
MODELING DEDUCTION

WITH RECURRENT NEURAL NETWORKS

Arnošt Veselý∗

Abstract: In the paper, we focus on reasoning with IF-THEN rules in proposi-
tional fragment of predicate calculus and on its modeling with neural networks.
At first, IF-THEN deduction from facts is defined. Then it is proved that for any
non-contradictory set of IF-THEN rules and literals (representing facts) there ex-
ists a layered recurrent network with 2 hidden layers that can specify all IF-THEN
deducible literals. If we denote the set of all literal IF-THEN consequences as D0

and the set of all literal logical consequences as D , then obviously D0 ⊂D . Thus,
D0 can be considered to be an approximation of D . Using the designed network
for simulation of contradiction proof, the approximation D0 may be easily refined.
Furthermore, the network may also be used for determination of D . However, the
algorithm that realizes necessary network computations has exponential complex-
ity.

Key words: IF-THEN rules, logical deduction, neural networks

Received: June 28, 2011
Revised and accepted: April 16, 2012

1. Introduction

Today’s models of expert decision-making used in the field of Cognitive Science
suppose that expert knowledge about observed or controlled system can be decom-
posed into small pieces or chunks, which can be expressed as IF-THEN rules [1],
[2]. The current state of the system is often described by a set of simple facts
having the form of literals (literals are predicates or their negatives). Thus, an
important part of expert decision-making is the search for other valid facts that
are not known but that must be valid due to the IF-THEN rules.

The seminal work exploring neural network modeling of deduction with IF-
THEN rules is the article of Towell and Shavlik [3]. The authors assumed general
knowledge to be structured in a set of IF-THEN rules interpreted as logical impli-
cations. Knowledge based on observation was represented with a set of observation
literals with known truth-values. The logical deduction was represented by means

∗Arnošt Veselý
Czech University of Life Sciences, Kamycka 129, Prague, Czech Republic, +420 22438 2215,
E-mail: vesely@pef.czu.cz

c⃝ICS AS CR 2012 123

Neural Network World 2/12, 123-137

of oriented graph with a tree structure. Tree leaves represented observation literals.
The non-leave nodes represented deduced literals. The graph topology was deter-
mined by IF-THEN rules contained in the knowledge database. Deduction tree
was modeled with a layered neural network. On the network input truth-values of
observation literals were put and the network carried out its computation. After
computation the output values of neurons in the output layer were interpreted as
deduced truth-values of the literals assigned to the output neurons.

Results relevant to deduction modeling with neural networks were acquired also
in the field of logical programming. A logical program in propositional logic is a
finite set of Horn clauses of the form A← L1∧· · ·∧Ln, where A is a predicate and
Li are literals. The case n=0 is also allowed. It is called unit clause or fact and
denoted A ←. In [4] and [5] a method for constructing a layered neural network
that computes consequence operation of arbitrary logical program was described. If
we confined ourselves only to those IF-THEN rules that can be equivalently written
as Horn clauses, then this neural network might be used for IF-THEN deduction
modeling.

Stenning [6] proposed to model deduction with IF-THEN rules that can be
interpreted as Horn clauses by means of a recurrent neural network with a special
and unusual architecture. The model was based on three-valued logic. Truth-
values t (true), f (false) and u (undecided) were coded with binary couples t = (1,
0), f = (0, 1) and u = (0, 0). The network consisted of two parallel layers U+

and U−. The layer U+ was a layered recurrent network that computed the first
component of the truth-value. The layer U− had the same architecture as layer
U+ and it computed the second component of the truth-value. A couple of neurons
that occupied the corresponding locations in U+ and U− layers represented one
predicate. Both neurons of the couple were connected together and inhibited each
other.

The drawback of the method of Towel and Shavlik [3] is that the architecture of
their network depends on the set of observation literals with known truth-values.
If truth-values of other observation literals are at our disposal, the network ar-
chitecture is different. The solutions given in [4] and [5] use fixed architecture.
Nevertheless, they restrict the set of IF-THEN rules only to the set of IF-THEN
rules equivalent to Horn clauses. The same restriction is postulated in the solution
of Stenning [6]. Moreover, Stenning’s network has nonstandard and complicated
architecture.

