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Abstract: The paper examines sources of brain activity, contributing to EEG pat-
terns which correspond to motor imagery during training to control brain-computer
interface. To identify individual source contribution into electroencephalogram
recorded during the training Independent Component Analysis was used. Then
those independent components for which the BCI system classification accuracy
was at maximum were treated as relevant to performing the motor imagery tasks,
since they demonstrated well exposed event related de-synchronization and event
related synchronization of the sensorimotor µ-rhythm during imagining of contra-
and ipsilateral hand movements. To reveal neurophysiological nature of these com-
ponents we have solved the inverse EEG problem to locate the sources of brain
activity causing these components to appear in EEG. The sources were located
in hand representation areas of the primary sensorimotor cortex. Their positions
practically coincide with the regions of brain activity during the motor imagination
obtained in fMRI study. Individual geometry of brain and its covers provided by
anatomical MR images was taken into account when localizing the sources.
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1. Introduction

In general, Brain-Computer Interface (BCI) makes possible a direct functional in-
teraction between human brain and an external device. Many kinds of signals
(from electromagnetic to metabolic [26, 45, 42]) are used for BCI control. How-
ever, the most widespread BCI systems are based on EEG recordings. The BCI
system consists of a brain signal acquisition system, data processing software for
feature extraction and pattern classification, and a system transferring commands
to an external device. Results of the command execution serve as a feedback to
the operator. The most prevalent BCI systems are based on the discrimination of
EEG patterns related to execution of different mental tasks [27, 16, 24]. This ap-
proach is justified by the presence of high correlation between brain signal features
and tasks performed, revealed by basic research [46, 27, 30, 32]. By agreement
with the BCI operator each mental task is associated with one of the commands
to the external device. Then the operator can voluntary choose to perform certain
mental task in order to issue the corresponding command. If BCI serves to control
device movements, then Motor Imagery (MI) tasks seem to be the most psycho-
logically convenient ones. For example, when a patient controls the movement of a
wheelchair via BCI, he can initiate its turn to the left (right) imagining movement
of his left (right) hand. Another advantage of these mental tasks is that their
performance is accompanied by the easily recognizable EEG patterns. Moreover,
motor imagination is now considered as an efficient rehabilitation procedure which
can aid to restore movement in paralysis [3].

The most stable electrophysiological phenomenon accompanying motor imagery
is the amplitude drop of EEG µ-rhythm recorded by the central electrodes located
over the brain areas where the involved body part is represented [31]. This drop,
called Event Related De-synchronization (ERD), also occurs during motor prepara-
tion and execution [32], and even when the subject observes the movement executed
by another person [36]. In the relaxed state the increase of EEG µ-rhythm ampli-
tude, or Event Related Synchronization (ERS), is observed [31]. It is the presence
of ERD and ERS reactions in specific brain areas during imagining movements of
different extremities that explains the well known effectiveness of BCI based on
motor imagery [34]. On the other hand, BCI training allows to stabilize brain
activity corresponding to different mental tasks and make it more contrast, which
can facilitate the search of brain areas involved in the task performing.

Up to now the most widespread technique of locating sources of task-specific
brain activity has been analysis of fMRI images which provide high spatial but yet
low temporal resolution. By contrast, EEG records provide high temporal but low
spatial resolution. To combine both techniques [10] seems to be the most effective
way to locate the sources, especially if the fast progress of methods for solving the
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inverse EEG problem [14, 22] is taken into account. These methods are dedicated
to locate sources of brain activity by distribution of electric potential over head
surface. In order to integrate fMRI and EEG analysis to investigate brain activ-
ity relevant to BCI training we used the following procedure. The subjects were
initially trained to control BCI until they showed relatively good performance. In
our study we used Bayesian BCI classifier (BC), based on EEG covariance ma-
trix analysis to evaluate which of them provide the best BCI performance. We
have shown earlier [11] that BC, having far smaller computational cost, provides
classification accuracy comparable with such classifiers as those based on Common
Spatial Patterns [38] and Multi-class Common Spatial Patterns [9, 15].

