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Abstract: Intuitionistic fuzzy sets (IFSs) are generalization of fuzzy sets by adding
an additional attribute parameter called non-membership degree. In this paper, a
max-min intuitionistic fuzzy Hopfield neural network (IFHNN) is proposed by com-
bining IFSs with Hopfield neural networks. The stability of IFHNN is investigated.
It is shown that for any given weight matrix and any given initial intuitionistic
fuzzy pattern, the iteration process of IFHNN converges to a limit cycle. Further-
more, under suitable extra conditions, it converges to a stable point within finite
iterations. Finally, a kind of Lyapunov stability of the stable points of IFHNN is
proved, which means that if the initial state of the network is close enough to a
stable point, then the network states will remain in a small neighborhood of the
stable point. These stability results indicate the convergence of memory process
of IFHNN. A numerical example is also provided to show the effectiveness of the
Lyapunov stability of IFHNN
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1. Introduction

In [1–3], Atanassov extends Zadeh’s fuzzy sets to intuitionistic fuzzy sets (IFSs) by
adding an additional attribute parameter called non-membership degree. IFSs are
shown to be superior to fuzzy sets in, for example, semantic expression and inference
ability [4]. Various theoretical and applied researches have been performed on
IFSs, such as fuzzy topology [5–7], multi-criteria fuzzy decision-making [8–10],
clustering [11,12], medical diagnosis [13,14] and pattern recognition [15–17].
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Fuzzy neural networks combine fuzzy concepts and fuzzy inference rules with
the architecture and learning of neural networks, and have been successfully applied
in system identification [18], intelligent control [19–21], pattern classification [22]
and expert system [23, 24], etc. Since IFSs have proved to be more powerful to
deal with vagueness and uncertainty than fuzzy sets, some researchers have also
investigated the combination of IFSs and artificial neural networks [25–29]. In [29],
an intuitionistic fuzzy feedforward neural network (IFFFNN) was constructed by
combining feedforward neural networks and intuitionistic fuzzy logic, and some
operations and two types of transferring functions involved in the working process
of IFFFNN were introduced. In this paper, similar to fuzzy Hopfield neural net-
works [30–33], a max-min intuitionistic fuzzy Hopfield neural network (IFHNN)
is proposed by combining IFSs with Hopfield neural networks. The stability of
IFHNN is investigated. It is shown that for any given weight matrix and any given
initial intuitionistic fuzzy pattern, the iteration process of IFHNN converges to a
limit cycle. Furthermore, under suitable extra conditions, it converges to a stable
point within finite iterations. Finally, a kind of Lyapunov stability of the stable
point of IFHNN is proved, which means that if the initial state of the network
is close enough to a stable point, then the network states will remain in a small
neighborhood of the stable point. These stability results indicate the convergence
of memory process of IFHNN. A numerical example is also provided to show the
effectiveness of the Lyapunov stability of IFHNN

The rest of this paper is organized as follows. Some basic concepts of IFSs
are collected in Section 2. IFHNN is defined and described in Section 3. A few
stability results of IFHNN are given in Section 4. Section 5 presents a numerical
example. Some brief conclusions are drawn in Section 6. Finally, proofs of the
stability results are provided in an appendix.

2. Preliminaries

Atanassov generalizes Zadeh’s fuzzy sets to IFSs:

Definition 1 [1] Let X be a given set. An intuitionistic fuzzy set A is an object
having the form

A = {< x, µA(x), γA(x) > |x ∈ X},
where the functions µA(x) : X→ [0, 1] and γA(x) : X→ [0, 1] define the membership
degree and the non-membership degree respectively of the element x ∈ X to the set
A, and for every x ∈ X, 0 ≤ µA(x) + γA(x) ≤ 1.

Specifically, when the given set X is finite, say, X = {x1, x2, . . . , xm}, IFS A can be
expressed as a so-called intuitionistic fuzzy vector:

A = (< µA(x1), γA(x1) >,< µA(x2), γA(x2) >, . . . , < µA(xm), γA(xm) >).

Definition 2 [2] Let A = {< x, µA(x), γA(x) > |x ∈ X} and B = {< x, µB(x),
γB(x) > |x ∈ X} be two IFSs. Then, their conjunction, union and complement are
defined respectively as

1) A ∩B = {< x, µA(x) ∧ µB(x), γA(x) ∨ γB(x) > |∀x ∈ X};
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2) A ∪B = {< x, µA(x) ∨ µB(x), γA(x) ∧ γB(x) > |∀x ∈ X};
3) A = {< x, γA(x), µA(x) > |∀x ∈ X}.

