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Abstract: This paper discusses features of multilayered evolutionary system suit-
able to identify various systems including their model symbolic regression. Im-
proved sensitivity allows modeling of difficult systems as deterministic chaos ones.
The presented paper starts with a brief introduction to previous works and ideas
which allowed to build the presented two abstraction levels system. Then the
structure of Genetic Programming Algorithm – Evolutionary Strategy hybrid sys-
tem is described and analyzed, including such problems as suitability to parallel
implementation, optimal set of building blocks, or initial population generating
rules. GPA-ES system combines GPA to model development with ES used for
model parameter estimation and optimization. Such a hybrid system eliminates
many weaknesses of standard GPA. The paper concludes with examples of GPA-
ES application to Lorenz and Rösler systems regression and suggests application
to Neural Network Model design.
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1. Introduction

This paper presents a multilayered evolutionary system combining Genetic Pro-
gramming Algorithm (GPA) and Evolutionary Strategy (ES) designed to symbolic
regression of model with reduced risk of so-called blowing (production of over-
complicated solutions), see [1]. The presented work continues in effort to increase
structural sensitivity of GPAs; it means it attempts to produce solutions which are
not overcomplicated, which are close to the analytical model describing original
data, etc.

Standard GPA (see e.g. [2]–[4]) finds both the structure and its parameters (e.g.
equation and magnitudes of its constants). A seriousig problem is caused by the
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fact that a wrong structure with perfectly fitted parameters might give a better
fitness function value than a good structure with poorly estimated parameters.
As it was published in [5] and [6], it is possible to find many situations when an
imprecise structure with better parameters is evaluated as more suitable than a
structure with better evolution potential, or even a perfect structure with wrong
parameters. For example, the following list of pairs (x, f(x)) (1)

((0, 0), (0.5, 0.2125), (1, 0.85), (1.5, 1.9125)) (1)

is described by (2) and symbolic regression by GPA gives the best solutions (3)
and (4).

y = 0.85x2 (2)

y = 1.25x2 (3)

y = 1.25x (4)

Even though (3) gives worse fitness function value 0.98, it has a proper structure.
Equation (4) gives a smaller sum of error squares equal to 0.34, but since it is a
linear function, it is harder to transform it into a proper form, see Fig. 1.

Fig. 1 Masking of structure by wrongly estimated parameters.

Since we need to measure structural potential of each solution precisely, the
influence of random perturbation of parameters must be eliminated. GPA uses a
single fitness function but it evolves both structures and their parameters. Such
a situation does not allow separating of perfect structures reliably. In this pa-
per, GPA-ES hybrid system uses GPA to develop structures, but ES (or Genetic
Algorithm) system is applied in each cycle for each individual to optimize param-
eters, especially constants, in algebraic relations. GPA develops only structural
operators; it does not care about constant terminals. The application of specific
evolutionary system for parameters decreases error of their determination, but it
increases computational complexity of the algorithm, as will be discussed later.

In the previous works, many attempts to increase ability of GPA to solve dif-
ficult problems were made. Article [7] studied possibility to evolve a qualitative
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model by GPA and then to improve it by GA into standard differential equations.
This way is difficult due to the inherited ambiguity in the qualitative model and its
transformation. There are also problems with measurement of distance of qualita-
tive behaviours, because the space of qualitative behaviours is ordered, but without
scale. Also improving a qualitative model is a special case of hierarchical evolution-
ary system building hierarchy of models on different abstraction levels by related
hierarchy of evolutionary algorithms, as it was published in [8], [9].

2. Hybrid GPA-ES System

The structure of hybrid GPA-ES system is outlined in Fig. 2. Fig. 3 then illustrates
the relationship between individuals in GPA population and vector of ES popula-
tions (one population for each GPA individual) in the GPA-ES system. While Fig.
2 outlines control flow of hybrid algorithm, Fig. 3 shows the fundamental data
structure of this system.