In the paper, we propose a solution that escapes drawbacks mentioned above.
The proposed network has a fixed, simple layered recurrent architecture and can
be used for arbitrary set of IF-THEN rules. The structure of the paper is the
following. In Section 2 we are giving the definition of IF-THEN deduction of a
literal L from facts F using set of IF-THEN rules R. If a literal L can be IF-
THEN deduced from F using R, we write R, F 7→ L. Obviously, if R, F 7→ L,
then L is logical consequence of R and F , i.e. R, F⊢ L must hold. Lemma 1
shows that the inverse implication does not hold. Therefore, if an expert applies
only IF-THEN rules to get consequences (more precisely, if he uses only IF-THEN
deduction defined in Section 2), he cannot, in general, get all logically deducible
facts. However, IF-THEN deduction is quick and can be carried out with quite
a simple recurrent neural network consisting of standard neurons. How such a

124

Veselý A.: Modeling deduction with recurrent neural networks

network can be created for a given set of IF-THEN rules R is described in Section
3. In Section 4 we prove that for a given set of facts F the network could quickly
compute all its literal IF-THEN consequences L. At the end of the section some
useful properties of network computation procedure are proved in Lemmas 2 and
3. Section 5 contains conclusion. Here we outline how results of Lemmas 2 and
3 might be used in the search for all literal logical consequences. If we denote
the set of all literal IF-THEN consequences as D0 and the set of all literal logical
consequences as D , then obviously D0 ⊂D . Thus, D0 can be considered to be an
approximation of D . Lemma 2 provides the possibility to use the network for a more
precise and quick approximation of D . Quick here means that the algorithm that
realizes the necessary network computations has linear complexity. The Lemma 3
presents a property of network computation that enables to use the network also
for determination of all literal logical consequences D . However, the complexity of
the resulting algorithm is exponential.

2. Deduction with IF-THEN Rules

In this paper we consider deduction of consequences from a set of IF-THEN rules
R and a set of facts F . The formulas consist of ground predicates P1, P2, . . . and
the following logical operators: ¬ (negation), ∧ (conjunction), ∨ (disjunction) and
⊃ (implication). Predicates are also called atoms. Literals are predicates or their
negations. Predicates are also called positive literals and negations of predicates
negative literals. IF-THEN rules are formulas L1∧· · · ∧ Ln ⊃ L, where L1,. . . , Ln,
L are literals. A disjunction of literals is called clause. The void clause is denoted
2. Facts are literals. If a formula φ is a logical consequence of formulas from R∪F ,
we write R, F⊢φ. An assignment of truth-values 0 (false) or 1 (true) to predicates
is called interpretation. If I is interpretation, then I (φ) denotes the truth-value of
φ in the interpretation I . An interpretation in which all formulas φ ∈Φ are valid
(have truth-value 1) is called model of Φ. A set of formulas that has a model is
called non-contradictory.

In the paper we will explore IF-THEN deduction, which is a special type of
logical deduction.

Definition 1 Assume that R∪F is a non-empty and non-contradictory set of IF-
THEN rules and facts, the elements of which contain predicates P1, . . . , Pn. A
sequence of formulas D = (A1,. . . , Ap) with the following properties 1) and 2) is
called IF-THEN deduction of a literal L from R∪F .

1) Each Ai, 1≤ i ≤ p is a fact from F or it is a result of application of a
derivation rule

Aj1, . . . , Ajn, Aj1 ∧ · · · ∧Ajn ⊃ Ai

Ai
,

where literals Aj1, . . . , Ajn precede Ai in D , and

(Aj1 ∧ · · · ∧Ajn ⊃ Ai) ∈ R.

2) Ap = L

125

Neural Network World 2/12, 123-137

If there exists IF-THEN deduction of L from R∪F, we write R, F 7→ L and
we say that L is IF-THEN consequence of R∪F .

Lemma 1 If R, F 7→ L, then R, F⊢ L. However, the statement does not hold
conversely.

