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Abstract: This paper aims to present and discuss the concept of a subjective job
scheduler with a satisfying criterion based on a Backpropagation Neural Network
(BPNN) and a greedy task alignment procedure. The BPNN is to assign priorities
to the tasks of each job based on the given subjective criteria. The subjective
criteria and the task alignment procedure depend on the solution plan towards a
given job scheduling problem depending on the user’s need. When the scheduler
is provided with a desired job selection criteria and task alignment procedure for
the problem, it generates user satisfying solutions for a set of jobs. The satisfying
criterion of the scheduler determines the user satisfaction based on three measures:
convergence test of the BPNN, validity of the input job set and cost evaluation of
the solutions. The simulations and comparisons presented in this paper indicate
that the proposed approach is one of the most effective strategies of structuring a
subjective functional job scheduler.
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1. Introduction

Job scheduling problems fall into a class of intractable numerical problems that are
complex in nature and may not provide subjective satisfactory solutions. For in-
stance, in traditional job scheduling, each job consists of m sub jobs called subtasks
or tasks, with one machine for each task. As shown in [1] and [2], if there are n jobs
with each machine, then (n!)m solution patterns are possible. The subjective job
scheduler with a satisfying criterion based on backpropagation neural network [3]
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simplifies the solution complexities in job scheduling. In this context, the utiliza-
tion of the parallel processing ability of the BPNN and the significance of greedy
algorithm can be able to formulate a job scheduler and is suitable for generating
user satisfying solutions [4, 5]. That is, the combined algorithmic structure of the
scheduler has an ability to yield less complex satisfactory solutions especially for a
problem with n independent jobs and each job with t dependent tasks on m unit
machines.

2. Background to the Problem

Since the neural networks alone cannot be adequately used to align task sequences
on given machines in a job scheduling problem, the application of a proper job or
task alignment procedure along with the neural network is essential. Due to this
reason, a combination of a 3-layer BPNN and a greedy task alignment procedure
are used to generate results that satisfy the user for a job scheduling problem with
n independent jobs and t dependent tasks on m unit machines.

It is assumed that all the jobs in a selected problem have equal priorities and the
precedence order of tasks of each job is assigned by the scheduler depending on its
task selection criteria, called subjective criteria [6] based on the user’s requirements.
That is, the scheduler identifies the precedence order of each task of a job by finding
its priority, which is based on the applied subjective criteria for the problem. In
order to schedule the given independent jobs with their tasks on the machines, tasks
of each job in a job set (the scheduler is made in such a way that it always works
with a set of jobs) are allocated to the machines soon after they finish processing
their current task to avoid ‘idle’ machine states. Moreover, it is assumed that all
machines are operating in parallel and tasks of each job are allowed to migrate
to any available machines without violating their precedence order. At this point,
the algorithm is accurately consistent and vigilant to the integrity of the tasks
precedence order. The mentioned procedure is a part of the greedy task alignment
procedure which always determines the minimum finishing time schedule of the
problem. The advantage of this task alignment procedure is that it maximizes the
machine utilization.

The initial dataset which is generated from the user’s subjective criteria for
the initial training of the BPNN is called seen data. These seen data and the
task alignment procedure are meant to carry the details of how the task selection
process happens and how the tasks are to be aligned on machines. In this case,
the user is replaced by the scheduler permanently. That is why this scheduler
is named a subjective job scheduler. Furthermore, this job scheduler employs the
greedy algorithms which are, by their characteristics, quicker and they do not need
to consider the details of all solution alternatives of the job scheduling problem.

3. Problem Statement

In real life situations, people seek things that give them or provide optimum sense
of satisfaction; therefore, all the endeavors of man are geared to finding it at all
costs. On the other hand, the productions and service industry are working hard
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to develop goods and services that meet optimal satisfaction. In the current ap-
plications of technology, there is a need of having job schedulers that do not only
schedule jobs and tasks but also provide the much-needed satisfaction. Work pro-
cedures, such as order of priority, time, due date and others, have occupied a
substantial search space unnecessarily making it almost impossible to determine
whether the results are satisfactory or not. The subjective job scheduler with a
satisfying criterion based on BPNN being presented in this paper is designed to
generate user-satisfying solutions.

