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Abstract: The goal of the paper is to analyze the behavior of quantum systems
which are connected in more complex circuits through serial, parallel or feedback
ordering of various quantum subsystems. The Quantum State Transform (QST)
is introduced to define a Quantum Transfer Function (QTF) that can be used to
characterize behavior of complex circuits like e.g. stability better. It is shown that
ordering more general quantum systems into feedback can yield to the definition
of hierarchical quantum systems that are very close to well-known scale-free net-
works. Finally, all identified mathematical instruments are used to define quantum
information/knowledge circuits as ordering of 2-port quantum subsystems covering
both input/output information flow and content.
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1. Introduction

We can start with our previous results [1–3] where we tried to build knowledge
about representations of quantum systems. We can continue in this way of thinking
and start to analyze the connected quantum subsystems through serial, parallel or
feedback ordering. We will find the assessment of behavior of complex connected
systems with respect to their features.

First of all we summarize different representation of quantum systems. Matrix
representation [4] is most general and obvious. The matrix representation can be
simplified in case our system possesses some special features. If the additive prin-
ciple of quantum state is fulfilled, we can introduce the Quantum State Transform
(QST) and also the Quantum Transfer Function (QTF). The QTF has a strong
analogy with the transfer function used in discrete signal and system theory. The
QST is very similar to well-known z-transform [5]. The QTF can be used to an-
alyze the behavior of connected systems where the poles position points out to
stability/non-stability condition, etc.
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If our quantum system is general without additional features, the complex con-
nection can yield into so called hierarchical quantum systems. Such a system
possesses a lot of new features and it is similar to a scale-free network. The quan-
tum link can be created through the quantum entanglement [3]. Generalization can
yield into quantum swapping that can enlarge the links among nodes. Hierarchical
networks can be generated either through quantum feedback or through passing
through quantum non-linearity. Generally, the quantum links could be defined also
among quantum hierarchical networks. We believe that such complex systems can
store a large amount of information.

The all above-mentioned results can be applied to quantum information/know-
ledge circuits [12]. Each information/knowledge component is modeled as an in-
put/output 2-port subsystem. Each port has its information flow and content.
Ordering such information/knowledge components can define a more complex net-
work which can be modeled also as 2-port with final input/output information
flow/content.

The paper is structured as follows. Section 2 summarizes some variants of
quantum system representations. Section 3 defines the rules for serial, parallel
and feedback ordering in various representations. Section 4 introduces hierarchical
quantum systems and their generation like feedback systems or passing through
non-linear systems. Section 5 defines information/knowledge subsystems together
with their ordering. These theories could be extended into ordering of informa-
tion/knowledge subsystems. Section 6 concludes the paper.

2. Quantum Systems Representation

In this section, we analyze various representations of quantum systems. With
respect to their special features, their representation can be simplified. For example
a special feature called additive principle of quantum states can yield into the
introduction of Quantum State Transform (QST) and then the Quantum Transfer
Function (QTF). In case this feature is not fulfilled, we have to return to the
well-known matrix representation of quantum systems.

2.1 Quantum State Transform (QST)

Theorem 1:
Let us define two N -dimensional quantum systems (qudits):

|ψ1〉 =
N∑

i=0

αi · |Φi〉, |ψ2〉 =
M∑

j=0

βj · |Φj〉 (1)

together with the additive principle among indexes of combined quantum states
|Φi〉 , |Φj〉 as follows:

|Φi〉 |Φj〉 = |Φi+j〉 , (2)

where i, j are integers1 (positive or negative) and, for simplicity, suppose that
1This principle is obvious if we work with positive or negative quantum of energy. By scattering

of two particles the energies are summed up (with the positive sign) or subtracted (positive and
negative signs).
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quantum states (1) are not dependent on time t.
Then the combined joint state can be expressed as:

|ψ1,2〉 = |ψ1〉 ⊗ |ψ2〉 =
N+M∑

k=0

γk · |Φk〉, (3)

where ⊗ means Kronecker product and γk is given:

γk =
N∑

i=0

αi · βk−i . (4)

Proof: The quantum combination of systems (1) is given by Kronecker product [4]:

|ψ1〉 ⊗ |ψ2〉 =
N∑

i=0

M∑

j=0

αi · βj · |Φi〉 ⊗ |Φj〉. (5)

If we apply the additive principle (2) together with the substitution k = i + j, we
can define parameter γk given in (4).