Proof Obviously R, F⊢ L follows from R, F 7→ L. Converse implication does not
hold as the following example demonstrates. Assume R= {P1 ⊃ P2, ¬P2 ⊃ P1},
F = ∅. Formula P1 ⊃ P2 is equivalent to the clause ¬P1 ∨ P2 and formula
¬P2 ⊃ P1 is equivalent to the clause P1 ∨ P2 . Using resolution principle (see
for example [7]) void clause 2 can be easily derived from the set of formulas
{¬P1 ∨ P2,P1 ∨ P2, ¬P2} (see Fig. 1). Therefore, the set of formulasR∪F ∪{¬P2}
is contradictory and R, F⊢ P2 must hold. On the other hand, from the Definition 1
we see that IF-THEN deduction of P2 from R∪ F cannot exist.

Fig. 1 Derivation of the void clause 2 from ¬P1 ∨ P2 , P1 ∨ P2 and ¬P2 using
resolution principle.

3. Neural Network for Modeling Deduction

We will show that IF-THEN deduction from a set of IF-THEN rules R and a set of
facts F can be realized with a recurrent neural network. The network will consist
of neurons and receptors described below.

Neuron is a threshold element (see Fig. 2) with threshold θ ≥ 0 and the output
function µ(x), where µ(x)=1 if x ≥ν, µ(x)=1/2 if -ν ≤ x <ν and µ(x)=0 if
x < −ν. The parameter ν ≥ 0 is a non-negative real number. For input vector x,
weight vector w and threshold θ the neuron output y is

y = µ(wTx− θ).

Here the vectors x and w are column vectors and wT is the row vector obtained by
the transposition of the vector w. The expression (wTx-θ) represents postsynaptic
potential. We will also call it simply neuron input. Neuron with parameters θ and
ν we will denote Nθ,ν .

Receptors are so called “degenerative” neurons used for introducing network in-
put. Receptor output value equals its input value.

126

Veselý A.: Modeling deduction with recurrent neural networks

Fig. 2 Neuron Nθ,ν with threshold θ, output function µ(x) and weight vector w.

The structure of recurrent neural network constructed for a set of rules
Assume a non-void set of rulesR = {R1, . . . , Rq} consisting of predicates P1, . . . , Pn.
Assume there are m predicates that occur only in the rule antecedents. These
predicates are called a-predicates. The rest of n −m predicates occurring in rule
consequents are called c-predicates. For rule set R we construct a layered recurrent
neural network NR with two hidden layers as follows.

1. The input layer consists of n receptors. One different predicate from P1, . . . , Pn

is assigned to each receptor.

2. The first hidden layer consists of q neurons of the type Nθ,0 called C-neurons.
A different rule R ∈R is assigned to each C-neuron. Assume that a rule
R = L1 ∧ · · · ∧ Lr ⊃ L is assigned to neuron C. Then C has n inputs, one
input for each Li, i=1,. . . , r. If Li = Pi, then C is connected to receptor
Pi with weight wi =1. If Li = ¬Pi then C is connected to receptor Pi with
weight wi = -1. The threshold of C is set to θ = (p−1/4), where p is the
number of positive literals in the antecedent of the rule R.

3. As there are (n −m)c-predicates, the second hidden layer consists of n −m
neurons called S-neurons. All the neurons in this layer are of the type N0,1/2.
A different c-predicate is assigned to each S-neuron. Assume that the c-
predicate P is assigned to the neuron S. Then the neuron S is connected
with all those C-neurons that have in the consequents assigned to them rules
R literals P or ¬P . The weight between neuron S and C-neuron is 1 if to
the C-neuron a rule with consequent P is assigned and the weight is -1 if to
the C-neuron a rule with consequent ¬P is assigned.

4. The output layer consists of n −m neurons called T -neurons, which have 2
inputs and are of the type N1,1/4. A different c-predicate is assigned to each
T -neuron. Assume that the c-predicate P is assigned to the T -neuron T .
Then the one input of T is connected to S-neuron in the second hidden layer
with the same assigned predicate P . The second input of T is connected
to the receptor with the same assigned predicate P . Both T -neuron input
weights are set to 1.