4. Description of the Problem and Structure
of the Scheduler

The proposed scheduler is meant to solve job scheduling problems such as n inde-
pendent jobs with t dependent tasks on m machines. The scheduling problem can
be described as follows: denote J= {1, . . . , j} and M= {1,. . . , m} as the job set
and the machine set, where j and m are the number of independent jobs and unit
machines, respectively. Each job is assumed to handle n tasks and the tasks are
interdependent. The scheduler always starts with a set of jobs available in a queue
called job queue. Each task of a job is represented by a set of attributes referred
to as task parameters. Let us say a task of job, J1 is t11 and it can be represented
as {a11 ∧ a12 ∧ . . . ∧ a1n}, where a11, a12,. . . , etc., are the conjunctions of the at-
tributes of task, t11. In this study, a task may have four attributes provided in
order to estimate its priority, P . Let us say tix represents a task tx of job i, and
its priority can be indicated as Pix. Similarly, Rix, Kix, Dix and Lix represent the
release-event, computation time, deadline and critical type of task, tix, respectively.
It is assumed that these four parameters of a task are known and are defined as
follows:

• R, task release-event is the estimated triggering time of the task execution
request [7].

• K, task computation time is the time to complete the execution of the task.

• D, task relative deadline is the maximum acceptable delay for its processing
[7].

• L, task critical type indicates whether the task is critically needed.

The subjective criteria for determining the priority of a task depend on the na-
ture and the definition of these four task parameters,. The task parameters can
vary with the nature of the scheduling problems and users’ preferences. Here the
scheduler detects the precedence order of each task of a job based on their prior-
ities; the priorities of the tasks depend on the subjective criteria of the scheduler
as specified by the user. At this point, the priority definition of a task is informal.
That means the priority of a task cannot be described formally and it can only be
detected through the subjective criteria of the scheduler. Task selection criteria for
generating seen data for finding task priority are described in Section 5. Though
the deadline attribute of a task is an important one for detecting a task priority,
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it is considered that jobs are soft in nature such that a deadline is never missed
to jeopardize the performance of the scheduler. Fig. 1 shows the structure of the
scheduler with a BPNN (3-layer one with a topology 4-20-1), a job queue, a priority
queue, BPNN convergence test, job validation test, cost evaluation and machine
set. The scheduler is formulated in such a way that it works with a set of jobs at
a time rather than a single job.

The selected 3-layer BPNN is trained with a backpropagation algorithm [3] with
the seen data until its Mean Squared Error (MSE) is reduced to a value less than
0.001. The BPNN with four input variables and one output variable is shown in
Fig. 2. In a typical 3-layer BPNN, the computation time will be asymptotically Θ
(ih + ho), where i, h, and o are the number of input neurons, hidden neurons and
the output neurons, respectively [3]. Again, the main function of the BPNN is to
assign priorities to the tasks based on the given subjective criteria.

Fig. 1 Structure of the scheduler.

Fig. 2 A 3-layer BPNN with input and output variables.

In order to prove the applicability of the scheduler, the applied cost evaluation
measures the feasibility of the scheduler as described in Section 9.
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5. Subjective Criteria

In order to generate a seen dataset for the initial training of the BPNN of the
scheduler, there are five numerical values with their proper linguistic terms applied
along with the parameters of each task. The four parameters of a task with their
numerical values and linguistic terms are as follows:

(i) Ri is the release-event of task i with values: [0.1 (very small), 0.3 (small),
0.5 (not small), 0.7 (long), 0.9 (very long)].

(ii) Ki is the computation time of task i with values: [0.1 (very low), 0.3 (low),
0.5 (not low), 0.7 (high), 0.9 (very high)].

(iii) Di is the deadline of task i with values: [0.1 (very near), 0.3 (near), 0.5 (not
near), 0.7 (far), 0.9 (very far)].

(iv) Li is the critical type of task i with values: [0.1 (very low), 0.3 (low), 0.5
(not low), 0.7 (high), 0.9 (very high)].

The output of the BPNN, Pi, is the priority of task i ranging from 0.01 (very
low priority) to 0.99 (very high priority).

Based on the numerical values and linguistic terms of the parameters of a task,
sample task selection criteria for generating the seen data (including both input
and output data patterns) for finding task priority are as listed below:

(a) A task with a very high / high computation time never holds a very near /
near deadline.

(b) A task with a very long / long release-event never holds a very near / near
deadline.

(c) A very high critical type task should hold a very near deadline.

(d) A very high critical type task never holds a very far deadline.

(e) A very high / high critical type task never holds a very high / high compu-
tation time.

(f) A task with a very small / small release-event, a very low / low computation
time, a very near/ near deadline and a very high / high critical type holds a
very high / high priority.