Definition 1: Let us suppose the quantum system in Dirac notation:

|ψ〉 = α0 · |Φ0〉+ α1 · |Φ1〉+ · · ·+ αN · |ΦN 〉 . (6)

Quantum state transform Q [.] and Inverse quantum state transform Q−1 [.] of
quantum system (6) can be defined as follows:

Q [α0 · |Φ0〉+ α1 · |Φ1〉+ α2 · |Φ2〉+ · · ·+ αN · |ΦN 〉] =
= α0 + α1 · η + α2 · η2 + · · ·+ αN · ηN (7)

Q−1
[
α0 + α1 · η + α2 · η2 + · · ·+ αN · ηN

]
=

= α0 · |Φ0〉+ α1 · |Φ1〉+ α2 · |Φ2〉+ · · ·+ αN · |ΦN 〉 , (8)

where Q [.] is the complex function of complex variable η. Quantum state transform
Q [.] transforms the superposed quantum states into the polynomial function of
variable η, and vice versa.

We can provide the QST of two quantum systems given in (1):

Q [|ψ1〉] = Q

[
N∑

i=0

αi · |Φi〉
]

=
N∑

i=0

αi · ηi,

Q [|ψ2〉] = Q

[
M∑

j=0

βj · |Φj〉
]

=
M∑

j=0

βj · ηj

. (9)

Then the QST of combined quantum systems (3) must be equal to:

Q [|ψ1〉 ⊗ |ψ2〉] = Q

[
N∑

i=0

αi · |Φi〉
]
·Q




M∑

j=0

βj · |Φj〉

 =

N+M∑

k=0

γk · ηk. (10)
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The features of QST seem to be analogical to the well-known z-transform [5];
however, the z-transform solves the evolution of discrete systems in time domain
but the QST is an instrument for describing quantum systems in discrete quantum
state space under the additive principle (2).

The time evolution in the z-transform is characterized by a function of complex
variable z; the QST evolution by a complex function of variable η. In more general
cases, the time dependent quantum system can be represented by a function of
both complex variables z and η.

It is evident that the additive condition (2) must be fulfilled to achieve form
(10). It will be later shown on the example of modeling of quantum hierarchical
systems or networks that in more general cases the condition (2) does not have to
be fulfilled.

2.2 Quantum Transfer Function (QTF)

We can imagine the quantum system with the input/output quantum states defined
as follows:

|ψIN 〉 =
N∑

i=1

αi · |Φi〉, |ψOUT 〉 =
M∑

j=1

βj · |Φj〉. (11)

Let us suppose that our quantum system is characterized by an inner quantum
state:

|ψINNER〉 =
K∑

i=1

γi · |Φi〉. (12)

Then the output state can be represented by a combination of input and inner
states as follows:

|ψOUT 〉 = |ψINNER〉 ⊗ |ψIN 〉 . (13)

The inner state should be understood as the quantum impulse function because it
is equal to the system output |ψOUT 〉 = |ψINNER〉 in case the “quantum Dirac
impulse” |ψIN 〉 = 1 · |0〉 is applied on the input.

If the inner state (12) has a finite dimension (in our case K), we speak about
the Quantum Finite Impulse Response (QFIR). On the other hand, for an infinite
dimension the system is called the Quantum Infinite Impulse Response (QIIR).

With respect to the QST, the equation (13) can be rewritten:

Q [|ψOUT 〉] = Q [|ψINNER〉] ·Q [|ψIN 〉] . (14)

The Quantum Transfer Function (QTF) can be defined as the ratio of the trans-
formed QST output and input:

QTF (η) =
Q [|ψOUT 〉]
Q [|ψIN 〉] =

M∑
j=0

βj · ηj

N∑
i=0

αi · ηi

. (15)

Under the condition (2), the nominator and denominator of QTF have polynomial
forms. This principle is analogical to LTI (Linear Time Invariant) conditions in
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the z-transform. Of course, there exist quantum systems that do not fulfill the
condition (2). In such a case, the QTF is a general function of η and in special
cases it can be approximated by the polynomial form given in (15) through e.g.
Padé approximation [6].