127

Neural Network World 2/12, 123-137

5. The network output is fed back into the network input. If a predicate P is
assigned to the output neuron, then output of this neuron is fed back into
receptor with the same assigned predicate P . The topology of the network is
obvious from Fig. 3.

Network computation (relaxation) States of the network change at discrete
time points t0, t1, t2,. . . in the following way:

1. At time t0 the initial values 0, 1/2 or 1 are put on the network input.

2. At time tn the input values are transferred through network layers to the
output layer. If, during the transfer, at least one from the following conditions
E1 or E2 occurs, the computation stops indicating error.

E1. There exists a S-neuron with input value 1 on its positive input as well
as on its negative input. Here positive (negative) input is input with positive
(negative) weight.

E2. There exists a T -neuron with input values 0 and 1.

3. If no error has occurred, the network output values are fed back into the
network input. If no receptor has changed its value, the network computation
stops and the result of the network computation is on the network input layer.
If at least one receptor has changed its value, then n is increased to n+1 and
the computation continues.

4. Computing Consequences

Theorem 1 Assume a non-void set of rules R consisting of predicates P1, . . . , Pn

and a set of facts F . Assume that the set R∪F is non-contradictory. Let NR be
a neural network constructed to R as it has been described above. Let us put the
following initial values on the network input. For all i we put

xi=1 if Pi ∈F ,
xi=0 if ¬Pi ∈F ,
xi=1/2 otherwise.

Then relaxation of the network will finish without error after less than p steps,
where p is the number of inputs with initial value 1/2. After relaxation the following
will hold:

1. xi=1 if and only if R, F 7→ Pi,

2. xi=0 if and only if R, F 7→ ¬Pi.

Thus the network NR computes all literal IF-THEN consequences of R∪F .

Proof Assume that on the receptors P1, . . . , Pn are values 0, 1/2 or 1. The values
0 and 1 are interpreted as predicate truth-values false and true respectively.

For each predicate with truth-value 1 we create literal Li = Pi and for each
literal with truth-value 0 we create literal Li = ¬Pi. The set of all thus created

128

Veselý A.: Modeling deduction with recurrent neural networks

Fig. 3 Recurrent neural network NR constructed for a set of IF-THEN rules R.

literals we denote G and we call it input description. Suppose that the set of
formulas R∪G is non-contradictory and that the network has carried out one
relaxation step. We will prove the following assertions:

A1. Relaxation step will not stop on error.

A2. Only receptors with value 1/2 can change its input.

A3. Receptor P changes its value from 1/2 to 1 if and only if P can be deduced
from R∪G using some rule R ∈R.

A4. Receptor P changes its value from 1/2 to 0 if and only if ¬P can be deduced
from R∪G using some rule R ∈R.

A5. Let G’ denotes the input description after the relaxation step. Then the set
of formulas R∪G’ is non-contradictory.

Assume that a rule R ∈R, R= L1 ∧ · · · ∧ Lr ⊃ L is assigned to a neuron C in
the first hidden layer. If Li = Pi, i ∈{1, . . . , r}, then the weight between receptor
Pi and neuron C is 1. If Li = ¬Pi, i ∈{1,. . . , r}, then the weight between receptor
Pi and neuron C is -1. The scalar product wTx is maximal if all positive inputs
into C (inputs with positive weights) are equal to 1 and all negative inputs into C

129

Neural Network World 2/12, 123-137

(inputs with negative weights) are equal to 0. In this case, wTx = p, where p is
the number of positive literals in the antecedent of the rule R. Hence the C-neuron
postsynaptic potential is

(wTx− θ) = (p− (p− 1

4
)) =

1

4
.

