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Abstract: There is growing interest to analyze electroencephalogram (EEG) sig-
nals with the objective of classifying schizophrenic patients from the control sub-
jects. In this study, EEG signals of 15 schizophrenic patients and 19 age-matched
control subjects are recorded using twenty surface electrodes. After the preprocess-
ing phase, several features including autoregressive (AR) model coefficients, band
power and fractal dimension were extracted from their recorded signals. Three
classifiers including Linear Discriminant Analysis (LDA), Multi-LDA (MLDA) and
Adaptive Boosting (Adaboost) were implemented to classify the EEG features of
schizophrenic and normal subjects. Leave-one (participant)-out cross validation is
performed in the training phase and finally in the test phase; the results of ap-
plying the LDA, MLDA and Adaboost respectively provided 78%, 81% and 82%
classification accuracies between the two groups. For further improvement, Genetic
Programming (GP) is employed to select more informative features and remove the
redundant ones. After applying GP on the feature vectors, the results are remark-
ably improved so that the classification rate of the two groups with LDA, MLDA
and Adaboost classifiers yielded 82%, 84% and 93% accuracies, respectively.
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1. Introduction

Schizophrenia is a severe and persistent debilitating psychiatric disorder. Diagnosis
of schizophrenic patients is mostly performed based on qualitative criteria which are
as reliable and accurate as quantitative criteria. According to the diagnostic criteria
of the American Psychiatric Association (DSM-IV) [1], schizophrenic patients show
disturbances in thoughts (or cognitions), affects, and perceptions and difficulties in
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relationships with others. In schizophrenia, a major enduring split exists between
affect and thoughts. The hallmark symptoms of schizophrenia are experiences of
hallucinations, often of the auditory type, as well as delusions.

In order to have a quantitative criterion to diagnose the schizophrenia, EEG sig-
nals can be analyzed with the objective of detecting specific features related to this
disease. Numerous studies have been carried out to classify schizophrenic patients
from the control subjects according to their EEG signals. It is shown in several
researches [2] that EEG abnormalities and paroxysmal dysrhythmias may have a
favorable impact on prognosis in schizophrenia. In addition, nonlinear methods
have been employed in the analysis of EEG signals in order to classify the two
groups [3–5]. The results revealed differences in underlying characteristics of EEG
signal but the classification accuracy of the two groups was not reliable for psychi-
atrists [3–5]. Recently, Hornero et al. [6] asked the participants to press the space
bar key randomly to generate some time series. This study was aimed at analyzing
time series generated by 20 schizophrenic patients and 20 healthy subjects. Three
different nonlinear methods, specific for a time series analysis, based on statistical
tests namely were used: central tendency from the scatter plots of first differences,
approximate entropy, and Lempel-Ziv complexity. The results showed that the
time series generated by schizophrenic patients had a lower complexity than that
of the control group. In another interesting test for random number generation
[9], participants from both groups were asked to choose a number from one to
ten, and this experiment was repeated several times. Their results indicated that
schizophrenic patients tended to be more repetitive while normal subjects chose
the numbers with more variety.

Sabeti et al. [7] performed comprehensive research on classification of schizo-
phrenic and control participants based on their EEG signals. They used fractal
dimension, band power and auto-regressive model coefficients as features from
each frame of the signal; then the informative features were selected by L-plus
R-Minus method, and finally LDA and Adaboost classifiers were applied to the
selected features. In another attempt, Boostani et al. [8] analyzed EEG signals of
schizophrenic and normal subjects with the objective of enhancing the classifica-
tion rate between the two groups. In this way, Boosted version of Direct Linear
Discriminant Analysis (BDLDA) as an efficient classifier applied to the EEG fea-
tures and the achieved results by BDLDA were superior to those determined by
LDA and Adaboost classifiers. Moreover, BDLDA results also revealed less stan-
dard deviation when compared to others. Robustness of BDLDA results against
noise was evaluated under various levels of noise amplitude and the comparison re-
sults empirically showed that BDLDA accuracy is less diminished compared to the
others when the noise amplitude is increased. In another study, Sabeti et al. [37]
performed comprehensive research to see which irregularity-based feature provides
more discriminative information between the EEG signals of schizophrenic and
normal groups at the resting condition. They came to the conclusion that among
the complexity and entropy measures, spectral-entropy provided the best results,
but for further improvement, they considered all features together and obtained
90% accuracy between the two groups. From a different point of view, Pressman
et al. [10] showed lack of synchronization alternation ability in the schizophrenic
patients during a working memory task compared to the controls.
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This paper is aimed at improving the classification rate of the schizophrenic and
control subjects. Our contribution is to enhance the classification rate between the
two groups using genetic programming to select informative features where fitness
function is evaluated by employing three powerful classifiers including LDA [33],
Multi-LDA (MLDA) [34] and Adaboost [32]. The rest of the paper is structured
as follows: In Section 2, a data acquisition process is presented. Feature extraction
techniques are illustrated in Section 3. Feature selection methods are presented in
Section 4, classifiers are reviewed in Section 5, and a computational procedure is
outlined in Section 6. Results and discussions are given in Section 7, and finally
the paper is closed with concluding remarks.