2.3 Interpretation of Quantum Transfer Function (QTF)

In this section, we ask what features can be identified from the available quantum
system described by the QTF. We suppose the quantum system has an infinite
impulse response (QIIR) if the QTF denominator exists.

The QIIR systems given by (15) can be divided in stable or unstable parts
according to the poles position. The general QTF can be rewritten in the following
form:

QTF (η) =
(η − η̃0) . . . (η − η̃M )
(η − η̂0) · ... · (η − η̂N )

=
k0

(η − η̂0)
+ · · ·+ kN

(η − η̂N )
, (16)

where η̃0, . . . , η̃M are nulls, η̂0, . . . , η̂N poles, and k0, . . . , kN constants (all nulls,
poles or constants can be complex numbers). In analogy to the z-transform, equa-
tion (16) can be rewritten as:

QTF
(
η−1

)
=

k0 · η−1

(1− η̂0 · η−1)
+ · · ·+ kN · η−1

(1− η̂N · η−1)
, (17)

where η−1 points out to the last index of quantum state.
Each x-part x ∈ {0, 1, ..., N} of sum (17) represents the generator (difference

equation) of x-output parameter xβj of output quantum state |Φj〉:
xβj = η̂x · xβj−1 + kx · αi−1 (18)

βj = 0βj + 1βj + · · ·+ Nβj . (19)

From (18) and (19) it is evident that all x-parts are parallelly ordered and the
stability condition of quantum system (17) has to be defined for all poles x ∈
{0, 1, . . . , N}:

|η̂x| < 1. (20)

For stable quantum systems, the normalization condition is finite and there exist
real probabilities assigned to different superposed quantum states.

For unstable quantum systems (at least one pole not fulfilling condition (20)),
the normalization condition is infinite (the sum of modulus of complex parameters
of all superposed quantum states) and all complex parameters of the output quan-
tum system |ψOUT 〉 are infinite. Such a system cannot give us reasonable measured
values until it is passed through another quantum system whose nulls can remove
the unstable poles of QTF.

The question is where in real life this kind of system exists and how to use
this feature. What will happen if the information is modulated on different states
e.g. by phase modulation but the states are unstable? Could such information
be available by measurements? Do the poles represent something like quantum
information black holes?
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The next question is how such a system behaves on the boundary of stability/non-
stability area. On stability limit, there exists an infinite number of equally probable
superposed states where the probability of each state is, due to normalization con-
dition, extremely low (in limit it is zero). This principle can be interpreted as a
way how to create the empty space in which only basic rules and principles like
quantization, additive principle, etc. are incorporated (we can call it quantum in-
formation vacuum). How can the entanglement change the behavior of system close
to the boundary limit of quantum stability/non-stability? Can we, with the help
of entanglement, code the information in the quantum information vacuum sys-
tem beforehand? Such entangled information should change the behavior of future
particles added into the system and influence the quantum system evolution.

Maybe this approach of generation of empty quantum space affected by the
entanglement can be extended to more complex spaces and we could define the
quantum information vacuum system with our physical laws.

2.4 Matrix representation of quantum systems

A general representation of quantum systems can be given in the matrix form
(transform of complex coefficients assigned in quantum states):




β1

β2

..
βN




OUT

= A ·




α1

α2

..
αN




IN

, (21)

where matrix A represents our quantum system (its inner features), [.]IN the vector
of input complex quantum parameters, and [.]OUT the vector of output quantum
parameters as it was given in (11) under assumption N = M . In the form (21),
condition (2) is not fulfilled.

The matrix A should be unitary, that means it should have the following feature:

A−1 = A+, (22)

where the symbol + stands for Hermitian conjugation, which combines both trans-
position and complex conjugation [4].

The matrix form can be generally extended as described in [7], where the com-
plex quasi-ergodic quantum models were introduced.