Recall that as the type of C-neuron is Nθ,0 we are getting on its output y =
µ(wTx − θ) = 1. If at least one input value were 0 instead of being 1 or if it
were 1 instead of being 0, then (wTx − θ) would be less or equal to -3/4 and the
output of C-neuron would be 0. Similarly, if at least one input value were 1/2,
then (wTx− θ) would be less or equal to −1/4 and the output of C-neuron would
be 0. Therefore, the output of the neuron C is 1 only if the antecedent of the rule
assigned to the C-neuron has truth-value 1.

Assume that S-neuron in the second hidden layer with assigned predicate P
is connected to C-neurons C1, . . . , Cs of the first hidden layer. Then consequents
of rules assigned to C1, . . . , Cs are P or ¬P . The input coming from Ci, i= 1,
. . . , s has weight 1 if the consequent of the rule R assigned to Ci is P and it has
weight −1 if the consequent of the rule R assigned to Ci is ¬P . If S-neuron had
input value 1 on its positive input as well as on its negative input, then it would
be possible to deduce both P and ¬P from R∪G. However, it is not possible as
the set R∪G is non-contradictory. Therefore, error E1 cannot occur and only the
following three alternatives can come into being. (Recall that S-neurons can have
only values 0 or 1 on their inputs and that S-neurons are of the type N0,1/2.)

a) At least one positive input into S has value 1. In this case, all negative inputs
must have value 0. Hence, (wTx− θ) ≥ 1 and the output of S is 1.

b) At least one negative input into S has value 1. In this case, all positive inputs
must have value 0. Hence, (wTx− θ) ≤ -1 and the output of S is 0.

c) All inputs into S are 0. In this case, (wTx− θ) = 0 and the output of S is
1/2.

Assume that c-predicate P is assigned to T -neuron of the output layer. Then
the T -neuron, which is of the type N1,1/4, is connected with receptor and S-neuron
of the second hidden layer with the same assigned c-predicate P . The state just
before the output of the network is fed back into network input can be described
with one of the following five alternatives.

1. The output of receptor P is 1. If output of S-neuron were 0, then at least
one negative input into this S-neuron would have value 1. Hence ¬P could
be deduced from R∪G, which is not possible. Hence, the output of S-neuron
must be at least 1/2 and for postsynaptic potential of T -neuron we get

(wTx− θ) ≥(1+1/2-1)=1/2

and the output of T neuron is 1. Thus, the receptor P will not change its
value in the next computation step.

130

Veselý A.: Modeling deduction with recurrent neural networks

2. The output of receptor P is 0. If output of S-neuron were 1, then at least
one positive input into this S-neuron would have value 1. Hence, P could be
deduced from R∪G, which is not possible. Hence, the output of S-neuron
must be at most 1/2 and for postsynaptic potential of T -neuron we get

(wTx− θ) ≤(1/2-1)= -1/2

and the output of T neuron is 0. Thus, the receptor P will not change its
value in the next computation step.

3. The output of receptor P is 1/2 and the output of S-neuron is 1 (i.e. the
validity of P can be deduced using rule assigned to the S-neuron). Then the
postsynaptic potential of T -neuron is

(wTx− θ)=(1/2+1-1)= +1/2

and the output of T neuron is 1. In the next computation step the value of
P will be 1.

4. The output of receptor P is 1/2 and the output of S-neuron is 0 (i.e. the
validity of ¬P can be deduced using rule assigned to the S-neuron). Then
the postsynaptic potential of T -neuron is

(wTx− θ)=(1/2-1)= -1/2

and the output of T neuron is 0. In the next computation step the value of
P will be 0.

5. The output of receptor P is 1/2 and the output of S-neuron is 1/2. Then the
postsynaptic potential of T -neuron is

(wTx− θ)=(1/2+1/2-1)= 0

and the output of T neuron is 1/2. In the next computation step the value
of P will not change.

We have already shown that error E1 cannot occur. From 1 and 2 it follows
that neither error E2 can occur. Therefore, assertion A1 is true.

Assertions A2-A5 follow immediately from 1-5.
From the above analysis we see that if the computation of the network starts

from the input description F and if the set R∪F is non-contradictory, then it
cannot stop on error (see A1, A5) and it must finish after less than p steps (see
A2).