The left part of Fig. 2 describes a master GPA algorithm, which is implemented
in standard Koza’s style. It means that genes are represented as tree-like structures
and crossover and mutation evolutionary operators are used. The selection of
proper genes for crossover operations is replaced by sorting the whole population
on the base of fitness magnitudes. When the execution of this algorithm enters
into state of individual evaluation, the slave Evolutionary Strategy described in
the right part of the figure is called for each GPA individual. At the end of ES
execution, fitness of the best individual is reasoned as fitness of the GPA individual.

The first line of boxes in Fig. 3 represents individuals of GPA algorithm. The
particular box in the second line corresponds to each individual. These boxes
represent population of ES used for parameters optimization. Individuals of this
ES population are represented as rows in the related boxes.

The GPA-ES structure is applicable in many modifications. Especially, Evo-
lutionary Strategy might be replaced by other suitable algorithms, like Genetic
Algorithms, Self Organizing Migrating Algorithm (SOMA) [10] algorithms, Sim-
ulated Annealing [11] or many others suitable to efficiently optimize parameters
of structures discovered by the master GPA. These systems are a special case of
multilayered evolutionary system working with multiple abreaction levels, see [8]
and [9]. GPA-ES uses structural and parameter levels, but it is possible to extend
it e.g. by component one. The above mentioned work [5], in contrary, uses two
abstraction levels in the form of qualitative and differential model.

3. Parallel Implementation of GPA-ES

From the practical point of view, it is useful to parallelize rather the outer (GPA)
loop than the inner ES loop of the presented GPA-ES algorithm. Parallelization of
inner loop is efficient only in case of regressed data set, and the regression functions
found are extremely complex; thus the evaluation of ES takes much computational
time. This is the reason why only parallelization of the GPA loop will be discussed.

From many parallelization schemas, OpenMP library has been chosen, espe-
cially due to its efficiency on single processor machines with multicore processors
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Fig. 2 Structure of hybrid GPA-ES system.

Fig. 3 Relationship between GPA population individuals and vector of ES
populations.

or common Symmetric MultiProcessor machines (SMP). Then, the implementation
is reduced to parallelization of evaluation loop in GPA, which reduces to a single
directive and includes the OpenMP library header file, because OpenMP implicitly
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supports C and Fortran languages, but only C/C++ is applicable in GPA imple-
mentation. It is also possible to use e.g. Microsoft PPL library which is much
simpler than OpenMP because only cycle parallelization is supported. Even spe-
cial languages like Chapel or X10 developed within High Performance Computing
Initiative can be used; however, the efficiency of these languages on small machines
is not great and many features of these languages remain unused, see [12]–[14].
Chapel [12], only a few years old, and until now intensively developed parallel pro-
gramming language being developed by Cray Inc. as a part of the DARPA-led High
Productivity Computing Systems program (HPCS). Within HPCS program, two
programming languages are being developed. The second one is IBM X10 [13]. In
computer cluster built at the Department of Informatics and Telecommunication,
Faculty of Transportation Sciences, CTU in Prague, Chapel compiler brings less
compatibility problems than X10 environment, therefore it is used for multilay-
ered evolutionary system development. Both languages support a multithreaded
execution model via high-level abstractions for data parallelism, task parallelism,
concurrency, and nested parallelism. Chapel is based on GNU compiler set, X10
is JAVA oriented. Both languages are designed to hide fragmented memory space
(Non Uniform Memory Access) from the user and to increase programming effi-
ciency.

The following four principles guided the design of Chapel language:

1. General parallel programming

2. Locality-aware programming

3. Object-oriented programming

4. Generic programming

The first two principles were motivated by desire to support general, performance-
oriented parallel programming through high-level abstractions. The second two
principles were motivated by desire to shorten the distance between high-perfor-
mance parallel programming languages and mainstream programming.

When the evaluation loop of GPA is parallelized, each ES population of param-
eters is optimized in parallel with others. Thus, for each individual of the GPA
population, a special copy of the ES is created and executed. Because no commu-
nication between them is required, the execution runs extremely efficiently without
necessity of any synchronization.