(g) A task with a not small / long / very long release event, a not near / far /
very far deadline, a not low / high / very high computation time and a very
low / low / not low critical type can achieve only a priority value which is
proportional to its critical type value.

(h) A task with a very long / long release-event, a very high / high computation
time, a very far / far deadline and a very low / low critical type holds a very
low / low priority.

199



Neural Network World 2/12, 195-213

(i) A task with a not small / long release-event, a not near / far deadline and
a not low critical type will get a priority value which is proportional to its
critical type.

(j) A task with a very small / small release-event, a very high / high computation
time, a not near deadline and a not low critical type will hold a priority value
which is proportional to its deadline.

(k) A task with a very long / long release-event, a very high / high computation
time, a very far / far deadline and a very low / low critical type has a priority
which is proportional to its critical type.

A sample seen dataset with forty inputs and their respective output data patterns
based on the above subjective criteria is shown in Appendix A.

6. Greedy Task Alignment Procedure

The flowchart of the greedy task alignment procedure described in this section is
shown in Fig. 3. The tasks of each job are sorted in descending order of their
priorities to get the tasks precedence order. A predefined task-path [8] helps to
generate possible alignment patterns of tasks on their respective machines without
violating the task precedence order. The application of the task-path reduces the
solution complexity of the scheduler by allowing tasks of a job to migrate into
various machines by carrying (?) their precedence order. Details of the task-path
are described below:

(i) Based on the array indices of the task priority queue (where tasks are stored
in their descending order of their priorities) and the size of the machines,
the alignment procedure generates all legally possible scheduling patterns of
tasks of each job on machines without violating their precedence order.

(ii) The alignment procedure stores these pre-generated task scheduling patterns
in the scheduler’s memory (in the form of array elements).

With the help of these pre-defined task patterns, the greedy alignment pro-
cedure will generate all feasible schedules for a given problem. At the end of a
scheduling process, the greedy task alignment procedure returns a best feasible
schedule (a schedule with minimum value of finishing time) from the various feasi-
ble schedules.

7. Convergence Test of the BPNN

The initial training of the BPNN depends on the size of the seen data and the
topology of the network. Once the BPNN is trained until its MSE is 0.001, it is
essential to ensure that the BPNN is free from problems such as ‘over-fitting’ and
local maxima during its initial training process. The details of the convergence test
of the BPNN are given here:
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(i) Train the BPNN with the seen dataset by proper training parameters such
as learning rate (α) and momentum term (β) until its MSE is reduced to a
value less than 0.01.

(ii) Select the input data pattern from the seen dataset after its training.

(iii) Select the output data from the seen data after its training (say, Q) similarly
to step (ii).

(iv) Input the selected data pattern (from step ii) to the BPNN and find its output
by the BPNN (say, Q′).

A similarity measure, S(Q,Q′) is the convergence test of the BPNN and can be
interpreted as follows: if S(Q,Q′) is above or equal to +0.99, then the selected
BPNN is an acceptable one and is considered as true. Otherwise, the BPNN is
considered as unacceptable (false) and, therefore, you should repeat its training
with different parameters and topologies until an acceptable net topology is seen.

Fig. 3 A flow chart of the task alignment procedure.
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A correlation coefficient statistics [9] was used to measure the similarity between
two datasets of equal size and the results showed values between -1 and +1 on the
basis of the datasets. The mathematical formulae of the correlation coefficients are
included below. Let Si,j be the normalized similarity between two sets of attribute
values Xi and Xj of datasets i and j. The analytical expression of Si,j is;

Si,j = (
n∑

k=1

(Xi,k −Xi) ∗ (Xj,k −Xj))/
n∑

k=1

(Xi,k−Xi)
2 ∗

n∑
k=1

(Xj,k−Xj)
2]1/2, (1)

where

Xi = 1/n ∗ (
n∑

k=1

Xi,k) (2)

and

Xj = 1/n ∗ (
n∑

k=1

Xj,k). (3)

Like with the BPNN convergence test procedure, there is a job validity test proce-
dure of the scheduler, as described in the following Section 8.