Those subjects who showed the best performance were selected for fMRI study.
The choice of the most trained subjects for fMRI study is explained as follows.
Since in our experiments fMRI and EEG data were not recorded simultaneously,
only the subjects with the best BCI control were expected to perform the tasks
during EEG and fMRI experiments in the same way. These expectations were
based on the fact that the subjects’ patterns of brain activity became more stable
as a result of training to control BCI. The sources of brain activity which were
the most relevant to BCI performance were selected to be located by solving the
inverse problem of EEG. The results of the source localization were compared with
the results of fMRI study. To identify sources of brain activity the most relevant to
BCI performance we used Independent Component Analysis (ICA). Over the past
few years the use of ICA in the processing of EEG has widely spread, as evidenced
by the BCI studies in particular [18].

2. Methods

2.1 Experimental protocol

Four male subjects aged from 50 to 70 participated in the study. All subjects were
right-handed and had no neurological diseases. They formed the control group in
our study of BCI efficiency as procedure for rehabilitation of paralyzed patients.
The subjects have provided written participation consent. The experimental pro-
cedure was approved by the Board of Ethics at the Institute for Higher Nervous
Activity and Neurophysiology RAS.

The experiment with each subject was conducted for 5 experimental days, one
series per day. Each series consisted of one training session with no feedback and
two testing sessions with the feedback switched on Fig. 1A. The training session
was designed to initialize the BCI classifier. The following, testing, sessions were
designed to provide subjects with the output of the BCI classifier in real time to
enhance their efforts to perform the MI tasks. During the sessions the subjects
had to perform one of three instructions presented on a screen of a monitor: to
relax and to imagine the movement of the right or left hand. The MI task which
they were asked to perform was a kinesthetic handgrip imagining. The absence of
actual hand movements was controlled visually.

Subject was sitting in a comfortable chair, one meter from a 17” monitor, and
was instructed to fix his gaze on a motionless circle (1 cm in diameter) in the
middle of the screen. Three gray markers were placed around the circle to indicate
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the mental task to be performed. Changing of marker color into green signaled
the subject to perform the corresponding mental task. Left and right markers
indicated left and right hand movement imagining respectively, and the upper one
indicated relaxation. Each command to imagine a movement was displayed for
15 seconds and was preceded by a relaxation period of 7 seconds. Each clue was
preceded by a 3-second warning. Four such “relaxation – motor imagination” pairs
presented in random order constituted a block, with two blocks constituting a
training session and four blocks constituting a testing session (Fig. 1B). Thus, each
subject received 10 blocks of instructions on each experimental day. The blocks
with indicated actual hand movements were excluded from the analysis.

Fig. 1 Schematic representation of the experimental day procedure with sequence
of the sessions (A) and structure of the experimental block (B) presented. Each
block included two motor imagery instructions for each hand. The sequence of the
four MI instruction presentations was randomly chosen for each block. Duration
of the instructions is in seconds. Light areas indicate instructions to perform the

tasks, and dark areas indicate warnings.

During the testing sessions the classifier was switched on and the result of
classification was presented to a subject by changing color of the central circle.
The circle became green if the result coincided with the instruction. The feedback
was off when subject was instructed to relax not to attract his attention.

EEG was recorded using 27 ActiCap (Munich, Germany) electrodes (Fz, F3,
F4, Fcz, Fc3, Fc4, Cz, C1, C2, C3, C4, Cpz, Cp1, Cp2, Cp3, Cp4, Pz, P1, P2,
P3, P4, Po3, Po4, Po8, Oz, O1, O2), Afz was used as reference. The data were
digitized by 16 bit ADC NBL640 (NeuroBioLab, Russia) with sampling frequency
200 Hz and filtered within 6-28 Hz passband.

Two subjects with the best BCI control were chosen for additional fMRI exper-
iments to locate the areas of their brain activity during the motor imagery. When
fMRI data was acquired, instructions to relax or to imagine hand movements were
presented to the subject without EEG recording. This is the reason why only two
subjects with the best BCI control were selected for fMRI study. Since the efficiency
of BCI control depends on the subject’s ability to stabilize patterns of his brain
activity and make the patterns more contrast for different tasks, we believe that
the subjects who demonstrate the best BCI control are able to produce stable and
contrast patterns of the brain activity during both EEG and fMRI experiments.
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fMRI recordings were made with 1.5 T MR scanner (Siemence, Erlangen, Ger-
many). fMRI data were acquired using a T2-weighted EPI sequence (36 slices,
TR = 3800 ms, TE = 50 ms, flip angle = 90 degrees, 64 × 64 matrix, slice thick-
ness 3 mm, voxel size = 3×3×3.7 mm). A T1-weighted anatomical scan (176 slices,
TR = 1940 ms, TE = 3 ms, scanning matrix 256×256, slice thickness 1 mm) was
also acquired for each selected subjects.