Let us define descriptionC of network computation fromR∪F .C is a sequence
of literals defined recursively:

a) If there are m facts in F , the first m members of C are those facts.

b) Assume that in the n-th computation step r receptors Pi change their values
from 1/2 to 1 and s receptors P ′

i change their values from 1/2 to 0. Then we
add to the current sequence C r + s new members Pi and ¬P ′

i .

Obviously, the sequence C is finite and due to A3 and A4 if L ∈C , then the
subsequence C1,. . . ,Cp = L is IF-THEN deduction of L from R∪F .

131

Neural Network World 2/12, 123-137

Assume that after computation the input xi of receptor Pi equals to 1. Then
Pi ∈C and, therefore, R, F 7→ Pi holds. Similarly, if xi=0, then ¬Pi ∈C and
therefore R, F 7→ ¬Pi holds.

On the other hand let D1, . . . , Dp = L be an IF-THEN deduction of L from
R∪F . Then all Di including Dp = L must be members of description C . According
to b) if L = Pi then xi=1 must hold and if L = ¬Pi then xi =0 must hold. This
completes the proof.

Example 1 Assume a set of rules R ={R1, R2, R3, R4}, where

R1= (¬P1 ∧ P2) ⊃ P4,

R2= (¬P2 ∧ P3) ⊃ ¬P4,

R3= (¬P1 ∧ P4) ⊃ ¬P3,

R4= (¬P1 ∧ ¬P3) ⊃ P5.

Let us construct network NR for the set of rules R. The rules of R consist of
5 predicates P1, P2, P3, P4, P5, from which P1, P2 are a-predicates and P3, P4,
P5 are c-predicates. Therefore, the input layer will have 5 receptors with assigned
predicates P1, P2, P3, P4, P5. The first hidden layer will have 4 C-neurons with
assigned rules R1, R2, R3, R4. The second hidden layer will have 3 S-neurons with
assigned c-predicates P3, P4, P5. The output layer will have 3 T -neurons with the
same assigned c-predicates P3, P4, P5. The configuration of the network is given
in Fig. 4.

Network computation for the set of facts F={¬P1, P2} is given in Tab. I.
From this table we can see that the set of all IF-THEN consequences of R∪F is
{¬P1, P2, ¬P3, P4, P5}. For all of them there exists an IF-THEN deduction from
R∪F . For example the sequence of formulas D = (¬P1, P2, P4, ¬P3) is IF-THEN
deduction of ¬P3 from R∪F .

The sequence of computation steps of the network if another set of facts
F={¬P1, P4} is used can be found in Tab. II. The set of all IF-THEN conse-
quences from R ∪ F is {¬P1, ¬P3, P4, P5}. Since interpretations {¬P1, P2, ¬P3,
P4, P5} and {¬P1, ¬P2, ¬P3, P4, P5} are both models of R∪F , neither R, F⊢ P2

nor R, F⊢ ¬P2 hold.

Lemma 2 Assume that a set of literals {L1, . . . , Lr} is added to F . If the network
computation stops on error, then R, F⊢ ¬(L1 ∧ · · · ∧ Lr) holds.

Proof If the network computation stops on error, then the setR∪F∪ {L1 , . . . , Lr}
must be contradictory according to Theorem 1. As the set R∪F is not con-
tradictory, it has at least one model. However, in no model of R∪F the for-
mula (L1 ∧ · · · ∧ Lr) can be valid. Therefore, in all models of R∪F formula
¬(L1 ∧ · · · ∧Lr) must be valid and, consequently, R, F⊢ ¬ (L1 ∧ · · · ∧Ln) holds.

Example 2 Assume a set of rules R ={R1,R2,R3}, where

R1= (P1 ∧ ¬P4) ⊃ P2,

R2= (¬P2 ∧ ¬P3) ⊃ P1,

R3= (¬P4 ∧ P5) ⊃ ¬P3.

