3. In
this experiment, pv = 0.05 and a = 10, so that the amount of 1.67 is added to
all the variances above. This makes reliable estimation of the eigenvectors clearly
more difficult than in the case where there is no impulsive noise because now the
the eigenvalues are relatively closer to each other. The number of data vectors
is n = 400. For getting statistically more reliable results, 100 different randomly
generated realizations of the data set X having these statistical properties were
used in this experiment. The results are averages for these 100 data sets.

Fig. 2 shows the angles between the true PCA subspace and its estimates pro-
vided by different methods as a function of sweeps. One sweep means using the
data X once. The number of sweeps was limited to 50, by which also the iterative
methods had been converged. We compare only the PCA subspace because the
symmetric iterative algorithms in this experiment estimate some orthonormal basis
of the PCA subspace only, and, therefore, comparing their basis vector estimates
to the true PCA eigenvectors is not meaningful.

The scaling coefficient in the robust method, where large components of the
data vectors were first suppressed, was c = 2.5 in (43). It seems that this choice
is not so critical because the results are almost the same for example if c = 2.0
or c = 3.0. Fig. 2 shows that this simple method clearly improves the accuracy of
the estimated PCA subspace, and it also improves the accuracy of the estimated
PCA eigenvectors. For the iterative methods, the scaling coefficient in (65) was
α = 0.8. Also this choice is not so critical. The learning parameter in the approx-
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Angles with true PCA subspace

Fig. 2 Angles between the true PCA subspace and estimated ones in Experiment 1
for different methods versus the number of sweeps. Standard PCA (line marked with
circles), PCA from robust data vectors (line marked with crosses), approximative
robust Oja’s PCA subspace rule (curve marked with asterisks), and robust subspace

PAST algorithm (curve marked with squares).
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imative robust Oja’s PCA subspace rule was computed during each sweep k from
the formula

µk =
µ0

1 + k/τ
(75)

where the search time constant τ guarantees that the learning parameter µk does
not approach zero too quickly, allowing for the algorithm sufficient time to converge
close to the optimum [13]. In this experiment, we chose µ0 = 1 and τ = 20. Finally,
the forgetting factor in the robust subspace PAST algorithm was β = 0.99.

From Fig. 2 one can see that robust subspace PAST algorithm (marked with
squares) performs the best, but PCA from robust data vectors (marked with
crosses) is close to it. Approximative robust Oja’s PCA subspace rule (marked with
asterisks) performs only slightly better than standard PCA estimated by comput-
ing the eigenvectors of the sample covariance matrix (marked with circles), which
gives the least accurate estimated PCA subspace. In more difficult cases, where
the proportion of data vectors corrupted by impulsive noise is larger and there
are less data vectors, the results are qualitatively fairly similar, but the robust
subspace PAST algorithm is most accurate with a larger difference in performance
compared with PCA from robust data vectors, and standard PCA may perform
slightly better than approximative robust Newton type Oja’s PCA subspace rule.

Experiment 2: Estimation of PCA eigenvectors in impulsive noise

In another experiment, the data vectors were first generated quite similarly as in
Experiment 1. That is, they were 5-dimensional zero-mean Gaussian random vec-
tors with the same variances as in Experiment 1. The data vectors were corrupted
by impulsive noise generated from the same uniform distribution as in Experiment
1. But now the estimation task was considerably more difficult as in the first ex-
periment as the probability of impulsive noise was three times higher, pv = 0.15,
and there were 200 data vectors only. The scaling coefficient of the hyperbolic tanh
function in (65) was now α = 1.0, µ0 = 0.5, and the total number of sweeps was
60. The other parameters were the same as in Experiment 1.

This time we compared sequential (deflationary) type methods that estimate
the PCA eigenvectors directly, not only the PCA subspace spanned by them. The
methods compared were standard PCA estimated by computing the eigenvectors
of the sample covariance matrix (lines marked with circles in Figs. 3–5), the same
method using robust data vectors whose large components were suppressed (lines
with crosses), robust steepest descent GHA algorithm (curves marked with aster-
isks), and robust sequential PAST algorithm (curves marked with squares). From
Figs. 3–5 one can see that robust sequential PAST algorithm performs the best,
then PCA from robust data vectors, followed by robust steepest descent GHA al-
gorithm, and standard PCA estimation method is again the least accurate. The
PCA subspace estimates follow the same order, even though the difference between
the accuracy of the robust steepest descent GHA algorithm and standard PCA es-
timation is now smaller, obviously because the PCA eigenvectors estimated using
the standard method are somewhat mixed, containing prominent components of
the other estimated eigenvector.