One subject with the best BCI control abilities from the group of younger
persons, previously investigated for BCI performance ([11]), was invited to take
part in fMRI study as well.

To compare the location of the brain areas active during the motor imagery,
revealed by EEG and fMRI studies, a session with 10 blocks of MI task performing
with no feedback was carried out for each subject just after fMRI. Notably, no
actual movements were detected during the session for any subject. Positions of
electrodes were identified using the Nexstim System (Finland). Precise localization
of electrodes is one of the prerequisites for solving the inverse EEG problem using
individual subject geometry.

The forward EEG problem was solved by the Finite Element Method (FEM)
which allows to take into account individual geometry of the brain and its covers. To
apply FEM, 3d element mesh was generated from each subject’s segmented anatom-
ical MRI data. The data were segmented into regions containing White Matter
(WM), Gray Matter (GM), Cerebrospinal Fluid (CSF), skull, and scalp by means
of New Segmentation Tool of SPM8 toolbox for MATLAB. To obtain FEM mesh
the segmented images were processed using our own tool, based on Computational
Geometry Algorithms Library (CGAL) 3d mesh generation algorithms [1]. Upper
bound for size of the elements was 3 mm. Output mesh was imported into ANSYS
software (ANSYS, Inc., PA, USA) which we used to solve the forward EEG prob-
lem. Electrical conductivities were assigned as follows: 0.14 S/m to WM, 0.33 S/m
to GM, 1.79 S/m to CSF, 0.0132 S/m to the skull, and 0.35 S/m to the scalp [20].

2.2 Estimation of BCI performance

Quality of the BCI performance was estimated off-line by cross-validation of each
experimental day data. Ten blocks of training and testing sessions of each experi-
mental day were randomly split into sets of 7 and 3 blocks. The first set was used
for classifier training and the second set was used for classifier testing. BC training
actually consists in computing three EEG covariance matrices for each of the men-
tal tasks over the data of chosen 7 blocks. Classifier was tested by discriminating
epochs of 1 sec length from the 3 remaining blocks. Thus, non-overlapping data
sets were used for training and testing of the classifier. As a result of averaging over
50 such splits, a confusion matrix P = (pij) was obtained. Here pij is an estimate
of probability to recognize the i-th mental task in the case the j-th mental task
is to be performed. We chose Cohen’s κ [21] as an index of classification efficacy.
Given the confusion matrix P, this index is calculated as follows:

κ =

∑
i piip0i −

∑
i [p0ipi0]

1−
∑

i [p0ipi0]
, (1)
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where p0j is a probability of the j-th instruction to be presented and pi0 =
∑

j pijp0j
is a probability of the i-th mental state to be recognized. The probabilities p0j were
estimated by dividing the number of epochs corresponding to the j-th state by the
number of all epochs. Thus, p0j were equal or very close to 1/L. The better the
classifier performs the more the confusion matrix is close to identity matrix. If
classification is perfect, κ = 1. If classification is random, i.e. pij = pi0 for all j,
then κ = 0.

2.3 Extraction of the most relevant independent components

ICA provides representation of a multidimensional EEG signal X(t) (where compo-
nents of X(t) represent electric potentials on N individual electrodes on the head
surface) as a superposition of activities of independent components ξ:

X(t) = Wξ(t) = W1ξ1 +W1ξ2 + · · ·+W1ξN . (2)

Columns Wi of matrix W specify the contribution of the corresponding indepen-
dent component (or source) into each electrode potential, and the components ξi of
the vector ξ(t) specify source intensities at each time moment. The combination of
active sources is supposed to be specific and individual for each mental task. Thus,
their activities during performing different task may be treated as independent.

There exist a lot of methods to represent the signal X in the form (2). We
used RUNICA algorithm (EEGLab toolbox for MATLAB, [7]). RUNICA provides
identification of the independent components maximizing difference of their kur-
tosis from Gaussian [17]. Using this method is reasonable under the assumption
that source activities differ significantly during execution of different mental tasks.
For example, the more the amplitude of some source varies in different states, the
more the source activity distribution differs from Gaussian.