Computational complexity of GPA-ES is expressed as (5),

O (GPAES) ∼= pqnm logm+ pqn log n, (5)

where
n is the number of GPA individuals
m is the number of ES individuals
l is the complexity of structures created by GPA
k is the average number of constants in GPA genes, where
p is the number of GPA populations
q is the number of ES populations
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This complexity estimation of GPA-ES system described by Fig. 2 presumes
that computational complexities of building blocks are following:

GPA population initialization complexity is given by (6)

O (GPAinit) = n2l (6)

GPA population evaluation complexity

O (GPAevaluation) = n2l (7)

Ending complexity

O (GPAend) = 1 (8)

Evolutionary operators with population ordering

O (GPAeval) = n log n+ n ∗ 2l + kn+ n (9)

ES population initialization

O (ESinit) = m ∗ 2l (10)

ES population evaluation

O (ESeval) = mk (11)

ES termination condition

O (ESterm) = 1 (12)

Population ordering and intelligent crossover

O (ESsort) = m logm+mk (13)

In case of hardware threads and parallelization of evaluation cycle of GPA only,
relationship 5 changes to (14):

O (GPAES) ∼= pq
n

t
m logm+ pqn log n. (14)

Parallel implementation in the Chapel language requires application of Object Ori-
ented Programming. Inner ES algorithm is implemented as class CES with meth-
ods described in Tab. I. CES object also contains constants and variables used for
representation of genes, their fitness measures and data list used for fitness function
evaluation.

The GPA-ES evolutionary system uses parallelization of outer GPA loop call-
ing multiple CES objects in parallel. CES objects are implemented as scalar to
increase efficiency of implementation.

The main GPA class named CGPAES contains analogical methods outlined
in Tab. II.
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Method Description
CES
(constructor)

Initializes ES internal data, especially randomly generates the
first population.

Evalinit Evaluates the initial population stored in the Genes array. Due
to the application of consolidation, populations created in the
following step are stored in Newgenes; a parallel data structure
and evaluated by Evalnew. After Evalnew, Consol is applied; it
they are better than parents, they replace them.

Sort Sorts genes stored in the Genes array on the base of magnitudes
in the fitness array.

Ending This function implements condition of computation termination.
The CES class implements a simple condition based on the maxi-
mal number of iterations and predefined acceptable error. These
two conditions are in “OR” relationship.

Newpop Computes new genes (new population) by intelligent crossover.
Evalnew Evaluates fitness measure of each member of the new population.
Consol Compares new and parents individuals, and if new ones are bet-

ter, it replaces the older ones (parents) by them.

Tab. I Methods of CES class implementing class of evolutionary strategy used for
parameters (constants) optimization.

4. Optimal Population Sizes

Efficiency of the algorithm depends on sizes of populations. These dimensions
influence computational complexity (5) or (14), as it is discussed in the previous
chapter, but it also influences an average error of slave ES and consequently an
error of the whole GPA-ES. Unfortunately, while the computational time of single
GPA-ES cycle increases with sizes of populations, the average error decreases, and
thus the number of GPA-ES system cycles decreases too. Because the average
number of constants k in the developed structures plays the significant role in (5)
and (14), the number of ES individuals in ES population depends on expected
complexity of resulting structure created by master GPA. Some examples of these
magnitudes will be discussed in the GPA-ES application chapter.

5. Suitable Set of Building Blocks

The GPA-ES system is influenced also by many other parameters, especially by the
predefined set of building blocks like operators and functions in case of symbolic
regression of data set. It is well known that the use of simply interchangeable
functions as e.g. sin and cos strongly decreases efficiency of GPA algorithm and it
is better to use one of them. On the contrary, a more serious problem occurs when
a suitable function or operator is missing. Initial structures in population influence
efficiency of evolutionary process too.
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Terminals also play a significant role from the efficiency point of view. In case
of linear systems, generating terminals in the form (15) is better than generating
constants and variables randomly connected by any operator or function. However,
even in case of non-linear systems, the structure of initial population influences
efficiency, as it will be discussed in the following chapter.

const1 ∗ var + const2 (15)

Systems might be described as functions of time or previous states. Problems
occur when building a block set of GPA allows both descriptions. In such a case,
there is risk that the crossover operation will try to combine individual using one
description with the opposite one. That situation tends to decrease GPA efficiency
due to poor results of such an operation, which will be rejected frequently.