Let us construct network NR for the set of rules R. The rules consist of 5
predicates P1, P2, P3, P4, P5, from which P4, P5 are a-predicates and P1, P2, P3

132

Veselý A.: Modeling deduction with recurrent neural networks

Fig. 4 Recurrent network constructed for a rule set of Example 1.

n x1 x2 x3 x4 x5

0 0 1 1/2 1/2 1/2
1 0 1 1/2 1 1/2
2 0 1 0 1 1/2
3 0 1 0 1 1
4 0 1 0 1 1

Tab. I Example 1: Network computation from the set of facts F={¬P1, P2}.

n x1 x2 x3 x4 x5

0 0 1/2 1/2 1 1/2
1 0 1/2 0 1 1/2
2 0 1/2 0 1 1
3 0 1/2 0 1 1

Tab. II Example 1: Network computation from the set of facts F={¬P1, P4}.

133

Neural Network World 2/12, 123-137

are c-predicates. Therefore, the input layer will have 5 receptors with assigned
predicates P1, P2, P3, P4, P5. The first hidden layer will have 3 C-neurons with
assigned rules R1,R2,R3. The second hidden layer will have 3 S-neurons with
assigned c-predicates P1, P2, P3. The output layer will have 3 T -neurons with the
same assigned c-predicates P1, P2, P3. The configuration of the network is given
in Fig. 5.

Network computation for the set of facts F={¬P4, P5} is given in Tab. III.
From this table we can see that the set of all IF-THEN consequences of R∪F is
{¬P3, ¬P4, P5}.

Fig. 5 Recurrent network constructed for a rule set of Example 2.

According to Lemma 1 literals ¬P3, ¬P4, P5 are also logical consequences of
R∪F . Using Lemma 2, we may try to find some further literal logical consequences
of R∪F . Let us enlarge set of facts by adding the literal ¬P2 and repeat computa-
tion of the network. The result is given in Tab. IV. The computation has stopped
at the third step with error E2. Hence, according to Lemma 2 literal P2 is logical
consequence of R∪F . It is easy to see that both interpretations (P1, P2, ¬P3, ¬P4,
P5), (¬P1, P2, ¬P3, ¬P4, P5) are models of R∪F . Hence, neither P1 nor ¬P1 may
be logical consequences of R∪F .

Lemma 3 Assume that an interpretation of predicates I is on the input of the
network NR.

1. If I is a model of R, then network computation stops after the first iteration
step without generating error.

2. If I is not a model of R, then the network computation stops during the first
iteration step with error.

134

Veselý A.: Modeling deduction with recurrent neural networks

n x1 x2 x3 x4 x5

0 1/2 1/2 1/2 0 1
1 1/2 1/2 0 0 1
2 1/2 1/2 0 0 1

Tab. III Example 2: Network computation from the set of facts F={¬P4, P5}.

n x1 x2 x3 x4 x5

0 1/2 0 1/2 0 1
1 1/2 0 0 0 1
2 1 0 0 0 1
3 E2

Tab. IV Example 2: Network computation for the set of facts F={¬P2, ¬P4, P5}.

Proof

1. If interpretation I is a model of R, then according to the Theorem 1 the
network computation must finish without error. During the first iteration
step no receptor will change its value, because only receptors with value 1/2
can change their values (see property A2 in the proof of Theorem 1). Hence,
the computation stops after the first step.

2. If I is not a model of R, then at least one rule R ∈R must be invalid in I . The
consequent of this R may be either P or ¬P . Assume that the consequent is
P . Then initial output value of the receptor with assigned predicate P must
be 0. As antecedent of R must be valid in I , the output of C-neuron with
assigned rule R is 1. Assume that the C-neuron is connected with S-neuron
S. The weight of this connection is 1. If some negative input of S had also
value 1, then error E1 would occur. If no such negative input exists, then
the output of S must be 1. The output of S is connected to the T -neuron T
with assigned predicate P . The second input of T must come from receptor
P . Therefore, on the input of T must be values 0 and 1. Consequently, the
error E2 must occur. For the case that the consequent of R is ¬P the proof
can be completed similarly. Thus, if interpretation I is not model of R, then
during the first iteration step network computation stops with error.