Definition 3 [34,35] Let X and Y be two given sets. An intuitionistic fuzzy relation
R from X to Y is an IFS of X×Y characterized by the membership function µR(x, y)
and the non-membership function γR(x, y), denoted by

R = {< (x, y), µR(x, y), γR(x, y) > |x ∈ X, y ∈ Y},

where the functions µR(x, y) : X× Y → [0, 1] and γR(x, y) : X× Y→ [0, 1] satisfy
0 ≤ µR(x, y) + γR(x, y) ≤ 1, for every (x, y) ∈ X× Y.

In particular, when the given sets X and Y are finite, say, X = {x1, x2, . . . , xm} and
Y = {y1, y2, . . . , yn}, the intuitionistic fuzzy relation R from X to Y can be denoted
by an intuitionistic fuzzy matrix R=(rij)m×n, where rij =< µR(xi, yj), γR(xi, yj)>.

Some operations and properties of intuitionistic fuzzy matrixes are defined be-
low (cf. [35, 36]).

Definition 4 Let R = (< µRij , γRij >)m×n and Q = (< µQij , γQij >)m×n be
two intuitionistic fuzzy matrixes. Write R ⊆ Q, if µRij ≤ µQij and γRij ≥ γQij,
for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Definition 5 Let R = (< µRij , γRij >)m×n and S = (< µSij , γSij >)n×l be two
intuitionistic fuzzy matrixes. The max-min composite operation “◦” of R and S is
defined by

R ◦ S = (<
n∨

k=1

(µRik ∧ µSkj),
n∧

k=1

(γRik ∨ γSkj) >)m×l.

Property 1 Let Rm×n, Sn×l and Tl×s be intuitionistic fuzzy matrixes. Then the
max-min composite operation of intuitionistic fuzzy matrixes satisfies the associa-
tive law, i.e., (R ◦ S) ◦T = R ◦ (S ◦T).

Definition 6 An intuitionistic fuzzy matrix R = (< µij , γij >)n×n is said to be
reflexive, if µii = 1 and γii = 0, for i = 1, 2, . . . , n.

Property 2 If an intuitionistic fuzzy matrix R = (< µij , γij >)n×n is reflexive,
then, there holds Rk ⊆ Rk+1 for k = 1, 2, . . ., where Rk+1 = Rk ◦R.

3. Intuitionistic Fuzzy Hopfield Neural Network

Intuitionistic fuzzy Hopfield neural network (IFHNN) is a combination of IFSs and
Hopfield neural networks. The basic processing units of IFHNN are intuitionistic
fuzzy units, i.e., the input, output and weight signals are all IFSs. In this study,
similar to fuzzy Hopfield neural networks [30–33], a max-min IFHNN is constructed.
The inner operations involved in the working process of this IFHNN are based on
the max-min composite operation mentioned in [29], and the linear transfer function
f(x) = x is used as transferring function for the output nodes. The network consists
of n processing units which are connected with each other (cf. Fig.1). Both the
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Fig. 1 Structure of IFHNN for four units.

input and output signals of the network are intuitionistic fuzzy vectors and the
weight matrix is an intuitionistic fuzzy matrix denoted by W = (wij)n×n, where
wij =< µij , γij > stands for the weight from the i-th unit to the j-th unit. If the
initial state of the network is an intuitionistic fuzzy input pattern

X(0) = (< µX1(0), γX1(0) >,< µX2(0), γX2(0) >, . . . , < µXn(0), γXn(0) >),

then, the network iteration process is as follows:

X(t) = X(t− 1) ◦W

= (< µX1(t), γX1(t) >,< µX2(t), γX2(t) >, . . . , < µXn(t), γXn(t) >),(1)

where

µXi(t) =
n∨

k=1

(µXk(t− 1) ∧ µki) ,

γXi(t) =
n∧

k=1

(γXk(t− 1) ∨ γki) ,

and t = 1, 2, . . . , are the discrete time steps. The network will iterate repeatedly
according to (1) until a steady state is reached. The final output pattern X(∞) is
taken as an association of the input pattern X(0).