2. Data Acquisition

Fifteen patients with schizophrenia and nineteen age-matched control participants
(all male) participated in this study. Participants ranged in age from 18 to 55
years (33.35 ± 9.28 year; mean ± Std). They were recruited from the Center for
Clinical Research in Neuropsychiatry, Perth, Western Australia. Control subjects
did not have any psychotic family history. The patients were diagnosed according
to DSM-IV [1] and ICD-10 criteria [11] for a lifetime diagnosis of schizophrenia. All
patients were recruited from the admitted population. Each participant was seated
upright with eyes open and the experiment lasted around two minutes. Electro-
physiological data were recorded using a Neuroscan 24 Channel Synamps system,
with a signal gain equal to 75 K (150x at the headbox). For EEG paradigms, 20
electrodes (Electrocap 10-20 standard system) were recorded plus left and right
mastoids, VEOG and HEOG. In the EEG paradigms, eye-blink artifacts were cor-
rected using the technique proposed in [12], and manually screened for artifacts.
According to the international 10-20 system, EEG data were recorded from 20
electrodes (Fpz, Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5,
T6, O1, O2). The sampling frequency was set to 200 Hz.

3. Feature Extraction

Three types of feature are used in this study: autoregressive (AR) model coefficients
[13–14], band power [15–16], and fractal dimension [17–18]. The EEG signal is
practically a non-stationary time series [19] and the mentioned feature extraction
methods are only applicable to stationary signals. Therefore, EEG signals are
windowed (to be assumed stationary in each frame) with 50% overlap. Each window
length takes one second, which covers 200 samples.

3.1 Autoregressive (AR) coefficients

The AR model is an efficient tool which has been repeatedly used in signal modeling
applications [20]. In this model, each sample is predicted using weighted previous
samples. The number of weights (coefficients) determines the model order. The
AR model can be described as follows:
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x(t) =

p∑
i=1

âix(t− i), (1)

where x(t) is the amplitude of signal at time t, p is the model order, and ai
(i = 1, . . ., p) is the i-th AR model coefficient. In this study, autoregressive coeffi-
cients are estimated by Burg method [20]; this method estimates the AR parameters

by determining reflection coefficients k̂i, which minimizes the sum of forward and
backward prediction errors. The p-th reflection coefficient k̂p is a measure of corre-
lation between x(t) and x(t− p) after the correlation x(t− 1), . . . , x(t− p+ 1) has
been filtered out due to the intermediate observations. Reflection coefficients can
be transformed into autoregressive parameters by applying the Levinson–Durbin
recursion formulas [20], which is described as follows:

âp,i =

{
âp−1,i + k̂pâ

∗
p−1,p−i i = 1, . . . , p− 1

k̂p i = p
(2)

One of the strong points of the Burg algorithm is its recursive property. This
means that in the p-th step of the algorithm, reflection coefficient k̂p is estimated

while the previous coefficients k̂1, . . . , k̂p−1 remain fixed. In each recursion step,
reflection coefficient is estimated by:

k̂p =
−2

∑N
t=p+1 êf,p−1(t)ê

∗
b,p−1(t− 1)∑N

t=p+1

[
|êf,p−1(t)|2 +

∣∣∣ê∗b,p−1(t− 1)
∣∣∣2] , (3)

where forward and backward prediction error for a (p − 1)-th order model are
denoted by êf,p−1 and êb,p−1, respectively. Several methods such as Akaike and
Minimum Description Length are proposed to determine the proper model order p
[20]. Some of these methods check the correlation or spectral flatness and others
use decision rules based on Bayesian approach, maximum likelihood approach, and
amount of information measures. In this study, for the purpose of convenience,
Finite Sample Criteria (FSC) [21] is used to select the best order for the AR model.
This criterion uses finite sample theory that describes the observed behavior of the
residual variance and of the prediction error as a function of the model order.