3. Serial, Parallel and Feedback Ordering
of Quantum Systems

3.1 Ordering of quantum systems in the matrix form

There exist two quantum systems S1 : (IN, 1 → OUT, 1) and S2 : (IN, 2 →
OUT, 2) expressed as follows:

|ΦIN,1〉 =
N1∑

i=0

IN,1αi ·
∣∣IN,1Φi

〉
, |ΦOUT,1〉 =

M1∑

j=0

OUT,1βj ·
∣∣OUT,1Φj

〉
(23)
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|ΦIN,2〉 =
N2∑

i=0

IN,2αi ·
∣∣IN,2Φi

〉
, |ΦOUT,2〉 =

M2∑

j=0

OUT,2βj ·
∣∣OUT,2Φj

〉
, (24)

where IN,1αi,OUT,1βj ,IN,2αi,OUT,2βj are inputs/outputs complex parameters with
the transitions matrices A,B given by:




β1

β2

..
βM1




OUT,1

=




A1,1 A1,2 . A1,N1

. . .

. . .
AM1,1 . . AM1,N1


 ·




α1

α2

..
αN1




IN,1

(25)




β1

β2

..
βM2




OUT,2

=




B1,1 B1,2 . B1,N2

. . .

. . .
BM2,1 . . BM2,N2


 ·




α1

α2

..
αN2




IN,2

. (26)

By using Dirac notation, the quantum system can be described as follows:

|ΦOUT,1〉 =
M1∑

j=0

OUT,1βj ·
∣∣OUT,1Φj

〉
=

=
M1∑

j=0

(
Aj,1 · α1 ·

∣∣IN,1Φj

〉
+ · · ·+ Aj,N1 · αN1 ·

∣∣IN,1Φj

〉)
. (27)

Equation (27) can be interpreted as the conditional quantum probability. The
superposed input state:

Aj,1 · α1 ·
∣∣IN,1Φj

〉
+ · · ·+ Aj,N1 · αN1 ·

∣∣IN,1Φj

〉
(28)

can happen only if the output state
∣∣OUT,1Φj

〉
was first selected/measured. It

means that quantum state (28) is conditioned by quantum state
∣∣OUT,1Φj

〉
.

Let us start with introducing the serial ordering of quantum systems, meaning
that OUT, 1 is connected to the input IN, 2 under the condition M1 = N2. The
transition matrix between the input vector of system S1 and the output vector of
system S2 is given:




β1

β2

..
βN




OUT,2

= B ·A ·




α1

α2

..
αN




IN,1

. (29)

For the parallel ordering of quantum systems we suppose that IN, 1 and IN, 2 are
equal under the conditionN1 = N2. The transition matrix between the common
input vector of systems S1 and S2 and the output vector given by the sum of output
vectors of both systems S1 and S2 is given:




β1

β2

..
βN




OUT,2

= (B + A) ·




α1

α2

..
αN




IN,1

= (B + A) ·




α1

α2

..
αN




IN,2

. (30)
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Let us introduce the feedback ordering of quantum systems meaning that the quan-
tum system S2 (24) is connected to the positive/negative feedback to the quantum
system S1 (23). For simplicity, we suppose the condition of the same dimension-
alities M1 = M2 = N1 = N2 = N . The transition matrix between the input and
output complex vectors (we use IN, OUT notation for the whole feedback circuit)
is given: 



β1

β2

..
βN




OUT

= A · (1∓B ·A)−1 ·




α1

α2

..
αN




IN

, (31)

where 1 means the unit matrix and (.)−1 the inverse matrix operation.
It can be easily analyzed that such circuits can fall into the unstable state or

otherwise, due to its features, the unstable quantum system can be stabilized. The
feedback ordering of quantum systems with unitary matrices A, B can yield into
the quantum system with the general non-unitary transition matrix given in (31).

3.2 Ordering of quantum systems in the QTF form

In this section, we suppose to have available two quantum systems defined through
the QTF under the condition (2):

Q1

(
η−1

)
=

Q [|ψOUT,1〉]
Q [|ψIN,1〉] =

M∑
j=0

1βj · η−j

N∑
i=0

1αi · η−i

(32)

Q2

(
η−1

)
=

Q [|ψOUT,2〉]
Q [|ψIN,2〉] =

M∑
j=0

2βj · η−j

N∑
i=0

2αi · η−i

. (33)

The serial ordering is given as:

Q
(
η−1

)
= Q1

(
η−1

) ·Q2

(
η−1

)
. (34)

The parallel ordering can be expressed in the form:

Q
(
η−1

)
= Q1

(
η−1

)
+ Q2

(
η−1

)
, (35)

and for the feedback ordering, the QTF can be written:

Q
(
η−1

)
=

Q1

(
η−1

)

1∓Q1 (η−1) ·Q2 (η−1)
. (36)

4. Hierarchical Quantum Systems

In the past decade, much effort has been made the area of complex networks [8].
In the random network nodes, we have approximately the same number of links,
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making the distribution of connectivity homogeneous. In the scale-free network,
contribution of hubs or highly connected nodes to overall connectivity is dominat-
ing. P(k) is connectivity distribution [9], defined as the probability that a randomly
chosen node in a network has exactly k links. For random networks P(k), Poisson
distribution follows. In free-scale networks, a relatively small number of hubs P(k)
dominates, which follows the power law.