8. Job Validity Test

The job validity test of the scheduler provides a degree of measure of the unseen
data of the scheduler with respect to the seen data. Here unseen data are the tasks
attributes of jobs which are inputted to the scheduler in the form of numerical
values, as shown in Section 5. That is, the job validity test of the scheduler depends
on both seen and unseen data of the scheduler for a given problem. For instance,
consider each job in a problem that has a set of four tasks and each task has four
parameter values. Hence, a set of n jobs has a size of 4n x 4n (i.e., 4n rows and
4n columns) for the unseen data set. Similarly, a set of seen data with the same
size as the given unseen data is considered as an ideal dataset for measuring the
similarity of the given problem. Let the seen data be given index i and the unseen
data be given index j and Xi, Xi+1,. . . , Xi+n, are the n parameters of set i and
Xj , Xj+1,. . . , Xj+n, are the n parameters of set j (assuming that the sizes of sets
i and j are the same). Then, the validity of sets i and j, Vi,j , based on Eq. (1) can
be given as:

Vi,j = ((

n∑
k=1

(Xi,k − Yi) ∗ (Xj,k − Yj))/[

n∑
k=1

(Xi,k − Yi)
2 ∗

n∑
k=1

(Xj,k − Yj)
2]1/2, (4)

where

Xi,k = 1/n ∗ (
n∑

i=1

Xi,k), (5)

Xj,k = 1/n ∗ (
n∑

j=1

Xj,k), (6)
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Yi = 1/n ∗ (
n∑

k=1

Xi,k) (7)

and

Yj = 1/n ∗ (
n∑

k=1

Xj,k). (8)

Based on Eq. (4), the validity of the unseen input job set of the scheduler is given
the following interpretation: if (V ≥ +0.5), then it is assumed that the generated
unseen job set is based on the scheduler’s subjective criteria and is considered as
valid and true. Without lack of generality, the descriptions of the multitude of
invalid job sets are not shown here due to size limitations.

9. Cost Evaluation

The cost evaluation of the scheduler depends on its cost value, C, and is based
on its finishing time. The cost evaluation of a multi-machine job scheduler can be
expressed by the following theorem [4]:

Every feasible schedule has a finishing time which is not earlier than the time

T = (
n∑

i=1

Ki)/m, (9)

where Ki {i =1,. . . , n} is the computation time of i tasks and m is the number
of machines. It is assumed that all machines are operating in parallel and tasks
migration is allowed but task parallelism is forbidden. Each machine has an ini-
tialization time, wt i {i =1,. . . , n}, in order to prepare for a task processing. Let
Tm1 be the total computation time taken by machine m1 and it is given as:

Tm1 = wt1∗

n∑
i=1

Tm1. (10)

Similarly, Tmn is the total task computation by nth machine, mn and is given as:

Tm1 = wt,mn∗
n∑

i=1

Tmn. (11)

For simplicity, it is assumed that wti is 1. Hence, the finishing time, FT, of a
complete schedule with n machines can be estimated as:

FT = max {Tm1, Tm2, . . ., Tmn}. (12)

The best finishing time, FTmin, is the minimum value of finishing times of all
legally possible schedules of a problem and can be given as:

FTmin = min {FT 1, FT 2, . . ., FTn}, (13)
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where FT 1, FT 2, . . . ., FTn are the finishing times of n feasible schedules of a
problem. Therefore, the cost value, C, of the scheduler can be given as follows:

C = [FTmin − (

n∑
i=1

Ki)/m)]. (14)

Based on Eq. (14), the cost terms can be interpreted, as follows:

• If C is equal to 0, then it is a ‘good enough’ schedule and C is true.

• If C is greater than 0 and less than 1, then it is a ‘reasonable’ schedule and
C is true.

For both cases, it can be noticed that C is true. The reason is that the scheduler
never generates a non-reasonable or a violated schedule due to the application of
the greedy alignment procedure. Furthermore, due to the application of Eq. (14),
the cost, C, of a feasible schedule never reaches a value greater than or equal to 1.

10. Satisfying Criterion

The satisfying criterion, Sat, of the scheduler indicates a value of satisfaction of the
scheduler for a given problem. The Sat of the scheduler depends on the three binary
measures: (i) S; (ii) V ; and (iii) C, where S, V and C are the binary results of
convergence test, job validity test and cost evaluation of the scheduler, respectively.
The propositional logic representation of Sat with respect to the atomic variables
S, V and C can be expressed as:

((S ∧ V ∧ C)→ Sat). (15)

The interpretation of Eq. (15) is that if S, V and C are true, then it is possible to
say that Sat is true. Otherwise, it is not possible to claim that Sat is true.

11. Procedure of the Scheduler

The implementation of the proposed procedure includes the following distinct steps:

(i) Generate jobs and machines randomly.