3.2 Band power

EEG contains different specific frequency intervals (called brain rhythms) which
carry discriminative information. Normally, most waves in the EEG can be classi-
fied as alpha (8–13 Hz), beta (13–50 Hz), theta (4–8 Hz) and delta (less than 4 Hz)
waves [22]. To estimate the band power, the average power in the mentioned four
bands at each electrode position is estimated. First, signals are passed through
four digital band-pass filters (Butterworth filter with order five) in which the cut-
off frequencies of filters are determined according to the four standard frequencies
(delta, theta, alpha, and beta) band width. Then, the filtered samples are squared
and for each windowed signal with the length of 200 samples, an average is taken
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over the samples of each filter separately yielding an estimation of the band power
which produces features for each windowed signal.

3.3 Fractal dimension

Fractal dimension has a relation with entropy, and entropy in turn has a direct
relation with the amount of information captured inside a signal. Fractal dimension
can be interpreted simply as a degree of meandering (or roughness or irregularity)
of a signal. Here, three methods of fractal dimension estimation are introduced.

3.3.1 Higuchi method

Consider x(1), x(2), . . . , x(N) are samples of a time sequence [23]. The time signal
is broken into k sub-time-series xkm as follows:

xkm = {x(m), x(m+ k), x(m+ 2k), . . . x(m+

⌊
N −m

k

⌋
k)}, (4)

where m = 1, 2, . . ., k, denotes the initial time and k shows delay between the
points. For each time series xkm, the average length Lm(k) is computed as:

Lm(k) =

(N − 1)
⌊N−m

k ⌋∑
i=1

|x(m+ ik)− x(m+ (i− 1)k|⌊
N−m

k

⌋
k

, (5)

where N is the length of time sequence and (N − 1)/
⌊
N−m

k

⌋
k is a normalization

factor. The total average length L(k) is computed for all time series having the
same delay k but different m as:

L(k) =
k∑

m=1

Lm(k). (6)

This procedure is repeated for each k ranging from 1 to kmax, the total average
length for delay k, L(k), is proportional to k−D, where D is the fractal dimension
by Higuchi’s method. The estimation of Higuchi fractal dimension is in the curve
of ln(L(k)) versus ln(1/k), the slope of the least-squares linear fit.

3.3.2 Katz method

The fractal dimension of a signal by Katz method is determined as follows [24]:

D =
log10(L)

log10(d)
, (7)

where L is the sum of distances between successive points and d is the diameter
estimated as the distance between the first point of the sequence and that point of
the sequence that provides the farthest distance. In other words, Katz dimension
measures the complexity within each windowed signal.
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3.4 Petrosian method

In this scheme, first a new signal is constructed by subtracting consecutive samples.
Next, a binary sequence is created by assigning +1 or -1 depending on whether each
subtracted sample is positive or negative, respectively [25]. The fractal dimension
of the binary sequences is then computed as:

D =
log10 n

log10 n+ log10(
n

n+0.4N )
, (8)

where n is the length of the sequence and N is the number of sign changes in the
generated binary sequence.

4. Feature Selection

Feature selection and dimension reduction [26] are important stages in a pattern
recognition process. In this research, a high number of channels as well as a large
number of features extracted from each channel in different frames make the clas-
sification process complicated. It is obvious that some of the extracted features
are redundant or contain little discriminative information which may decrease the
classification accuracy; therefore, employing a feature selection method seems nec-
essary. In general, feature selection algorithms can be performed with or without a
classifier feedback [27]. Filter algorithms select features according to their distance,
similarity, correlation, or statistical parameters while wrapper algorithms select the
feature according to a classifier feedback. Here, the wrapper approach is used due
to its supremacy to filter approach, because selected features according to a spe-
cific classifier feedback lead to a higher accuracy compared to the filter methods
where features are selected based on a different criterion and the selected features
are finally applied to a classifier without supervision of that classifier through the
feature selection process. In this paper, Genetic Programming (GP) is employed
for feature selection to enhance the classification accuracy. GP is a computational
model inspired by natural evolution which is described in the next part.