To reveal the sources of brain activity, the most relevant to BCI performance,
the quality index κ was calculated in dependency on the number of the independent
components, Ncmp, used for mental state classifying. For each Ncmp we found
the optimal combination of components providing the highest κ. Since the total
number 227 of possible component combinations is extremely large we used brute-
force to find the optimal combination of only 3 components. To find the optimal
combination of components for Ncmp > 3 we used a greedy algorithm which added
components one by one starting from the optimal combination of 3 components.
At each step a component was added to the optimal component set obtained at
the previous step, so that new combination would provide the highest κ value.

3. Results

3.1 Independent components the most relevant for BCI
control

For all subjects κ index, averaged over all experimental days, significantly exceeds
zero (t-test, P < 0.0001). On average over all subjects and all experimental days
κ = 0.43±0.11. Fig. 2 demonstrates the dependency of κ on the numberNcmp of the
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independent components for all subjects of the elder group on the last experimental
day and the selected subject of the younger group who participated in additional
experiment of daily protocol. For eachNcmp index κ is shown for individual optimal
component combination. Since the classification results provided by the BC do not
depend on non-singular linear transformation of signal, then in case Ncmp = N ,
i.e. when all components are used to evaluate classifying accuracy, value of κ is
just the same as that obtained by evaluation based on EEG signal X itself.

Fig. 2 Dependence of BCI control accuracy measured by κ index on the number
of the independent components, Ncmp, used for the mental state classifying. The
optimal combination of three components (Ncmp = 3) was obtained by the brute-
force search. The other optimal combinations were obtained by the greedy algorithm.
When all components are used for classifying (Ncmp = 27), the result corresponds
to the case when original EEG signal is used. Each curve represents the data for
each individual subject (top-down: Subjects 1, 5, 2, 3, 4, the fifth subject was from

the younger group).

As shown in Fig. 2, κ does not depend on Ncmp monotonically and reaches its
maximum when some of the independent components are discarded. However, the
accuracy of classification is very close to maximum when Ncmp = 3, and adding the
other components improves classifying only slightly. Thus, the componenets of the
obtained optimal triples can be considered the most relevant for BCI performance.

Fig. 3 demonstrates spatial distributions of the component contribution into
signal on EEG electrodes along with their spectrograms for the mental tasks per-
formed during the experiment: relaxation and imagination of right or left hand
movement. The data are shown for Subject 1 who demonstrated the best BCI con-

27



Neural Network World 1/12, 21-37

Fig. 3 The optimal component triples obtained for five days of BCI training for
Subject 1. Spatial distribution of the component contribution into EEG is given by
columns of the ICA weighting matrix W. The component spectrograms are shown
in 5-25 Hz band. The dashed lines indicate relaxation, the solid lines indicate left

hand MI, the dash-dotted lines indicate right hand MI.

trol. Two of these components were very stable and appeared in the triple of the
most relevant components every day. Their intensities demonstrate event-related
demineralization and event-related synchronization, the well documented changes
of the brain activity during MI [35]. As shown in Fig. 3, the intensity of the source
located in the right hemisphere (marked µ1 in Fig. 3) decreased drastically at the
frequency of about 11 Hz during imagination of the left hand movement, while, on
the contrary, the intensity of the source located in the left hemisphere (marked µ2
in Fig. 3) increased. During imagining the right hand movement the changes of
the intensities were opposite for each of the sources. It should be noted that ERD
and ERS are much better exposed by these independent components than by EEG
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records. The level of ERD can be estimated as r = Sim/Srel where Sim and Srel

are the maximal spectral densities in the alpha band during the motor imagery and
relaxation, respectively. We computed these values averaged over all experimental
days for each hand imagining, and then took average value of r over left and right
hand imagining. For Subject 1 r amounted to 0.2 in terms of the independent
components and to 0.69 for two central electrodes C3 and C4 on which ERD was
maximally exposed. Thus, ICA allowed to reveal ERD and ERS due to excluding
the components not related to these changes of brain activity.