The results provided by these sequential methods were qualitatively similar in
other experiments that we carried out with different variances of the 5 component
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Fig. 3 Angles between the first true PCA eigenvector and its estimates in Experi-
ment 2 for different methods versus the number of sweeps: standard PCA (circles),
PCA from robust data vectors (crosses), robust steepest descent GHA algorithm

(asterisks), and robust sequential PAST algorithm (squares).
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Fig. 4 Angles between the second true PCA eigenvector and its estimates in Exper-
iment 2 for different methods versus the number of sweeps: standard PCA (circles),
PCA from robust data vectors (crosses), robust steepest descent GHA algorithm

(asterisks), and robust sequential PAST algorithm (squares).
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Fig. 5 Angles between the true PCA subspace and estimated ones in Experiment 2
for different methods versus the number of sweeps: standard PCA (circles), PCA
from robust data vectors (crosses), robust steepest descent GHA algorithm (aster-

isks), and robust sequential PAST algorithm (squares).

data vectors, different amounts of impulsive noise, and different numbers of data
vectors.

5.2 Real-world Forest Fires data

For testing our robust PCA methods with real-world data, we chose the data set
‘Forest Fires’ which is publicly available in the well-known UCI Machine Learning
Repository [32]. This data set was originally introduced and used for a difficult
regression task in [10]. The aim there is to predict the burned area of forest fires
in northeastern Portugal by using meteorological and other data. Our aim is to
estimate the principal component subspace or the first PCA eigenvectors of this
data set after a certain amount of impulsive noise and outliers were added to the
data.

The Forest Fires data set contains 517 data vectors xi, i = 1, . . . , 517, which
are 13-dimensional. Most of their components are real numbers, and the two first
components which are integers can be treated as real numbers, too. The third and
fourth component are the labels of the month of the year and the day of the week,
respectively. They were transformed to numbers so that the month label “jan”
was replaced by 1, and so on so that the month label “dec” was replaced by the
number 12. The labels of the days of the week were transformed similarly so that
“mon” corresponds to the numerical value 1 and “sun” to 7. Furthermore, the
last 13th component xi,13 (burned forest area) varies very much in different data
vectors, ranging from 0.0 hectares to 1091 hectares, and is very skewed towards
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0.0. Therefore, it was transformed using an ln(xi,13 + 1) function according to the
authors’ recommendation in [10].

A problem with this and almost all real-world data sets is that no one knows
which are the true principal components and PCA eigenvectors. The best that we
can have is to first estimate the sample covariance matrix (3) from from the Forest
Fires data set without impulsive noise, and then use its eigenvectors as ‘true’ values
after impulsive noise etc. have been added to the data set. Our experimental re-
sults show that this may favor batch PCA compared with robust batch PCA and
with the iterative robust PCA algorithms that we have proposed when impulsive
noise is present. At least the results are qualitatively different from those obtained
when using artificially generated data for which the theoretically correct results
are known.

Applying batch PCA directly to the Forest Fires data set reveals that the PCA
eigenvalues vary very much in magnitude, most of them being small or very small.
And even the dominant eigenvalues have highly different values. On the other
hand, scaling the variances of all the 13 components in the Forest Fires data set
to unity provides PCA eigenvalues which are quite close to each other and unity.
In such a case, reliable estimatation of the PCA eigenvectors becomes impossible
when impulsive noise or outliers are added to the data. For getting a more suitable
range of PCA eigenvalues we, therefore, scaled the Forest Fires data set somewhat
heuristically so that the 5th, 6th, and 10th component were divided by 10 and the
7th component by 50, as well as the 12th component was multiplied by 10 and the
13th component by 5 after the logarithmic transformation described above. After
this, the 13 eigenvalues of the sample covariance matrix Ĉxx in (3) estimated using
standard batch PCA were 76.95, 48.37, 23.01, 16.06, 11.06, 8.75, 5.73, 4.27, 2.84,
1.38, 1.00, 0.72, and 0.18.