4. Stability Results

Definition 7 [37] If a sequence of states {P1, P2, . . . , Ps} is generated by a feed-
back network with state transition operator F such that F(P1) = P2, F(P2) =
P3, . . . ,F(Pk) = Pk+1, . . . ,F(Ps) = P1, and there does not exist a subsequence
with the same property in this sequence, then this sequence is called a limit cycle
and s is called the length of the limit cycle.
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Definition 8 [37] If there exists a state P of a feedback network such that, for the
state transition operator F of the network, F(P ) = P holds, then P is called a
stable point of the network.

Definition 9 [38–40] Let A = (< µA1, γA1 >,< µA2, γA2 >, . . . , < µAn, γAn >)
and B = (< µB1, γB1 >,< µB2, γB2 >, . . . , < µBn, γBn >) be two intuitionistic
fuzzy patterns. Define the Hamming distance between A and B as

H(A,B) =
1
2

n∑

i=1

(|µAi − µBi|+ |γAi − γBi|) .

Definition 10 [30, 37] Suppose that the intuitionistic fuzzy pattern P is a stable
point of the networks. P is said to be Lyapunov stable, if for any ε > 0, there
exists δ > 0, such that for every initial intuitionistic fuzzy pattern X satisfying
H(X,P ) < δ, H(X(t), P ) < ε holds for t = 1, 2, . . ., where X(t) is the t-th iteration
state of the network.

Now, we are ready to present our main results. Some comments on these
theorems can be found in the next section, and the proofs are postponed to the
Appendix.

Theorem 1 For any given intuitionistic fuzzy weight matrix W and any given
initial intuitionistic fuzzy pattern, the iteration process of IFHNN (1) converges to
a limit cycle.

Theorem 2 Suppose W is an intuitionistic fuzzy weight matrix of IFHNN with n
units. Then, the following statements hold:

(i) If W ⊆ W2, then the iteration process of IFHNN (1) converges to a stable
point within finite iterations.

(ii) If W is reflexive, then the iteration process of IFHNN (1) converges to a
stable point within at most n− 1 iterations.

Theorem 3 Suppose intuitionistic fuzzy pattern P is a stable point of IFHNN (1).
Then, P is Lyapunov stable.

5. A Numerical Example

In this section, an illustrative example is given to show the effectiveness of the
Lyapunov stability of IFHNN. Suppose the intuitionistic fuzzy weight matrix of
IFHNN is

W =




< 0.8, 0.1 > < 0.4, 0.4 > < 0.5, 0.4 > < 0.3, 0.5 > < 0.1, 0.7 >
< 0.2, 0.5 > < 0.9, 0.0 > < 0.1, 0.7 > < 0.4, 0.4 > < 0.7, 0.2 >
< 0.0, 0.6 > < 0.0, 0.7 > < 0.7, 0.2 > < 0.6, 0.3 > < 0.4, 0.5 >
< 0.5, 0.4 > < 0.4, 0.3 > < 0.0, 0.8 > < 0.6, 0.2 > < 0.2, 0.7 >
< 0.7, 0.2 > < 0.6, 0.3 > < 0.5, 0.3 > < 0.3, 0.5 > < 0.8, 0.1 >




It is easy to verify that W ⊆ W2. For the initial intuitionistic fuzzy pattern

X(0) = (< 0.2, 0.7 >,< 0.5, 0.2 >,< 0.3, 0.4 >,< 0.7, 0.1 >,< 0.4, 0.5 >) ,
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the iteration process of IFHNN (1) converges to a stable point

X = (< 0.5, 0.2 >,< 0.5, 0.2 >,< 0.5, 0.3 >,< 0.6, 0.2 >,< 0.5, 0.2 >)

at the third step.
Next, we consider the Lyapunov stability of the stable point X. For this pur-

pose, we add a random noise in [−0.001, 0.001] to the stable point X and end up
with a new initial pattern

X(0) = (< 0.5009, 0.2007 >,< 0.5001, 0.1995 >,< 0.4993, 0.3006 >,

< 0.5993, 0.1995 >,< 0.4995, 0.2009 >).

Then, the iteration process of IFHNN (1) converges to

X = (< 0.5009, 0.2000 >,< 0.5001, 0.1995 >,< 0.5000, 0.3000 >,

< 0.5993, 0.2000 >,< 0.5001, 0.2000 >)

at the second step. This shows that when the initial state of the network is close
enough to a stable point, the network states remain in a small neighborhood of the
stable point.