5. Conclusion

Let D0 = {L: R, F 7→ L} be the set of all literal IF-THEN consequences from
R∪F and let D = {L: R, F⊢ L} be a set of all literal logical consequences from
R∪F . We have shown (see Lemma 1 and Theorem 1) that

1. F ⊂ D0 ⊂ D .

2. Network NR can be used for determination of all literals from D0.

135

Neural Network World 2/12, 123-137

Thus, the set D0 may be considered to be an approximation of D . Moreover,
the approximation D0 may be easily refined using Lemma 2. We may proceed as
follows. We enlarge the set of facts by adding a particular literal Li to the set
of facts. If during the following computation an error arises, then ¬Li is logical
consequence of R∪F .

For example, assume that after computation of D0, the value of predicate P1

was 1/2. Assume that we enlarged the set of facts F’ = F ∪{¬P1} and that the
computation finished with error. Then according to Lemma 2, P1 must be in D .
Therefore, the initial approximation D0 of D may be refined by adding literal P1.

The open question is if NR can be used for determination of all literals from
D . The answer is positive. However, the procedure might be very time-consuming.
The procedure may proceed as follows. At first, the network carries out the com-
putation to determine all literals belonging to D0. Then for those predicates that
are assigned to receptors with value 1/2, all the possible combinations of 0 and 1
are subsequently generated. Generated combinations are subsequently put on the
network input and the network carries out the computation. As only values 0 and
1 are on receptors, the network input constitutes an interpretation of predicates I .
According to Lemma 3 the network carries out only one iteration step. If, during
the iteration step, an error is generated, the interpretation I is not model of R
and it need not to be considered. If no error is generated, then I is a model of R.
After all combinations are generated and computed, we can assert the following:

1. P ∈D holds, if input x of the receptor P has been equal to 1 in all models
of R.

2. ¬P ∈D holds, if input x of the receptor P has been equal to 0 in all models
of R.

3. Neither P ∈D nor ¬P ∈D hold, if input x of the receptor P has been equal
to 1 in some models of R and it has been equal to 0 in some others.

We have explored the IF-THEN deduction from facts, which is commonly used
in everyday life or in expert reasoning. We have proved that the IF-THEN deduc-
tion could be easily realized with a simple layered recurrent neural network with
two hidden layers and three level threshold neurons. If, at the beginning, truth-
values of p-predicates are unknown, then the network will determine the set of all
literal IF-THEN consequencesD0 after p iteration steps at maximum (see Theorem
1). By means of Lemma 2 we may simulate proof of contradiction and we can get
further literal logical consequences. If, after determination of D0, the truth-values
of q-predicates remain unknown, we need at maximum 2q(q-1) iteration steps for
systematic application of proof of contradiction (recall that for each predicate with
unknown truth-value we must postulate at first P and then ¬P). It is also possible
to get all the logical consequences. If, after application of proof of contradiction,
r-predicates remain unknown, then we need 2r further iteration steps. Hence, for
determination of all literal logical consequences p+2q(q−1)+2r iteration steps are
needed at maximum, which can be quite time-consuming for large r.

136

Veselý A.: Modeling deduction with recurrent neural networks

References

[1] Anderson J. R., Lebiere C.: Atomic components of thought, Hillsdale, 1998.

[2] Kurfess F.: Neural Networks and Structured Knowledge: Knowledge representation and
reasoning, Applied Intelligence, 11, 1999, pp. 5-13.

[3] Towell G. G., Shavlik J. W.: Knowledge-based artificial neural networks, Artificial Intelli-
gence, 70, 1994, pp. 119-165.

[4] Hitzler P., Holldobler S., Seda A. K.: Logic programs and connections networks, Journal of
Applied Logic, 2, 2004, pp. 245-272.

[5] Holldobler S., Kalinke Y., Storr H. P.: Approximating the semantics of logic programs by
recurrent neural networks, Applied Intelligence, 11, 1999, pp. 45-58.

[6] Stenning K., Van Lambalgen M.: Human reasoning and cognitive science, MIT Press, 2008.

[7] Mendelson E.: Introduction to mathematical logic, CRC Press, 2001.

137