Let us consider a scale-free network in quantum system notation. The net-
work’s node is represented by a quantum state. The more nodes, the more super-
posed quantum states exist. Links between the quantum states can be represented
through quantum links like the entanglement or generally through phase corre-
lations. Remember that quantum links can be automatically propagated due to
quantum swapping [10].

Till now we supposed all quantum states to be on the equal resolution level.
We can move to quantum hierarchical systems (with architecture similar to the
scale-free networks), where we must distinguish among various resolution levels as
follows:

Fig. 1 Hierarchy of quantum states on various resolution levels.

4.1 Feedback hierarchical quantum systems

Now let us suppose the qubit |ψIN 〉 = α0 · |0〉 + α1 · |1〉 is sent to the input of
a very simple quantum feedback system given in Fig. 2. Let us suppose the
quantum system S is defined by a quantum impulse response represented as the
inner quantum state |ψINNER〉 = β0 · |0〉+ β1 · |1〉.

It is easy to track each feedback loop and identify the quantum output state:

|ψOUT 〉1 = (α0 |0〉+ α1 |1〉) · (β0 |0〉+ β1 |1〉)
|ψOUT 〉2 = (α0 |0〉+ α1 |1〉) · (β0 |0〉+ β1 |1〉)2 + (α0 |0〉+ α1 |1〉) · (β0 |0〉+ β1 |1〉)
|ψOUT 〉3 = (α0 |0〉+ α1 |1〉) · (β0 |0〉+ β1 |1〉)3+(α0 |0〉+α1 |1〉) · (β0 |0〉+β1 |1〉)2+
+(α0 |0〉+ α1 |1〉) · (β0 |0〉+ β1 |1〉)
. . .

(37)
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Fig. 2 Quantum feedback system.

In reality all superposed states on all resolution levels must be available in the final
quantum output state:

|ψOUT 〉 = |ψOUT 〉1 + |ψOUT 〉2 + |ψOUT 〉3 + . . . (38)

This task cannot be solved through the QTF because the condition (2) is not
fulfilled.

In case the output of quantum system in Fig. 2 has the same dimension like
its input, we can use a matrix representation (21). The quantum circuits can be
solved with help of matrix algebra as (31) under the condition B = 1. In the case
of QST application to the system in Fig. 2, the form (36) can be used under the
condition Q2

(
η−1

)
= 1.

The generation of hierarchical systems by quantum feedback can yield into
more complex circuits, where the links (entanglements) between states on different
levels can be formed. Such networks can create interesting structures with many
features. This instrument can be used as an approach to consciousness model that
theoretically enables storage of infinity information in links. Unfortunately, deepest
resolution levels can be accessible only with very low probability. There has to exist
special filters that amplify such states at lower resolution areas.

4.2 Non-linear quantum systems

Similar hierarchical structures as those computed by feedback could be obtained
by the non-linear quantum system. Let us suppose we have a quantum polynomial
non-linear impulse function:

|ψINNER〉 = λN · (β0 · |0〉+ β1 · |1〉)N + λN−1 · (β0 · |0〉+ β1 · |1〉)N−1
. . .

· · ·+ λ1 · (β0 · |0〉+ β1 · |1〉) , (39)

where λi, i ∈ {1, 2, .., N} are complex parameters.
For input qubit |ψIN 〉 = α0 · |0〉 + α1 · |1〉 sent into such a non-linear system,

we can write the quantum output as:

|ψOUT 〉 = λN · (β0 · |0〉+ β1 · |1〉)N · (α0 · |0〉+ α1 · |1〉) + . . .