4.1 Genetic programming

Genetic programming [28–29] is a stochastic search that mimics the natural biologi-
cal evolution. Genetic programming operates on a population of potential solutions
applying the principle of survival of the fittest individuals to produce better ap-
proximations to a solution. At each generation, a new set of approximation is
created by the process of selecting individuals according to their level of fitness
in the problem domain and breeding them using operators adopted from natural
genetics. This process leads to the evolution of individuals in the population that
are better suited to their environment than other non-matched individuals.

Initially, a population of Nc trees is randomly generated using the function set
F = {union, intersect} and terminal set T = {Groups of Feature variables}. Each
tree in the population contains a subset of features and the process of evolution
can be used to select the best subset. For initialization the full method [29] is used.
In this method, non terminal (internal) nodes are chosen until the size of the new
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tree is close to the specified size, and only then terminals are chosen. Moreover, the
predefined maximum size of the trees must not be violated. Each individual can be
selected proportionally to its fitness value for the genetic operations: crossover and
mutation. In this study, the selection method implements lexicographic parsimony
pressure [30]. Like the tournament scheme, a random number of individuals are
chosen from the population and the best of them is selected. The main difference is
that if two individuals are equally fitted (according to Occam’s razor), the shortest
one (the tree with less nodes) is chosen as the best one.

Tree crossover and tree mutation are the genetic operators implemented as
follows. In the tree crossover, random nodes are chosen from both parent trees,
and the respective branches are swapped, creating two offspring. There is no bias
towards choosing internal or terminal nodes as the crossing sites. In the tree
mutation, a random node is chosen from the parent tree and substituted by a
new random tree created with the terminals and functions available. This new
random tree is created with the grow initialization method [28] and obeys the
size restrictions imposed on the trees created for the initial generation. GP is
terminated when the number of epochs exceeds a predefined threshold or one of
the solutions fitness value meets the expected result. The brief procedure for genetic
programming is outlined in Fig. 1.

1. Initialize the population by Full method.

2. For each individual repeat the following steps

• Train the classifier with training samples, then, classify the
test samples using feature groups in each individual.

• Associate score to each individual.

3. Select the best individuals to generate new offspring.

4. Recombine and mutate the selected individuals.

5. Go to 2.

Fig. 1 Procedure for genetic programming.

5. Classifiers

It is expected that the features selected by the scheme outlined above have a good
performance on various types of classifiers. To test this, three powerful classifiers
such as Linear Discriminant Analysis (LDA), Multi-LDA (MLDA), and Adaboost
are considered. Although Fisher LDA was proposed in 1936 [31], its boundary is
constructed based on a very powerful and efficient criterion (Fisher criterion). The
LDA acts very robust and stable in some applications such as face recognition and

9



Neural Network World 1/12, 3-20

brain computer interface (BCI) [33], [36]. The multi-linear Discriminant Analysis
(MLDA) is an efficient classifier which employs tensor properties to simplify the
computation with acceptable accuracy [34]. The Adaboost [32] is a hybrid struc-
ture which uses several classifiers of different type to improve the accuracy. Both
classifiers are easy to implement and are moderate in computational demand. In
addition, it is straight forward to evaluate classification accuracy in both cases.

5.1 Fisher Linear Discriminant Analysis

The goal of LDA is to find a direction in the feature space in which the distance of
the means relative to the within-class scatter, described by the within-class scatter
matrix SW , reaches a maximum, thereby maximizing the class separability. This
goal can be achieved by maximizing the following criterion with SB , the between
scatter matrix:

J(W ) =
WTSBW

WTSWW
. (9)

The direction w that maximizes this criterion is determined as [33]:

W = S−1
W (m1 −m2), (10)

where m1 and m2 are the sample means for the two classes. This direction is opti-
mal when the distribution of both classes is Gaussian and has the same scattering
directions [33]. When the overlap between two classes increases, the LDA behaves
very stable, because the boundary is formed based on all samples, not just marginal
samples. The performance of some classifiers such neural networks, SVM and fuzzy
classifier are so sensitive to marginal samples while the LDA is learned regarding
between and within covariance matrices which involve all samples.

5.2 MLDA

The Multi-linear Discriminant Analysis (MLDA) was first proposed for the face
recognition problem [34]. The distinctive property of this classifier is to preserve
the data structure by catching inputs encoded as tensors. In traditional methods
of face recognition, first, each image was vectorized, which projected to a very high
dimensional space. Since the number of images in the database is far less than the
number of feature dimension, the small sample size (SSS) problem [31] appeared,
which lead to under-estimation parameters of a classifier. For example, in the face
recognition using MLDA, each face (gray scale) is represented by two order tensors;
therefore, the small sample size problem or the curse of dimensionality dilemma is
neglected.