(ii) Declarations: Let M be the set of m unit machines, where ∀M =0 (initialize
all machines). The selection criteria of both job and machine can be given
as n/k > M and n must be a proper divisor of k, where n is the number of
total tasks in the job queue and k is the number of tasks in a job.

(iii) Backpropagation algorithm: The backpropagation algorithm trains the BPNN
for assigning priorities to tasks of each job. Let P be a set of priorities of
n tasks and P can be denoted as {P1, P2, . . . ,Pn}. The convergence test
measures the acceptability of the BPNN.
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(iv) Tasks precedence order : Let t be the set of n tasks and be ordered according
to their priority order, {P1 ≥ P2 ≥. . . . . .≥ Pn}, where the precedence
order of the tasks can be given as {t1 → t2 → . . .→ tn}.

(v) Job set validation test : Checks whether any invalid task(s) in the input job
set and a job set with invalid task(s) will be exempted by the scheduler. Thus,
the presence of an invalid task can make the whole job set invalid.

(vi) Greedy procedure: This is a task alignment procedure which aligns priori-
tized tasks of each job to a set of unit machines without violating the task
precedence order. The alignment process returns a minimum finishing time
schedule.

(vii) Cost evaluation: The cost value evaluates a lowest finishing time schedule to
ensure either a good enough or a reasonable schedule on the basis of its cost
value.

(viii) Satisfying criterion: This criterion supports the satisfactory or fulfilling con-
ditions of the scheduler.

(ix) Go to step (i).

12. Simulation Results

The subjective scheduler is written in C++ and supportive simulations are made
to show the satisfying nature of the scheduler for several given scheduling problems
of different kinds. For the purposes of this study, two such kinds are shown: first,
a problem with three jobs (each job has four tasks and a total of twelve tasks) on
two machines. Second, a problem with six jobs (each job with four tasks and a
total of twenty four tasks) on four machines. In order to simplify the complexity of
the simulation, the task size of each job is fixed with a value of four, for example,
a job J1 can be represented as a set of four tasks, {t11, t12, t13, t14}, as discussed
in the following subsections.

12.1 Scheduling problem with three jobs (twelve tasks) on
two machines (M1 and M2)

The unseen dataset of twelve tasks of three jobs with their respective priority values
(P ) on two machines are shown in Tab. I. As per Eqs. (1) and (4), the selected
3-layer BPNN is acceptable with a similarity value of +0.9978 (i.e., S is true) and
a validity, V , of the unseen job set being true with a value of +0.65.

The precedence order of the tasks of each job is based on their priorities, as
shown below:

For job J1: t14 → t12 → t11 → t13;

For job J2: t22 → t24 → t21 → t23;

For job J3: t33 → t31 → t34 → t32.
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Job Task R K D L P
J1 t11 0.2 0.3 0.6 0.4 0.50312
J1 t12 0.5 0.2 0.5 0.6 0.62116
J1 t13 0.1 0.4 0.7 0.3 0.30189
J1 t14 0.4 0.2 0.2 0.9 0.92231
J2 t21 0.6 0.4 0.8 0.4 0.36785
J2 t22 0.2 0.4 0.2 0.9 0.93474
J2 t23 0.7 0.5 0.8 0.2 0.15355
J2 t24 0.3 0.4 0.2 0.5 0.77127
J3 t31 0.5 0.4 0.6 0.4 0.39116
J3 t32 0.8 0.2 0.7 0.3 0.22379
J3 t33 0.1 0.2 0.3 0.8 0.92432
J3 t34 0.6 0.5 0.7 0.3 0.28947

Tab. I Unseen dataset of three jobs and their respective output P, by the BPNN.

On the other hand, Tab. II shows the four most feasible schedules (a), (b), (c)
and (d) by the greedy procedure of the scheduler, where M1 and M2 are two unit
machines and the computation times, K, of the tasks are shown in brackets along
with each task. Even though all the given schedules are reasonable as per Eq. (14),
the one with minimum finishing time (FTmin is 2.1) and cost value (C is 0.05) is
selected as a satisfying one. Therefore, schedules (a), (c) and (d) are the satisfying
schedules.

12.2 Scheduling problem with six jobs (twenty four tasks)
on four machines (M1, M2, M3 and M4)

Similarly to the previously described scheduling scenario, a simulation of the sched-
uler with an unseen dataset of six jobs (twenty four tasks) on four unit machines
(M1, M2, M3 and M4) is illustrated below.