6. Conclusion

A max-min intuitionistic fuzzy Hopfield neural network (IFHNN) is proposed by
combining IFSs with Hopfield neural networks. In addition, the stability of IFHNN
is investigated. It is shown that the iteration process of IFHNN always converges
to a limit cycle for any given intuitionistic fuzzy weight matrix W and any given
initial intuitionistic fuzzy pattern. In particular, it converges to a stable point
within finite iterations if W ⊆ W2, and even within n − 1 iterations if W is
reflexive, where n is the number of the network units. Finally, a kind of Lyapunov
stability of the stable point of IFHNN is proved, which means that if the initial
state of the network is close enough to a stable point, then the network states will
remain in a small neighborhood of the stable point. These stability results indicate
the convergence of memory process of IFHNN.

Our work in this paper is preliminary. Investigation on more profound proper-
ties and applications of IFHNN might be promising. For instance, in comparison
with ordinary Hopfield neural networks, one may consider the following problems:
1) Determine the network weight matrix by using given training patterns. 2) Con-
struct a functional such that the state sequence of the network is a minimization
sequence of the functional. 3) Prove more profound convergence theorems of the
iteration process. 4) Find practical applications of the network.

Appendix

Proof of Theorem 1: Let M = {a1, a2, . . . , am} and Q = {b1, b2, . . . , bq} stand for
the sets of membership degree and non-membership degree of every element of W,
respectively. By the definition of the max-min composite operation “◦”, we know
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that the membership degree and non-membership degree of every element of Wk,
for k = 1, 2, . . ., are taken from the set M and Q, respectively. Therefore, there
are at most finite different matrixes in the matrix sequence {Wk|k = 1, 2, . . . , },
which means that identical matrixes will appear in the matrix sequence {Wk|k =
1, 2, . . . , } after finite composite operations. Thus, there exist two positive integers
k0 and k1, such that Wk0 = Wk1 . Assume without loss of generality that k0 ≤
k1. Then, the matrix sequence {Wk|k = 1, 2, . . . , } converges to the limit cycle
{Wk0 ,Wk0+1, . . . ,Wk1−1}. Thus, for any initial intuitionistic fuzzy pattern X(0),
we have

X(k1) = X(0) ◦Wk1 = X(0) ◦Wk0 = X(k0),

i.e., the iteration process of IFHNN (1) converges to the limit cycle {X(k0), X(k0 +
1), . . . , X(k1 − 1)}. Theorem 1 is thus proved. ¤

Now we are in a position to present two lemmas to be used in our proofs of
Theorem 2 and Theorem 3.

Lemma 1 Given n×m intuitionistic fuzzy matrixes A, B and m× l intuitionistic
fuzzy matrixes C, D, if A ⊆ B and C ⊆ D, then A ◦C ⊆ B ◦D.

Proof. Let A = (< µAij , γAij >), B = (< µBij , γBij >), C = (< µCij , γCij >)
and D = (< µDij , γDij >). It follows from A ⊆ B, C ⊆ D and Definition 4 that
µAij ≤ µBij , γAij ≥ γBij , µCij ≤ µDij and γCij ≥ γDij for any i, j. Thus, we
have for any i, j

n∨

k=1

(µAik ∧ µCkj) ≤
n∨

k=1

(µBik ∧ µDkj) (2)

and
n∧

k=1

(γAik ∨ γCkj) ≥
n∧

k=1

(γBik ∨ γDkj). (3)

The combination of (2), (3) and Definition 4 leads to A ◦C ⊆ B ◦D. ¤
Lemma 2 Assume that h > 0, that ai, bi ∈ [0, 1], and that |ai − bi| < h for
i = 1, 2, . . . , n. Then, the following two inequalities hold:

(a)

∣∣∣∣∣
n∨

i=1

ai −
n∨

i=1

bi

∣∣∣∣∣ < h; (b)

∣∣∣∣∣
n∧

i=1

ai −
n∧

i=1

bi

∣∣∣∣∣ < h.

Proof. Inequality (a) has been shown in Lemma 2.2 in [30], and the detail of the
proof is omitted.

Next we prove the inequality (b) by induction on n. The inequality (b) is
evidently valid for n = 1. Let us suppose that (b) is valid for n = k, i.e.,

∣∣∣∣∣
k∧

i=1

ai −
k∧

i=1

bi

∣∣∣∣∣ = |a− b| < h,

where a =
k∧

i=1

ai and b =
k∧

i=1

bi. We proceed to show that (b) is also valid for

n = k + 1. When n = k + 1,
∣∣∣∣∣
k+1∧

i=1

ai −
k+1∧

i=1

bi

∣∣∣∣∣ = |a ∧ ak+1 − b ∧ bk+1| . (4)
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We analyze (4) by considering the following four cases.
Case 1 : If a ≥ ak+1 and b ≥ bk+1, then

|a ∧ ak+1 − b ∧ bk+1| = |ak+1 − bk+1| < h.