In this study, the MLDA is employed because feature dimension is high (300)
and this method can rapidly handle our data according to the tensor analysis. In
the MLDA, objects are represented using a tensor and all computations are per-
formed by tensor metrics. In addition, the transformation obtained in the MLDA
is multi-linear, with a sub-transformation for each direction. If the k-order tensor
is used to encode input data objects, the obtained transformation consists of k sub-
transformations. At each epoch of MLDA, the tensor objects are unfolded along
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k-th direction (mode) and new objects are generated. The new objects are used to
determine transformation in that direction. The key point is that, before unfolding
objects in the mode k, all objects are transformed using the other k − 1 transfor-
mation. A special product called k-mode product is used to transform each object
in the direction k. Since each transform depends on others, a mechanism named
k-mode optimization is used to optimize the multi-linear transform. The between
Sb and within Sw class scatter matrices in tensor representation are described as:

Sb =

Nc∑
j=1

Nc∑
i=1

(X̄ci − X̄cj )(X̄ci − X̄cj )
T (11)

Sw =

Nc∑
j=1

Nci∑
i=1

(Xi − X̄cj )(Xi − X̄cj )
T , (12)

where Nc and Nci are the number of classes and number of tensor objects in class
i, respectively. Xi is the i-th tensor object of class i and X̄cj is the mean of i-th
class.

5.3 Adaboost

The main idea of Adaboost is that a weak learning algorithm that performs just
slightly better than random guessing can be boosted into an arbitrarily accurate
and strong learning algorithm [32]. The Adaboost tries to boost a weak classifier
in a serial manner. First, a uniform importance function is assigned to all training
samples and the first weak learner is applied. Next, the weak learner tries to learn
the misclassified samples which the previous learner could not classify. In other
words, sensitivity of the next weak learner increases for the previous misclassified
and decreases for the right classified samples in the previous iteration; therefore,
each weak learner is forced to focus on the hard samples in the training set. Change
of this sensitivity is performed based on the updating of the importance function
called Dt(i), which is the importance of the sample i-th on the t-th iteration.
Experimentally, the maximum number of weak learners (T ) can be adjusted by
the user to avoid high computational complexity. In this study, the decision tree
is chosen as a weak learner. One of the main ideas of the algorithm is to maintain
a distribution or a set of weights over the training set. Each weak learner in the
t-th iteration is defined as a hypothesis: ht : X → Y where X is the input vectors
and Y are their labels. The error in the t-th iteration is defined as the number of
misclassified samples, described as:

εt = Pr
i∼Dt

[ht(xi) ̸= yi], (13)

where ht is the t-th weak learner and εt numerates the number of samples that
the t-th weak learner estimate their labels wrongly. Then, the Adaboost chooses a
parameter αt ∈ R that intuitively measures the importance of ht that is determined
as:

αt =
1

2
ln

(
1− εt
εt

)
, (14)
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where αt is the weight assigned to ht. Finally, Dt is updated using the rule shown
in Fig. 2. The final or combined classifier H is a weighted majority vote of the
T -base classifiers.

1. Given: (x1, y1), . . . , (xm, ym)

where xi ∈ X, yi ∈ Y = {−1,+1}

2. Initialize D1(i) = 1/m.

3. For t = 1, . . . , T :

• Train base learner using distribution Dt.

• Get base classifier ht : X → R.

• Choose αt ∈ R.

• Update: Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
where Zt is a nor-

malization factor (chosen so that Dt+1 will be a distribu-
tion).

4. Output the final classifier:

H(x) = sign

(
T∑

t=1
αtht(x)

)

Fig. 2 Procedure for Adaboost classifier.