Experiment 3: Estimation of PCA subspace in impulsive noise

Fig. 6 shows the results provided by different methods when the estimated PCA
subspace was 4-dimensional. That is, we estimated its four basis vectors which
should ideally lie in the same subspace as the four first principal eigenvectors of
the covariance matrix of the data. The probability of the impulsive noise was
pv = 0.10, and its average magnitude was then same for all components of the data
vectors. The impulsive noise was then generated from the formula nj = 40u, where
u is an uniformly distributed random number lying in the interval [−0.5, +0.5].
The scaling coefficients in the robust batch PCA and iterative methods were the
same c = a = 1.5 for a fair comparison, and the forgetting factor in the robust
subspace PAST algorithm was β = 0.999.

The results are somewhat different compared with simulated data. This time
batch PCA estimated from robust data vectors (line marked with crosses) yields the
worst result, with standard batch PCA (circles) performing somewhat better. Ro-
bust subspace PAST algorithm (marked with squares) is the best, but also approxi-
mative robust Newton type Oja’s PCA subspace rule (asterisks) provides somewhat
better estimate of the PCA subspace than the two compared batch PCA methods.
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Fig. 6 Angles between the “true” 4-dimensional PCA subspace and its estimates
for the Forest Fires data set using different methods versus the number of sweeps.
Impulsive noise was added to the data set before estimation. Line marked with
circles: batch PCA. Crosses: batch PCA from robust data vectors. Asterisks: ap-
proximative robust Newton type Oja’s PCA subspace rule. Squares: robust subspace

PAST algorithm.

Experiment 4: Estimation of PCA eigenvectors in impulsive noise

In this experiment, we tried to estimate 4 first PCA eigenvectors in impulsive noise
for the Forest Fires data. The experimental setting was similar to the Experiment
3 but there were some differences in the parameter values. The probability of
impulsive noise was pv = 0.15, and it was generated from the formula nj = 5σju.
That is, the magnitude of the impulsive noise for each component xj of the data
vectors was proportional to the standard deviation σj of that component. We
could as well have generated impulsive noise in the same manner as in the previous
experiment. The scaling coefficients in the robust batch PCA and iterative methods
were again the same c = a = 1.5 for a fair comparison. The parameters in the
search-and-converge strategy (75) were µ0 = 0.03 and τ = 30. This was used both
in the steepest descent GHA algorithm (63) and in the robust PASTd algorithm,
where in (38) the new weight vector estimate is computed from the formula

wk(j) = wk−1(j) + µkg(ek(j))[yk(j)/dk(j)] (76)

and µk is computed from the formula

µk =
1

1 + k/τ
(77)
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This changes the robust PASTd algorithm only slightly, so that the updates will
be somewhat smaller during the later sweeps. The forgetting factor in the robust
PASTd algorithm was β = 0.999.

Figs. 7–11 show the results. The accuracy of the estimated PCA subspace in
Fig. 7 is best for the steepest descent GHA algorithm (curve marked with asterisks)
and for the robust PASTd algorithm (curve marked with squares), and worst for
the batch PCA estimated from robust data vectors (line marked with crosses). It is
still unclear why the intermediate results for the robust iterative algorithm around
sweeps 20 to 30 are better than their final ones. Figs. 8–11 show that the accuracies
of the estimates of the first to fourth PCA eigenvectors vary somewhat for different
methods. They are rather similar for the batch PCA, steepest descent GHA and
robust PASTd methods, even though the second and third eigenvector estimates
converge somewhat slowly for the robust PASTd method (curves with squares). On
the other hand, batch PCA from robust data vectors (lines marked with crosses)
provides clearly different results. Its estimates for the first, second and third PCA
eigenvectors are most accurate, but for the fourth PCA eigenvector and the PCA
subspace it yields clearly the worst estimates. These results vary somewhat with
the parameters used, and occasionally batch PCA from robust data vectors may
perform better than plain batch PCA.