Method Description
CGPAES
(constructor)

Initializes GPA internal data, especially randomly generates the
first population and initializes vector of CES objects.

Evalinit Evaluates the initial population. It calls evaluation of ES objects
individuals representing parameters for each individual of GPA
population, and the fitness of the best of them serves as fitness
measure of the structure represented by related GPA gene.

Sort Sorts genes stored in the Genes array on the base of magnitudes
in the fitness array. GPA individuals are represented in tree-like
structures in Koza’s style.

Ending This function implements condition of computation termination.
Also a possible number of GPA evolutionary cycles depends on
the predefined maximal value of fitness function of the best in-
dividual and on the maximal number of cycles.

Newpop Creates new structures by crossover and mutation operations. In
the first evolutionary cycles, mutation is preferred in relation to
Koza’s suggestions. Then the probability of crossover operation
increases.

Evalnew Evaluates new population. To do so, it calls related CES object
to optimize parameters and to select the best of them. Its fitness
magnitude serves as magnitude of the structure represented by
related GPA gene.

Consolidate Compares new and parents individuals and if the new ones are
better, it replaces the older ones by them.

Tab. II CGPAES hierarchical evolutionary system main class methods.

6. GPA-ES Application

Study of chaotic systems has relation to many areas of science and especially to
system modeling, as stated in works [15] and [16]. Also, the applicability of evo-
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lutionary techniques to complex system modeling has been verified many times as
illustrated e.g. by works [17] and [18].

Symbolic regression of Lorenz attractor from the previously computed data set
is a good test bed for many techniques applicable to model chaotic system, as it is
studied e.g. in [19]. Lorenz attractor is described by a set of three equations (16),
where parameter magnitudes are chosen as (17) (there are known many combina-
tions of parameters capable to produce chaotic behavior, and chosen parameters
produces behavior outlined at Fig. 4).

x′[t] = σ(y[t]− x[t]),
y′[t] = x[t](ρ−z[t])− y[t],

z′[t] = x[t]y[t]−βz[t]
(16)

σ = 16
β = 4

ρ = 45.91
(17)

Hybrid systems as the used GPA-ES work with multiple populations of genes. Pre-
sented algorithm works with population of genes representing tree-like description
of regressed algebraic relationships. This population was evolved by GPA and it
contained 400 genes. In each step of evolution of each gene, the population of 2,000
genes representing parameters of its structure is created and optimized. Fitness
function magnitude of the best parameter set then serves as magnitude of fitness
function of evolved structure in GPA.

Fig. 4 Lorenz attractor in phase-space.

During the experiment, all three forms of terminals were tested – free form,
const*var, and const1*var+const2. Because Lorenz attractor equations are non-
linear, the free form was expected to be the best one. Results are summarized in
the following Tab. III.
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Unexpectedly, the best form of terminals from both aspects of convergence
(number of iterations) and solution quality is the form const*var. It is given by the
fact that the form const1*var+const2 is not present in equations of Lorenz attractor
(16), but the const*var form is present many times. The free form of terminals
is less efficient too. Quality of results mentioned in Tab. I is in range a) perfect
(solution obtained by evolutionary system is identical to original equation), with b)
decomposed constants (e.g. on the place of constant 5 the result contains form 2+3)
or c) with decomposed constants and variables (e.g. on the place of constant 5 there
is structure var+2+3-var). A totally different solution which is not transformable
by any algebraic transformation is the last possibility d). No totally different and
false structures have been obtained. In all experiments, the limit of preciseness
has been reached. Preciseness was expressed as a sum of difference squares on 599
samples (6 seconds of prediction). The limit of this sum was 10−8.

terminal form number of iterations quality of result
free form x: 2 y: 4 z: 3 x: perfect

y: decomposed constants
z: perfect

const*var x: 1 y: 4 z: 2 x: perfect
y: decomposed constants
z: perfect

const1*var+const2 x: 3 y: 35 z: 4 x: perfect
y: decomposed constants and vari-
ables
z: decomposed constants

Tab. III Influence of terminal form on the number of iterations and quality of
result for each Lorenz equation.