Case 2 : If a ≥ ak+1 and b < bk+1, then |a ∧ ak+1 − b ∧ bk+1| = |ak+1 − b| and
−h < ak+1 − bk+1 < ak+1 − b < a− b < h. Thus, it is easy to get

|a ∧ ak+1 − b ∧ bk+1| = |ak+1 − b| < h.

Case 3 : If a < ak+1 and b < bk+1, then,

|a ∧ ak+1 − b ∧ bk+1| = |a− b| < h.

Case 4 : If a < ak+1 and b ≥ bk+1, then |a ∧ ak+1 − b ∧ bk+1| = |a− bk+1| and
−h < a− b < a− bk+1 < ak+1 − bk+1 < h. Thus, it is easy to get

|a ∧ ak+1 − b ∧ bk+1| = |ak+1 − b| < h.

The above discussions result in, for n = k + 1,
∣∣∣∣∣
k+1∧

i=1

ai −
k+1∧

i=1

bi

∣∣∣∣∣ = |a ∧ ak+1 − b ∧ bk+1| < h.

Now we have shown by induction that the inequality (b) always holds. This com-
pletes the proof of Lemma 2. ¤

Proof of Theorem 2: The proof is divided into two parts, dealing with State-
ments (i) and (ii), respectively.

Proof of Statement (i). Using Lemma 1 and the fact W ⊆ W2, we have
Wk ⊆ Wk+1 for k = 1, 2, . . .. Therefore, the sequence of membership (resp.
non-membership) degree part is monotonically increasing (resp. decreasing) in the
intuitionistic fuzzy matrix sequence {Wk|k = 1, 2, . . .}. Notice that there are at
most finite different elements in the sequence {Wk|k = 1, 2, . . .}. Hence, there
exists a positive integer m such that Wm = Wm+1. For any initial intuitionistic
fuzzy pattern X(0), we obtain that

X(m) = X(0) ◦Wm = X(0) ◦Wm+1 = X(m + 1).

This means that X(m) is a stable point of IFHNN, i.e., the iteration process of
IFHNN (1) converges to the stable point X(m) at the m-th iteration. This proves
Statement (i).

Proof of Statement (ii). According to the fact that W is reflexive and noting
Property 2, we have for k = 1, 2, . . .,

Wk ⊆ Wk+1. (5)

Write Wk = (< µk
ij , γ

k
ij >). By the definition of the composite operation and the

fact that W is reflexive, it is easy to show that the membership degrees and the
non-membership degrees of the diagonal elements of Wk (k = 1, 2, . . .) are equal to
1 and 0, respectively, i.e., µk

ii = 1 and γk
ii = 0, for i = 1, 2, . . . , n and k = 1, 2, . . ..
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Next we proceed to discuss the membership and non-membership degrees of the
non-diagonal elements of Wn, where n is the number of the network units.

When i 6= j,

µn
ij =

n∨

k1=1

(
µik1 ∧ µn−1

k1j

)

=
n∨

k1=1

(
µik1 ∧

(
n∨

k2=1

(
µk1k2 ∧ µn−2

k2j

)))

=
n∨

k1=1

(
n∨

k2=1

(
µik1 ∧ µk1k2 ∧ µn−2

k2j

))
.

Then, we can deduce by analogy that

µn
ij =

∨

1≤k1,k2,...,kn−1≤n

(
µik1 ∧ µk1k2 ∧ · · · ∧ µkn−2kn−1 ∧ µkn−1j

)

= max
1≤k1,k2,...,kn−1≤n

min
(
µik1 , µk1k2 , · · · , µkn−2kn−1 , µkn−1j

)
.

Here we have n + 1 subscripts i, k1, k2, . . . , kn−1, j. Thus, there must exist two
subscripts that are equal. We consider the following three cases.
Case 1 : There exists a subscript ks ∈ {k1, k2, . . . , kn−1} such that ks = j. Then,

µn
ij = max

1≤k1,k2,...,kn−1≤n
min

(
µik1 , µk1k2 , · · · , µkn−2kn−1 , µkn−1j

)

≤ max
1≤k1,k2,...,ks−1≤n

min
(
µik1 , µk1k2 , · · · , µks−1j

) ≤ µn−1
ij .