As for the third component (the rightmost column in Fig. 3), its spectrograms
and contribution into EEG electrodes were different every day. Thus, only two
components µ1 and µ2 can be considered to be the most relevant to BCI control.
This is in line with the observation that the exposure of these components correlates
with the efficiency of BCI control. For Subject 1 who demonstrated the best BCI
control, both µ components were revealed among the three most significant for all
experimental days; for Subject 2 with slightly worse control quality component µ2
belonged to optimal triple for all experimental days, while µ1 only for four of the
days; for subject 3 both µ1 and µ2 components were not found in the optimal triple
for one of the days; and for subject 4 these components were found in optimal triple
only for two of the days. Although µ1 and µ2 were revealed for all subjects they
were rather variable in the level of ERD and ERS exposure. For Subject 1 the
index of ERD exposure amounts to r = 0.22, as mentioned above, for Subject 2
r = 0.19, for Subject 3 r = 0.65, and for Subject 4 r = 0.69. It is interesting that
for Subject 3 ERD was exposed not in the alpha, but in the beta band for which r
was computed. The dominance of ERD exposure in the beta band was also noticed
for one of the three subjects investigated in the study [33].

3.2 Source localization

Although it happened that the independent components identical to µ1 and µ2 were
identified at all subjects in all experimental days, still one could expect that they
just originate from the results of formal mathematical transformations of the actual
experimental data and consequently they have no physiological interpretation. To
clarify their nature we will show, first, that their contribution to EEG recordings
can be explained by the current dipole source of brain activity located in the
sensorimotor cortical areas, and, second, that locations of these dipolar sources are
in agreement with clusters of task-relevant brain activity, identified in fMRI study.

The contributions of µ1 components into EEG electrodes for Subjects 1, 2, and
5, obtained in the additional session after fMRI study are shown in Fig. 4. As
explained in the previous section, these subjects were selected for fMRI study be-
cause they demonstrated the best BCI control. The demonstrated contributions
are compared with those produced by current dipoles found by solving the inverse
EEG problem. When solving the inverse problem we looked for the location and
orientation of the dipole which provided the best fit between its and µ1 contribu-
tions to EEG electrodes. As shown in Fig. 4, the dipole sources obtained provide
good coincidence between both contributions. On average over all subjects and
both hands the residual variance amounted only 8%.
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Fig. 4 Contribution of µ1 component into potentials on EEG electrodes and its
dipole approximation for Subjects 1, 2, and 5.

In Figs. 5, 6, 7 the obtained dipole locations are shown along with the fMRI
topographic maps obtained by comparing local Blood-Oxygen-Level Dependence
(BOLD) responses during imagination of the left hand movement and the resting
state. BOLD responses in these states were compared on a pixel-to-pixel basis
with Student’s test and thresholds at P < 0.0001 by performing standard SPM8
fMRI processing steps. Only the sections through the found dipole positions are
shown. Dipole positions and marked areas of fMRI activity are located very close
to each other and to the “hand area” which is a segment of the central sulcus with
a characteristic knob shape seen on axial slices [5, 47]. However, the positions of
dipoles happened to be a little deeper than areas of activity yielded by analysis
of fMRI. Small discrepancy (up to 25 mm) between current dipole positions and
centers of nearest clusters of BOLD response was also observed in the most studies
of somatosensory response to hand electrical stimulation (see, for example, [6, 4,
44]). This may be explained by the fact that different processes are responsible
for EEG and fMRI outcomes. EEG is the result of neuronal electric activity,
while fMRI relates to blood flow and oxygenation changes associated with the
energetically dominant processes. If, for example, neuronal electric activity in the
depth of central sulcus is less energy intensive than activity in the crown of pre-
and postcentral gyrus then fMRI activity could be observed above the focus of
neural electric activity. Moreover, in our experiments performing the MI tasks
results in an increase of BOLD signal but a decrease of EEG signal magnitude.
Since relation between fMRI and neuronal electric activity is rather complex [28],
then the brain areas where these two kinds of brain activity are maximally exposed
could be slightly different. Hence the small discrepancy of their positions does not
provide evidence against the precision of dipole location. Moreover, the observed
discrepancy may arise from the difference in body position during the fMRI and
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Fig. 5 Location and orientation of the dipole resulting as a solution of the inverse
EEG problem for µ1 component of Subject 1, along with the results of fMRI ana-
lysis. The component was estimated using the data of the additional BCI training
session. Dipole location is marked by the white point. Its orientation is represented
by projections onto each section. The cutoff shown in the right-bottom sub-figure
has its origin at the dipole location and axes orthogonal to the sections. Voxels for
which BOLD level was significantly higher during left hand MI compared to relaxa-

tion period are shown in white.