6. Computational Procedure

At first, EEG signals (20 channels) of fifteen schizophrenic patients and nineteen
age-matched controls were recorded. The recorded signal of each channel was di-
vided into short windows to preserve stationary property of each segmented signal.
The window length was considered one second (to be stationary) and successive
windows have a 50% overlap. Several features including the AR model coefficients
(order 8), band power and fractal dimension were extracted from each frame. The
extracted features from the successive windowed signals were arranged in succes-
sive feature vectors; there will be 15 features for each channel (8 features for AR
coefficients, 4 for band power and 3 for fractal dimension); consequently, 300 fea-
tures for each frame from all 20 electrodes are collected in each feature vector. In
this phase, GP is employed for feature reduction so that each individual (or each
tree) contains the group of features. In the feature selection phase, the features of
each tree are used by Adaboost, MLDA, and LDA classifiers separately to learn the
training samples, and the classification error on the test samples is returned as the
fitness value. Once again the reduced features were fed into the classifiers, so that
in all experiments, leave-one (subject)-out is used to estimate the classification er-
ror and prevent overfitting. It means that all extracted features of one subject were
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considered as a test and the rest (extracted features of the remained cases) were
employed to train the classifier. In this way, we do not have any correlation between
the train and test sets to guarantee the generalization of the results. Moreover,
leave-one-out is used because the number of cases were limited, otherwise k-times,
k-folds cross validation would be a more proper method.

7. Results and Discussions

In the first experiment, all the extracted features (300 features for each windowed
signal) were applied to LDA, MLDA and Adaboost classifiers. One participant was
considered as the test data and the other participants were considered as the train
data. Each classifier is trained by the train data and the classification rate on the
test data is determined. Tab. I shows the classification rate for each case separately
through the leave-one (participant)-out process. As can be seen in Tab. I, the mean
classification accuracy obtained by LDA, MLDA and Adaboost are 78%, 81%, and
82%, respectively.

N1 N2 N3 N4 N5 N6 N7 N8 N9
LDA 94.53 96.89 85.47 60.50 98.51 98.65 61.96 100 99.44
MLDA 85.94 88.89 88.27 59.66 98.51 97.97 96.74 100 100
Adaboost 72.66 92.44 45.81 69.75 100 88.51 100 97.69 93.22

N10 N11 N12 N13 N14 N15 N16 N17 N18
LDA 98.82 100 80.90 60.00 73.58 100 52.85 74.61 87.40
MLDA 98.82 100 97.75 64.44 88.05 97.09 43.67 78.76 80.82
Adaboost 89.94 100 67.42 55.56 89.31 96.60 85.76 89.12 88.77

N19 S1 S2 S3 S4 S5 S6 S7 S8
LDA 57.40 47.37 66.08 87.84 91.67 51.27 42.86 90.31 68.42
MLDA 79.82 47.37 58.59 87.84 90.48 65.19 30.77 89.80 59.65
Adaboost 66.82 68.42 86.78 94.14 92.26 34.18 79.67 93.37 89.22

S9 S10 S11 S12 S13 S14 S15 Mean ± Std
LDA 78.20 78.60 47.49 85.71 56.70 94.72 95.29 78.35 ± 18.69
MLDA 80.09 79.65 56.16 92.55 80.86 94.72 94.12 80.97 ± 18.50
Adaboost 98.10 96.84 52.05 38.82 86.12 87.79 98.82 81.94 ± 18.37

Tab. I Results of LDA, MLDA and Adaboost classifiers on normal and
schizophrenic subjects (N1 to N19 are normal subjects while S1 to S15 are schizo-

phrenic patients).

In the second experiment, genetic programming is used to reduce the complex-
ity and remove the redundant features. The simulation parameters for genetic
programming are brought in Tab. II. As it can be seen in Tab. II, the population
with 50 trees was considered; the maximum allowed height of each tree is set to
seven. In the initialization phase, features of a node are selected randomly, but the
number of features of a node must not exceed five. Therefore, it is clear that each
initial tree contains a different number of features. Typically, the GP procedure
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is terminated after 100 epochs, but it is possible to stop the procedure when its
accuracy is not changed significantly.

The time complexity of GP depends on various factors such as size of population,
number of epochs, time complexity of evaluation function, and number of training
samples. If the accuracy of GP procedure is not changed significantly, the GP
process is terminated before completion of maximum iteration threshold and hence
it reduces the run time.

The genetic programming parameters

Population size 50
Initialization Full method

Stopping criteria Maximum generation
Selection Lexictour

Crossover probability 0.8
Mutation probability 0.05

Maximum allowed height of a tree 7
Maximum allowed features of a node 5
Maximum allowed features of a tree 300

Tab. II The parameters used for genetic programming.