As the second system for verification of GPA-ES capabilities, Rösler attractor
has been used. Rösler attractor is described by three non-linear ordinary differ-
ential equations and thus its symbolic regression from data is comparably difficult
as Lorenz attractor symbolic regression. The following figure reprinted from [20]
presents the shape of this system.

The defining equations are:

x′[t] = −y − z
y′[t] = x+ ay
z′[t] = b+ z (x− c)

(18)

In the experiment, the system originally studied by Rösler with properties a = 0.2,
b = 0.2, and c = 5.7 was reasoned. These properties give chaotic behavior to the
system of equations (18).

Numerical solution of these equations was used to generate a table of data
and GPA-ES system was used for backward reconstruction of equation (18) by
methods of symbolic regression without any additional knowledge like parameter
magnitudes or operators occurring in (18). Numbers of three-dimensional vectors
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Fig. 5 Rösler attractor described by equation (18).

forming the data set were tested on magnitudes 995, 500, 250, 100 and 50. Results
are summarized in the following Tab. IV. The biggest problems were caused by
regression of variable Z, which, generating function, contains element X ∗Z. In that
case it was possible to observe that series shorter than approximately 100 samples
tends to identification of alternative solutions which cannot be transformed into
original form (18) by any algebraic operation.

Average dependency between data size and quality of result is outlined in the
following Fig. 6:

Fig. 6 Average dependency between data set size and quality of result. Magnitudes
have the following meaning – 1 is totally different algebraic form of solution, 2
represents decomposed constants and variables, 3 means decomposed constants and

4 is perfect form (equal to generating function).
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Variable Data size Quality of result Approximation Error
X 995 perfect 1.67179e-18

500 perfect 9.09656e-19
250 decomposed constants and

variables
3.72294e-19

100 perfect 1.88232e-19
50 decomposed constants 5.95561e-20

Y 995 perfect 1.77429e-18
500 perfect 8.38322e-19
250 decomposed constants 4.61374e-19
100 decomposed constants 3.32647e-18
50 decomposed constants 1.22095e-19

Z 995 decomposed constants 1.40079e-08
500 decomposed constants and

variables
8.73276e-10

250 decomposed constants 1.30507e-11
100 decomposed constants and

variables
3.45838e-10

50 Totally different solutions 2.09698e-07

Tab. IV Results of Rösler attractor data symbolic regression for different sizes of
regressed data set.

Capabilities of the presented evolutionary system allows its application in many
difficult problem domains as driver behavior modelling, EEG analysis with respect
to micro-sleep detection and prediction or application to development and learning
of extended Dynamic neural architecture HONNU [21] (of its activating function).
All these application domains are now intensively tested. Because of high required
computational capacity of the algorithm and constrained parallelization, it is pos-
sible to wait for quantum computer implementation, see e.g. [22], or to use su-
percomputer with symmetric multiprocessing and high number of processor cores.
Unfortunately, such way is not easy, too, for small mixing in large populations and
concluding decrease of GPA evolution efficiency.

7. Conclusion

The presented paper describes the Multi-Layered Evolutionary System suitable to
symbolic model regression. The described structure of the evolutionary system de-
creases risk of wrongly identified parameters influence. Convergence of the system
is fast and the obtained results have acceptable quality. This fact allows efficient
applying of this evolutionary system in such tasks as symbolic regression of deter-
ministic chaos system dataset. In the future, this algorithm is applicable in the area
of EEG analysis and EEG signal model symbolic regression, where it is possible
to follow works [23—25] applying EEG analysis in the area of driver micro-sleep
detection and prediction which is significant for road transport safety improvement.
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provement of methods of design and employment of transportation networks from
optimization viewpoint”.

References

[1] Langdon W. B., Poli R.: Foundations of Genetic Programming. Springer, New York, Hei-
delberg, Berlin, 1998.

[2] Koza J. R.: Genetic Programming: On the Programming Computers by Means of Natural
Selection. Boston, MA: The MIT Press, 1992.

[3] Koza J. R.: Genetic Programming II: Automatic Discovery of Reusable Programs. Boston,
MA: The MIT Press, 1994.

[4] Koza J. R., Bennett F. H. III, Andre D., Keane M. A.: Genetic Programming III: Darwinian
Invention and Problem Solving. San Francisco, CA: Morgan Kaufmann, 1999.