· · ·+ λN−1 · (β0 · |0〉+ β1 · |1〉)N−1 · (α0 · |0〉+ α1 · |1〉) + . . .
· · ·+ λ1 · (β0 · |0〉+ β1 · |1〉) · (α0 · |0〉+ α1 · |1〉)

(40)

It is evident that the output (40) has similar behavior to the feedback system (38)
which yields to scale-free structure of quantum network.
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4.3 Complex hierarchical quantum networks

We can easily imagine parallel scale-free networks that interact among each other
(for example through the entanglement or through quantum links – connections –
among nodes of different networks).

Such complex and hierarchical networks (structures) have many possibilities
how to store information on different resolution levels. A slight change of feedback
or non-linearity can directly yield into amplification of concrete information on the
selected resolution level.

5. Quantum Information Circuits

As expressed in [11], the information/knowledge circuit is defined through infor-
mation flow Φ and information content I, analogically to current and voltage in
the electrical engineering area. We can suppose that both Φ and I are prepared in
superposed quantum states as stated in [12]. The quantum system is characterized
by input and output parameters (2-port quantum system):

|ΦIN 〉 =
N1∑

i=0

INαi ·
∣∣INΦi

〉
, |IIN 〉 =

M1∑

j=0

INβj ·
∣∣INIj

〉
(41)

|ΦOUT 〉 =
N2∑

i=0

OUT αi ·
∣∣OUT Φi

〉
, |IOUT 〉 =

M2∑

j=0

OUT βj ·
∣∣OUT Ij

〉
. (42)

The modeling of quantum information/knowledge circuits yields into connections
of 2-port quantum subsystems defined above. The serial, parallel and feedback
connections build more and more complex quantum information/knowledge sys-
tems with many features. The input and output quantum information power for
subsystem (41), (42) was defined in [12].

As an example of possible interpretation of quantum information/knowledge
circuits we can assume that the input information flow can be defined as a task per
second, and the input information content as cost per task (cost can be sometimes
better than energy, number of successful events, etc.). The output information
flow can represent the received “know-how” and the content e.g. the earned money
or “profit”. The input parameters can represent the theoretical values (low cost,
only intellectual effort) but the output values of quantum information/knowledge
circuits can yield into very expensive changes of factory processes where a mis-
take can cost an enormous amount of money. This example can demonstrate that
the quantum information/knowledge circuit can realize a controlled flow of energy
(money) with respect to input information.

The first approach to the quantum information circuit yields into quantum au-
tomata that can generally realize q-bit functions as passing q-bits through quantum
gates. The quantum gates can be ordered in very complex structures, including
also feedbacks.

The (input) information flows (tasks) can be assigned to various subsystems
together with the information content (cost per task). These two parameters can
be mapped on a predefined hierarchical structure where each subsystem generates
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the output flow and content values (e.g. know-how, profit). All input and output
values could be summarized and the final input/output values identified. This
methodology can be used for assessment of various organizational structures or
very complex hierarchical systems.

6. Conclusion

In this paper, we tried to analyze different representations of quantum subsystems
with respect to their ordering into more complex circuits or networks. First of
all, special features, such as additive principle of quantum states, were identified
and an appropriate quantum representation, e.g. quantum transfer function, was
introduced. Such simplification yields into easier analyzing of complex connected
systems through serial, parallel or feedback links, as it is obvious in classical system
theory.

The representation of complex quantum circuits or networks brought many new
ideas as well as many questions. We were able to introduce hierarchical quantum
systems there were similar to scale-free networks with many various resolution lev-
els. The hierarchical system can be created through feedback or through quantum
non-linear systems.

The non-linear quantum models similar to transistors seem to be a very promis-
ing area in electronics. It is possible that our quantum subsystems cover or can
obtain the source of energy from its environment. Such energy can be used to am-
plify the output information power or to transfer e.g. the input information content
into e.g. an output information flow. Such an approach is very close to autonomous
living agents introduced by [13]. From this point of view, self-organization can be
understood as controlled distribution of free energy. It is really what our quantum
information/knowledge subsystem can do. It uses the input data (flow, content) to
transfer free and non-organized energy to the output data (flow, content) where, at
output, we work with much higher energies than at input. But what does it mean
for non-organized energy? We can imagine the interface between our system and its
environment. The controlled withdrawal of energy out of the system environment
(order decreasing outside the system) yields in increasing the order of the studied
system.
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