EEG study. In our experiments, the distance between dipole location and the COM
of fMRI activity near central sulcus averaged over subjects and hands amounted
to 15 ± 1.5 mm. For all subjects and both hands the dipole was located near
the bottom of the central sulcus (3 ± 2 mm at the sagittal sections), i.e. at the
area 3a responsible for proprioceptive sensation [19]. According to reports of the
subjects this might correspond to their internal feeling of the hand movement being
imagined. There were other foci of BOLD response, different for each subject,
which might correspond to the other independent components of EEG signal. But
we consider only the foci closest to the sources which are the most relevant to the
BCI performance.
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Fig. 6 Location and orientation of the dipole approximating µ1 for Subject 2.

4. Discussion

Generally, the difficulties in interpreting the original EEG signals arise from the
overlapping of activities coming from different brain sources, from the distortion
of the current flows caused by the inhomogeneities in the conductivity of the brain
and its covers, and from uncertainty not only in location of dipolar sources but
also in their orientation which determines the relation between dipole position and
maxima of the potentials which the dipole produces on the head surface. These
difficulties result in the common opinion that EEG data provide very low spatial
resolution when compared to fMRI. There were many efforts in the past years to
match these techniques to enhance both time and spatial resolutions [28].

We propose here original, more complex methodology, consisting of the following
steps:

1. Train subjects to control BCI in order to stabilize and to contrast their EEG
patterns related to the mental tasks under consideration.
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Fig. 7 Location and orientation of the dipole approximating µ1 for Subject 5.

2. When subjects are sufficiently trained, find the independent components
which are the most relevant for the BCI control. This allows for suppres-
sion of the influence of irrelevant sources of brain activity and to refine the
most relevant ones.

3. Solve the inverse EEG problem for each individual relevant component. This
allows to perform the solution using single dipole approximation. The in-
verse problem has to be solved with individual geometry of the brain and
its covers taken into account. Anatomical MR images can provide a detailed
information on the subject’s head geometry.

4. Verify that found dipole locations are in agreement with results of fMRI ana-
lysis to ensure that investigated independent components are not only the
formal results of some mathematical transformations.

There is a long story of the debates concerning the brain areas involved in
motor imagination, especially the involvement of the primary sensorimotor cortex.
Activated areas in or around primary motor area have been described in PET
studies [43] during imagination of arm movement, but not of the grasping movement
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[8]. Primary sensorimotor cortex fMRI activation during the motor imagination
was denied in [37, 41], but was claimed in [23, 40, 10]. There were also many
efforts to reveal whether SM1 activates during motor imagery, using EEG data
[2, 32, 29]. Particularly, in [32, 29] conclusions on SM1 activation were drawn from
the observation that ERD is maximally exposed at the electrodes related to SM1
activity. However, it is difficult to prescribe electrical activity to some particular
brain area on the base of original EEG data, as mentioned above. We believe
that our approach allows to do this more accurately. The sources of the brain
activity which are the most relevant for motor imagination happened to be located
at the bottom of central sulcus, close to the Brodman area 3a which is responsible
for proprioceptive sensation. This location corresponds to the internal feeling of
the imagined hand movement according to the reports of subjects. However, our
results do not provide evidence against the presence of neural electric activity,
specific to MI, in the primary motor cortex. We found the source of activity which
demonstrates the most exposed ERD and ERS. As shown in [39], µ-rhythm is much
more exposed in the primary somatosensory but not in primary motor cortex in
immobile cat. Thus, one can expect that ERD and ERS in humans could be also
more exposed in the primary somatosensory cortex.

The independent components which are the most relevant to the performance
of BCI based on the hand motor imagination were also obtained in [25]. They
are very close or may be even identical to the components obtained in the present
work. But in [25] they were not located by solving the inverse EEG problem.
We tried to solve it using the most realistic head model as a volume conductor,
taking into account the individual geometry of the brain and its covers and the
difference in conductivity of white and gray matter, CSF, skull and scalp. The
only thing we ignored was WM anisotropy. Yet it was shown in [22] that head
model incorporating realistic anisotropic WM conductivity does not substantially
improve the accuracy of EEG dipole localization, our next step is to take anisotropy
into account.

In addition to the foci of activity revealed by fMRI analysis which are located
near the primary sensorimotor cortex we observed many other foci described by
other researchers (see, for example, [10]). Also we obtained many independent
components which were relevant to motor imagination other than two main com-
ponents µ1 and µ2. Hence the natural goal of our future research is to reveal the
relations between other fMRI foci and other independent components.
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