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90
Angles with estimated standard PCA subspace

Fig. 7 Angles between the “true” PCA subspace and estimated ones in an ex-
periment with the Forest Fires data set for different methods versus the number
of sweeps. The estimated PCA subspace was 4-dimensional. Impulsive noise was
added to the data set before estimation. Line marked with circles: batch PCA.
Crosses: batch PCA from robust data vectors. Asterisks: approximative robust
Newton type Oja’s PCA subspace rule. Squares: robust subspace PAST algorithm.
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Fig. 8 Angles between the first “true” PCA eigenvector and its estimates in an
experiment with the Forest Fires data set in impulsive noise for different methods
versus the number of sweeps. Line marked with circles: batch PCA. Crosses: batch
PCA from robust data vectors. Asterisks: approximative robust Newton type Oja’s

PCA subspace rule. Squares: robust subspace PAST algorithm.
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Fig. 9 Angles between the second “true” PCA eigenvector and its estimates in an
experiment with the Forest Fires data set in impulsive noise for different methods
versus the number of sweeps. Line marked with circles: batch PCA. Crosses: batch
PCA from robust data vectors. Asterisks: approximative robust Newton type Oja’s

PCA subspace rule. Squares: robust subspace PAST algorithm.

383



Neural Network World 5/11, 357-392

0 10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80
Angles of estimated third PCA eigenvectors

Fig. 10 Angles between the third “true” PCA eigenvector and its estimates in an
experiment with the Forest Fires data set in impulsive noise for different methods
versus the number of sweeps. Line marked with circles: batch PCA. Crosses: batch
PCA from robust data vectors. Asterisks: approximative robust Newton type Oja’s

PCA subspace rule. Squares: robust subspace PAST algorithm.
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Fig. 11 Angles between the fourth “true” PCA eigenvector and its estimates in an
experiment with the Forest Fires data set in impulsive noise for different methods
versus the number of sweeps. Line marked with circles: batch PCA. Crosses: batch
PCA from robust data vectors. Asterisks: approximative robust Newton type Oja’s

PCA subspace rule. Squares: robust subspace PAST algorithm.
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5.3 Missing values

Experiment 5: Imputation algorithm for missing values, simulated data

In this experiment, we studied the performance of the iterative imputation algo-
rithm described in Section 4 for simulated data which contain both outliers and
missing values. As before, the data vectors xi were 5-dimensional. They were
first generated so that their components were zero-mean statistically independent
Gaussian distributed random numbers with variances σ2

1 = 5.0, σ2
2 = 3.0, σ2

3 = 2.0,
σ2

4 = 1.0, and σ2
5 = 0.6. The number of samples (data vectors) was 200. Both

missing values and outliers were generated independently of each other randomly
separately for each component of the data vectors with probability 0.1. Outliers
were generated by adding to the the components of data vectors uniformly dis-
tributed random numbers in the interval [−10, +10] with probability 0.1. The
constant for robust data vectors in (43) was c = 2.5.

Fig. 12 shows the angles between the true 2-dimensional PCA subspace and its
estimates for different methods as a function of the number of sweeps. The impu-
tation method performs for both standard batch PCA and robust batch PCA often
the best when the missing values in the data are replaced simply by zeros, which
is the mean of each component in the data. Iterations of the imputation algorithm
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Fig. 12 Angles between the true PCA subspace and estimated ones for different
methods versus the number of sweeps. Two-dimensional PCA subspace was esti-
mated from simulated 5-dimensional data. The probability of both missing values
and outliers was 0.1. Line marked with circles: batch PCA with outliers but no
missing values. Crosses: batch PCA from robust data vectors with outliers but
no missing values. Asterisks: batch PCA using the imputation algorithm for the
missing values. Squares: robust batch PCA using the imputation algorithm for the

missing values.
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provide during first sweeps much worse results. With more iterations the results of
the imputation method get gradually better, and in this simulation they become
eventually a little better than for the initial values. The results of the imputation
method vary greatly in different simulations even for the same parameters remain
the same, and they are typically worse for the eigenvector estimates than for the
PCA subspace. We emphasize that the results for batch PCA (line with circles)
and robust batch PCA (line with crosses) are unrealistic and for reference and com-
parison purposes only because they have been obtained with complete data which
contains outliers but no missing values. In this particular simulation it is remark-
able that the imputation algorithm using robust data vectors achieves better final
results with missing values than the compared batch PCA methods without any
missing values.