As we can see from the results, GP reduced the classification error because it
removed the redundant features. The algorithm is executed for 34 times that in
each run, EEG signals of 33 participants are used to find the best subset of features.
Finally, the best subset of features is used to classify unseen data. GP decreased
the number of features approximately to half in each run. The selected features
in each run are combined to find the final subset of features. The final number
of features, after the intersection procedure, is 140 where it shows in each run,
we obtain almost the same features. Investigating the final feature set it shows it
contains all types of features (AR, band power and fractal dimension), with the
most frequent AR coefficients and the least used fractal dimension. The selected
features of each type are listed in Tab. III.

Several operators can be used to obtain a composite feature set. These operators
may be an intersection or union of the selected feature vectors, but maximum voting
or feature weighting techniques also could be used. These operators were evaluated
and finally we found out that the best choice is the intersection operator. Therefore,
the final subset of features is considered as the intersection of the selected features
in each run.

Feature Type # of selected features in the final feature set
AR 84

Band power 35
Fractal dimension 21

Tab. III Selected number of features of each type by GP is shown separately.
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Furthermore, decreasing the feature dimension enables the classifiers to learn
more robust solutions and achieve better generalization performances. This is due
to the fact that irrelevant feature components are eliminated by projection of the
primary space to the optimal subspace. After feature reduction by GP, the classifi-
cation rate is brilliantly improved to 82%, 84%, and 93% for the LDA, MLDA and
Adaboost classifiers, respectively, as shown in Tab. IV. In order to illustrate the
effectiveness of GP on the classification performance between two groups, the clas-
sification rate with and without applying GP along with their standard deviation
are presented in Fig. 3.

An interesting observation from the feature selection procedure is that most of
the selected features belong to those channels which are located in the temporal
and frontal lobes, covering most parts of limbic system in the brain. This result
confirms the neuropsychological and neuroanatomical differences between controls
and schizophrenic participants [1], and it also shows that the selected channels
in the limbic area carry more discriminative information. Fig. 4 shows the final
selected channels according to GP include Cz, C3, T3, T4, Fp2, F8, T6, O1, O2.
Significant changes in the limbic system of control subjects with schizophrenic
patients are observed in PET and fMRI images [35].

Hornero et al. [6] reported a similar work, analyzing a time series generated
by twenty schizophrenic patients and twenty sex- and age-matched control sub-
jects. They reported accuracies from 70–85% (depending on the nonlinear method
used) for separating training and test sets. A remarkable enhancement has been
achieved in this study when compared to the results obtained by Hornero et al. [6].
Moreover, in comparison with the generated time series [6], our approach has some
advantages, including; (1) our approach is based on analyzing the EEG signals
which can represent the discriminative spatio-temporal information on the scalp
between the two groups while their approach just reflects the differences between
cognitive activity of the two groups. (2) Their algorithms [6] are highly parameter
dependant and tuning these parameters and finding the optimum threshold is hard
while no prior knowledge or predefined threshold are needed in our approach. (3)
In this research, most of the computation time is consumed by the training phase
which is carried out offline and the recall phase is much faster than the method in
[6].

To show the performance of GP feature selection technique, a well-known fea-
ture selection technique named Sequential Forward Selection (SFS) [31], [33] is
applied to the extracted features. The SFS is an efficient technique in several appli-
cations but it highly suffers from lack of backtracking while genetic programming,
by evolving its chromosomes in each generation, feeds an efficient backtracking
process through its population. In other words, GP benefits a better global search
than the SFS. To compare the performance of GP and SFS, both methods have
been applied to the original features and the results are assessed in Tab. V. As we
can see from the Tab. V, the GP achievements are superior to the SFS results.

Furthermore, a reliable statistical test (student T-test) was applied on the
achieved results in order to empirically confirm the significance of the classifica-
tion improvements after the feature selection. Tab. VI shows the p-value before
and after the feature selection for the three classifiers. Our results show the p-
value is less than 0.05 for Adaboost classifier, which confirms the validation of our
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N1 N2 N3 N4 N5 N6 N7 N8 N9
LDA 93.75 98.67 73.18 50.42 95.52 90.54 77.17 100 96.05
MLDA 90.63 95.56 88.83 54.62 98.51 97.30 97.83 100 100
Adaboost 90.63 91.96 80.90 77.97 100 95.95 100 100 89.77

N10 N11 N12 N13 N14 N15 N16 N17 N18
LDA 94.67 98.84 80.90 50.00 69.81 97.57 47.47 80.31 93.15
MLDA 98.82 100 98.88 64.44 89.31 95.63 47.78 91.71 86.03
Adaboost 91.67 100 75.00 71.11 84.81 100 88.61 100 97.80