[5] Brandejsky T.: Genetic Programming Algorithm with Parameters Pre-optimization – Prob-
lem of Structure Quality Measuring. In: Mendel 2005, Brno, 2005, pp. 138-144. ISBN 80-
214-2961-5.

[6] Brandejsky T.: Genetic Programming Algorithm with constants pre-optimization of modified
candidates of new population. In: Mendel 2004, Brno, 2004, pp. 34-38.

[7] Brandejsky T.: Qualitative behaviors similarity measure. Neural Network World, 12, 2002,
pp. 105-112.

[8] Brandejsky T.: Structure of Qualitatively-Numerical Evolutionary Algorithm applicable in
the area of Conceptual Design, Artificial Intelligence in Design 2002 – 7th International
Conference on Artificial Intelligence in Design – Poster Abstracts, University of Cambridge,
Cambridge, UK, 2002.

[9] Brandejsky T.: The Application of Analogical Reasoning in Conceptual Design System. In:
M. H. Hamza (ed.) Artificial Intelligence and Applications. Anaheim: Acta Press, 2003, 1,
pp. 511-516. ISBN 0-88986-390-3.

[10] Zelinka I., Lampinen J.: Evolutionary Identification of Predictive Models. In: C. Fye (Ed.)
International Symposium on Engineering of Intelligent Systems, Paisley, Scotland, UK, ICSC
Academic Press International Computer Science Conventions, Canada, Switzerland, ISBN
3-906454-21-5

[11] Kirkpatrick S., Gelatt C. D., Vecchi M. P.: Optimization by Simulated Annealing. Science,
No. 220, 1983, pp. 671-680.

[12] Chapel Language Specification, (2010, April 15). [Online].
http://chapel.cray.com/spec/spec-0.795.pdf (URL).

[13] Saraswat V., Bloom B., Peshansky I., Tardieu O., Grove D.: X10 Language Specification.
(2011, May 31). [Online]. http://dist.codehaus.org/x10/documentation/languagespec/x10-
latest.pdf (URL).

[14] Brandejsky T.: Parallel implementation of evolutionary strategy in Chapel language. In:
Mendel 2011, Brno, 2011, pp. 107-111.

[15] Kahng B.: Redefining Chaos: Devaney-chaos for Piecewise Continuous Dynamical Systems,
International Journal of Mathematical Models and Methods in Applied Sciences, 3, 4, 2009,
pp. 317-326.

[16] Sahab A. R., Modabbernia M. R., Pastaki A. G.: Synchronization Chaos using OGBM with
Genetic Algorithm, International Journal of Mathematical Models and Methods in Applied
Sciences, 5, 2, 2011, pp. 102-109.

[17] Lasheen A. A., El-Garhy A. M., Saad E. M., Eid S. M.: Using hybrid genetic and Nelder-
Mead algorithm for decoupling of MIMO systems with application on two coupled distillation
columns process, International Journal of Mathematics and Computers in Simulation, 3, 3,
2009, pp. 146-157.

193



Neural Network World 2/12, 181-194

[18] D. J. and Sandhu K. S.: Excitation Control of Self Excited Induction Generator using
Genetic Algorithm and Artificial Neural Network,” International Journal of Mathematical
Models and Methods in Applied Sciences, 3, 1, 2009, pp. 68-75.

[19] Abarbanel H. D. I.: Analysis of observed chaotic data. New York, Springer Inc., 1996. ISBN
0-387-94523-7

[20] Cayuela J. S.: (2011, September) Chaos [Online], http://complex.upf.es/∼josep/Chaos.html

[21] Bukovsky I., B́ıla J.: Development of Higher Order Nonlinear Neural Units for Evaluation
of Complex Static and Dynamic Systems, Proceedings of Workshop 2004, Part A, Special
Issue, Czech Technical University, Czech Republic, Prague, March 8, 2004, pp. 372-373.

[22] Sv́ıtek M.: Conditional Combinations of quantum Systems, Neural Network World. 2011,
21, 1, 2006, pp. 67-73. ISSN 1210-0552.
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