Experiment 6: Treatment of missing values for Forest Fires data

We studied the performance of the iterative imputation algorithm and the nearest
neighbor method in handling missing values described in Section 4 also for the
Forest Fires data set, which was preprocessed similarly as in previously. Note that
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Fig. 13 Angles between the “true” PCA subspace and estimated ones for differ-
ent methods versus the number of sweeps. Four-dimensional PCA subspace was
estimated from the Forest Fires data. The probability of both missing values and
outliers was 0.15. Circles: batch PCA with outliers but no missing values. Crosses:
batch PCA from robust data vectors with outliers but no missing values. Asterisks:
Batch PCA using the imputation algorithm for the missing values. Squares: ro-
bust batch PCA using the imputation algorithm for the missing values. Triangles:
Nearest neighbor approach for missing values in batch PCA. Stars: Nearest neigh-

bor approach for missing values in batch PCA from robust data vectors.
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the nearest neighbour method is not meaningful for the simulated data used in
the previous experiment because the components of its data vectors are statisti-
cally independent Gaussian random number and thus mutually uncorrelated. By
finding the nearest neighbor of a data vector nothing can be deduced about the
value of its missing component(s). However, for the Forest Fires data the nearest
neighbor method is more meaningful, and we compare it in this experiment with
the imputation method in handling missing values.

In this experiment, we added both outliers and missing values to the Forest Fires
data set randomly for each component with probability 0.15 and independently of
each other. The constant for robust data vectors in (43) was c = 2.5. The “true”
4-dimensional PCA subspace was computed from the Forest Fires data set with no
missing values and outliers.

Fig. 13 shows the angles between the “true” PCA subspace and its estimates for
different methods as a function of the number of sweeps. It should be noted that
the results of batch PCA (line marked with circles) and batch PCA from robust
data vectors (line marked with crosses) are unrealistic if there are missing values
because they have been computed by assuming that there are no missing values in
the data set. These results have been shown as a reference for the quality of results
obtained using the imputation and nearest neighbor method when missing values
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Fig. 14 Angles between the “true” first PCA eigenvector and its estimates for
different methods versus the number of sweeps for the Forest Fires data. Circles:
batch PCA with outliers but no missing values. Crosses: batch PCA from robust
data vectors with outliers but no missing values. Asterisks: Batch PCA using the
imputation algorithm for the missing values. Squares: robust batch PCA using the
imputation algorithm for the missing values. Triangles: Nearest neighbor approach
for missing values in batch PCA. Stars: Nearest neighbor approach for missing

values in batch PCA from robust data vectors.
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are present. The results are somewhat surprising, especially when compared with
artificially generated data. First, standard batch PCA performs always better than
batch PCA computed from robust data vectors. This holds for the results with no
missing values (line marked with circles versus line marked with crosses), impu-
tation method (curve marked with asterisks versus curve marked with squares),
and nearest neighbor method for missing values (line marked with triangles versus
line marked by stars). Note that for artificially generated data just the contrary
is true. The reason is probably that because the true theoretical PCA subspace
is not known, we estimated it using standard batch PCA from the data vectors,
where there are no missing values and outliers. This favors batch PCA also when
missing values and outliers are present, compared with the case in which we would
estimate the “true” PCA subspace from robust data vectors using batch PCA.

It is also interesting and somewhat surprising that the imputation method be-
haves qualitatively differently for standard batch PCA and batch PCA estimated
from robust data vectors. For standard batch PCA, the results get worse with it-
erations (curve marked with asterisks), while for robust batch PCA (curve marked
by squares) they improve. Of the methods for handling missing values the nearest
neighbor method for standard batch PCA (line marked with triangles) performs
the best, but when using robust data vectors the imputation method (curve marked
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Fig. 15 Angles between the “true” second PCA eigenvector and its estimates for
different methods versus the number of sweeps for the Forest Fires data. Circles:
batch PCA with outliers but no missing values. Crosses: batch PCA from robust
data vectors with outliers but no missing values. Asterisks: Batch PCA using the
imputation algorithm for the missing values. Squares: robust batch PCA using the
imputation algorithm for the missing values. Triangles: Nearest neighbor approach
for missing values in batch PCA. Stars: Nearest neighbor approach for missing

values in batch PCA from robust data vectors.
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with squares) is clearly better than the nearest neigbor method (line marked with
stars).