N19 S1 S2 S3 S4 S5 S6 S7 S8
LDA 71.75 68.42 90.31 85.59 92.86 68.35 70.33 91.84 65.66
MLDA 85.20 61.58 64.76 89.64 91.07 65.08 70.25 89.80 52.88
Adaboost 76.58 88.89 98.23 94.59 100 91.14 95.60 96.94 97.99

S9 S10 S11 S12 S13 S14 S15 Mean ± Std
LDA 87.68 78.95 86.94 86.02 65.79 95.38 96.47 82.07 ± 14.95
MLDA 75.83 75.09 62.03 93.17 81.58 94.72 93.53 83.59 ± 15.76
Adaboost 98.10 86.48 93.58 100 100 100 96.47 92.67 ± 8.25

Tab. IV Results of LDA, MLDA and Adaboost classifiers on normal and
schizophrenic subjects (N1 to N19 are normal subjects while S1 to S15 are schizo-

phrenic patients) after feature selection.

Genetic programming SFS
LDA 82.07 ± 14.95 81.14 ± 19.47
MLDA 83.59 ± 15.76 81.54 ± 19.87

Adaboost 92.67 ± 8.25 82.28 ± 18.00

Tab. V Comparison of GP and SFS feature selection techniques.

computation. Nevertheless, applying the GP feature selection did not provide any
valid improvement for MLDA and LDA classification results. The main reason of
Adaboost superiority is its ability to construct a non-linear and flexible boundary
while preserving generalization of the results. In contrast, the linear classifiers are
able to classify only linearly separable instances. The higher accuracy of Adaboost
addresses the hard margin between the extracted features of the two classes. The
performance of Adaboost can be highly affected by noisy features; therefore, elim-
inating noisy features dramatically improved the performance of Adaboost; while
LDA family classifiers are more robust to noisy features, hence, their effectiveness
did not change significantly after the feature selection.

It should be noted that for each psychiatric disease, there are some different
drugs which affect EEG signals. It was impossible to stop patients’ medicine for
our research; therefore, we asked the psychiatrist to use those drugs (dopamine
blocker group) which have minimum affect on EEG signals. Mostly, preprocessing
of data such as normalization could affect performance of the classifiers. This was
investigated for this particular data set and no significant changes were observed.
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Fig. 3 Classification result along with standard deviation is shown for schizophrenic
and control subjects by LDA, MLDA and Adaboost classifiers. Shaded bars show

the results without feature reduction, white bars show the results using GP.

Fig. 4 Visualization of the selected channels by GP on the scalp. Dark gray shows
the selected channels.

At the end, applying GP on the features increased the performance of all classifiers
and the Adaboost was introduced as the most effective classifier compared to the
LDA and MLDA for distinguishing schizophrenic and control subjects. In order to
improve this performance, we can employ the two-layer weighted-LDA weighted-
nearest neighbor classifier [38] or adaptive distance immune system-based classifier
[39] which prove their efficiency empirically on the standard datasets. In some
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Classifier p-value
LDA p > 0.05
MLDA p > 0.05

Adaboost p < 0.05

Tab. VI The statistical test result.

researches EEG signals were recorded in presence of auditory stimulus, and after
extracting the evoke related potential from the background EEG, proper features
such as latency and amplitude were used to distinguish the schizophrenic subjects
from the controls [40], but here we analyze the natural EEG (without any stimulus)
to see whether any significant indicator is observed between the two groups to
classify them or not.

8. Conclusions

This study shows that EEG signals can be an efficient tool for distinguishing
schizophrenic and control participants. EEG signals are preprocessed, then the de-
scriptive features represent the captured information inside the signals in different
domains to highlight their differences. Three well-known classifiers, LDA, MLDA
and Adaboost, were trained using leave-one (patient)-out procedure for training
in order to remove correlation between the train and test sets. Satisfactory re-
sults are fairly obtained by distinguishing the patterns. For further improvement,
genetic programming is used for removing redundant and noisy features; the re-
sults achieved by Adaboost classifier are considerably enhanced due to Adaboost
capability to fit a non-linear boundary among the filtered features while preserving
generalization between the train and test results. Experimental results illustrate
the effectiveness of the proposed approach that can be a complementary tool to
help psychiatrists for more accurate diagnosing schizophrenic patients.
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