Case 2 : If i = ks, things can be done similarly.
Case 3 : There exist two subscripts ks, kr ∈ {k1, k2, . . . , kn−1}, such that ks = kr

but they are not equal to i or j. Assume without loss of generality that r > s.
Then,

µn
ij= max

1≤k1,k2,...,kn−1≤n
min

(
µik1 ,· · ·, µks−1kr , µkrks+1 ,· · ·, µkr−1kr , µkrkr+1 ,· · ·, µkn−1j

)

≤ max
1≤k1,k2,...,ks−1≤n

min
(
µik1 , · · · , µks−1kr , µkrkr+1 , · · · , µkn−1j

) ≤ µn−1
ij .

To sum up, we always have µn
ij ≤ µn−1

ij for i, j = 1, 2, . . . , n and i 6= j. Analogously,
we can prove γn

ij ≥ γn−1
ij for i, j = 1, 2, . . . , n and i 6= j. Then, we have Wn ⊆

Wn−1. This together with (5) immediately leads to Wn = Wn−1. For any initial
intuitionistic fuzzy pattern X(0) we obtain that

X(n− 1) = X(0) ◦Wn−1 = X(0) ◦Wn = X(n).

This means that X(n − 1) is a stable point of IFHNN, i.e., the iteration process
of IFHNN (1) converges to a stable point within at most (n − 1) iterations. Now
Statement (ii) is proved. And this completes the proof of Theorem 2.
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Proof of Theorem 3: Let P = (< µP1, γP1 >,< µP2, γP2 >, . . . , < µPn, γPn >)
be a stable point of IFHNN, the network weight matrix be W, and the t-th iteration
state of the network be

X(t) = (< µX1(t), γX1(t) >,< µX2(t), γX2(t) >, . . . , < µXn(t), γXn(t) >),

where t = 0, 1, 2 . . . and X(0) is the initial intuitionistic fuzzy pattern. Write
Wt = (< µt

ij , γ
t
ij >)n×n. Then, X(t) = X(0) ◦Wt, i.e., for j = 1, 2, . . . , n,

µXj(t) =
n∨

i=1

(
µXi(0) ∧ µt

ij

)
, γXj(t) =

n∧

i=1

(
γXi(0) ∨ γt

ij

)
.

Noticing that P is a stable point of IFHNN, we have P = P ◦Wt, i.e., for j =
1, 2, . . . , n,

µPj =
n∨

i=1

(
µPi ∧ µt

ij

)
, γPj =

n∧

i=1

(
γPi ∨ γt

ij

)
.

For given ε > 0, we choose δ = ε/2n. For any initial intuitionistic fuzzy pattern
X(0) satisfying H(X(0), P ) < δ, we have for i = 1, 2, . . . , n,

|µXi(0)− µPi| < ε/n, |γXi(0)− γPi| < ε/n.

Then, for i = 1, 2, . . . , n,

|µXi(0) ∧ µt
ij − µPi ∧ µt

ij |

=
∣∣∣∣
µXi(0) + µt

ij − |µXi(0)− µt
ij |

2
− µPi + µt

ij − |µPi − µt
ij |

2

∣∣∣∣

=

∣∣µXi(0)− µPi + |µPi − µt
ij | − |µXi(0)− µt

ij |
∣∣

2
≤ |µXi(0)− µPi| < ε/n. (6)

Analogously, it is easy to obtain that, for i = 1, 2, . . . , n,

|γXi(0) ∨ γt
ij − γPi ∨ γt

ij | ≤ |γXi(0)− γPi| < ε/n. (7)

According to (6), (7) and Lemma 2, we have for j = 1, 2, . . . , n,

|µXj(t)− µPj | =
∣∣∣∣∣

n∨

i=1

(
µXi(0) ∧ µt

ij

)−
n∨

i=1

(
µPi ∧ µt

ij

)
∣∣∣∣∣ < ε/n,

|γXj(t)− γPj | =
∣∣∣∣∣

n∧

i=1

(
γPi ∨ γt

ij

)−
n∧

i=1

(
γPi ∨ γt

ij

)
∣∣∣∣∣ < ε/n.

Hence,

H(X(t), P ) =
1
2

n∑

j=1

[|µXj(t)− µPj |+ |γXj(t)− γPj |] < ε.

This completes the proof of Theorem 3.
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