Figs. 14–17 show the results provided by the same methods for the first 4 PCA
eigenvectors. For the two first PCA eigenvectors, batch PCA with no missing
values (line marked with circles) and batch PCA from robust data vectors with
no missing values (line marked with crosses) have almost the same accuracy, and
this holds even more when the nearest neighbor method is used for missing val-
ues. Then, the differences in performance between these two methods are very
small, hardly distinguishable. But for the third and fourth PCA eigenvectors the
differences in the accuracy between batch PCA and robust batch PCA grow large
both without missing values and when missing values are handled using the nearest
neighbor method. The imputation method performs poorly especially in context
with standard batch PCA when estimating the individual eigenvectors. Because
its results are better in estimating the PCA subspace, the estimated eigenvectors
obviously contain large portions of the other eigenvectors to be estimated. If one
chooses to use the imputation method in context with batch PCA, it is best just
to replace the missing elements with zeros and perform only one iteration. Finally,
the performance of the imputation method in context with robust data vectors
is contradictory in the sense that the accuracy of the estimated PCA subspace
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Fig. 16 Angles between the “true” third PCA eigenvector and its estimates for
different methods versus the number of sweeps for the Forest Fires data. Circles:
batch PCA with outliers but no missing values. Crosses: batch PCA from robust
data vectors with outliers but no missing values. Asterisks: Batch PCA using the
imputation algorithm for the missing values. Squares: robust batch PCA using the
imputation algorithm for the missing values. Triangles: Nearest neighbor approach
for missing values in batch PCA. Stars: Nearest neighbor approach for missing

values in batch PCA from robust data vectors.
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Fig. 17 Angles between the “true” fourth PCA eigenvector and its estimates for
different methods versus the number of sweeps for the Forest Fires data. Circles:
batch PCA with outliers but no missing values. Crosses: batch PCA from robust
data vectors with outliers but no missing values. Asterisks: Batch PCA using the
imputation algorithm for the missing values. Squares: robust batch PCA using the
imputation algorithm for the missing values. Triangles: Nearest neighbor approach
for missing values in batch PCA. Stars: Nearest neighbor approach for missing

values in batch PCA from robust data vectors.

increases with more sweeps, but for individual PCA eigenvectors the accuracy of
their estimates decreases with sufficiently many sweeps. The results were qualita-
tively similar in the other experiments that we carried out with different parameter
values.

6. Conclusions

Principal component analysis (PCA) is a well-known standard technique based on
the second-order statistics of the data represented by its covariance matrix. PCA
is commonly used for preprocessing and compressing data because of its optimal
properties, namely maximization of variance and minimization of the mean-square
representation error. PCA is also used for whitening the data, which normalizes
the data with respect to its first-order (mean vector subtracted) and second-order
statistics (covariance matrix becomes unit matrix). This is useful and necessary for
example in many methods designed for independent component analysis, allowing
them to concentrate on the higher-order statistics of the data.

390



Karhunen J.: Robust PCA methods for complete and missing data

However, problems arise in practical situations when the data contain outliers
and/or missing values. Several methods have been introduced for robust PCA when
the data contain outliers and, on the other hand, for handling missing values, but
both these cases have usually not been considered simultaneously. In this paper,
we introduce several methods for robust PCA, of which the robust version of the
least-squares based PAST algorithm performs the best. Also a simple method
for processing the components of the data vectors directly for increasing their
robustness is useful, while generalization of variance maximization does not lead
to useful methods.

For handling missing values, we consider two methods, an imputation algorithm
and nearest neighbor method. The performance of these methods varies for the
simulated data set and real-world Forest Fires data set that we have used for testing
our methods. In general, the nearest neighbor method seems to be more useful for
real-world data.
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