Tab. III shows an unseen dataset of twenty four tasks with their respective
priority values, P . The validity, V , of the unseen job set is true with +0.75.
Therefore, the given input job set is valid. Furthermore, the precedence orders of
the tasks of six jobs are detected on the basis of their priorities, as shown below:

For job J1: t14 → t12 → t11 → t13;
For job J2: t22 → t24 → t21 → t23;
For job J3: t33 → t31 → t34 → t32;
For job J4: t43 → t44 → t42 → t41;
For job J5: t53 → t52 → t54 → t51;
For job J6: t63 → t62 → t61 → t64.

Tab. IV shows the three most feasible schedules (schedule (a), schedule (b), and
schedule (c)) are generated by the task alignment procedure. Where M1, M2, M3,
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Schedule (a): FT a = 2.1

M1 t14
(0.2)

t33
(0.2)

t24
(0.4)

t11
(0.3)

t34
(0.5)

t23
(0.5)

M2 t22
(0.4)

t12
(0.2)

t31
(0.4)

t21
(0.4)

t13
(0.4)

t32
(0.2)

Schedule (b): FT b = 2.2

M1 t14
(0.2)

t22
(0.4)

t31
(0.4)

t11
(0.3)

t21
(0.4)

t32
(0.2)

M2 t33
(0.2)

t12
(0.2)

t24
(0.4)

t34
(0.5)

t13
(0.4)

t23
(0.5)

Schedule (c) – FT c = 2.1

M1 t33
(0.2)

t22
(0.4)

t34
(0.5)

t12
(0.2)

t21
(0.4)

t13
(0.4)

M2 t14
(0.2)

t31
(0.4)

t24
(0.4)

t32
(0.2)

t11
(0.3)

t23
(0.5)

Schedule (d) – FT d = 2.1

M1 t33
(0.2)

t14
(0.2)

t24
(0.4)

t34
(0.5)

t11
(0.3)

t23
(0.5)

M2 t22
(0.4)

t31
(0.4)

t12
(0.2)

t21
(0.4)

t32
(0.2)

t13
(0.4)

Tab. II Four feasible schedules (a, b, c and d) with their FT for the problem of
three jobs on two machines.

and M4 are four unit machines and the computation time, K of each task is shown
in brackets along with the tasks. Even though the given schedules are reasonable
as per Eq. (14), schedule (c) with minimum finishing time (FTmin is 2.9) and cost
value (C is 0.58) is selected as the satisfying schedule.

13. Comparison of the Proposed Scheduler
with Earliest Deadline First (EDF) and Least
Laxity First (LLF) Algorithms

The performance of the proposed subjective scheduler is compared with two well
known scheduling algorithms, EDF and LLF [7, 10].
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Job Task R K D L P
J1 t11 0.2 0.3 0.6 0.4 0.50312
J1 t12 0.5 0.2 0.5 0.6 0.62116
J1 t13 0.1 0.4 0.7 0.3 0.30189
J1 t14 0.4 0.2 0.2 0.9 0.92231
J2 t21 0.6 0.4 0.8 0.4 0.36785
J2 t22 0.2 0.4 0.2 0.9 0.93474
J2 t23 0.7 0.5 0.8 0.2 0.15355
J2 t24 0.3 0.4 0.2 0.5 0.77127
J3 t31 0.5 0.4 0.6 0.4 0.39116
J3 t32 0.8 0.2 0.7 0.3 0.22379
J3 t33 0.1 0.2 0.3 0.8 0.92432
J3 t34 0.6 0.5 0.7 0.3 0.28947
J4 t41 0.8 0.5 0.9 0.2 0.09292
J4 t42 0.7 0.5 0.7 0.3 0.25584
J4 t43 0.4 0.3 0.4 0.5 0.60375
J4 t44 0.6 0.2 0.5 0.4 0.48962
J5 t51 0.9 0.4 0.8 0.2 0.08051
J5 t52 0.2 0.2 0.4 0.5 0.60651
J5 t53 0.1 0.1 0.2 0.8 0.93634
J5 t54 0.4 0.2 0.6 0.4 0.48545
J6 t61 0.8 0.4 0.9 0.3 0.19689
J6 t62 0.4 0.8 0.8 0.4 0.32166
J6 t63 0.3 0.8 0.2 0.7 0.81685
J6 t64 0.9 0.8 0.9 0.1 0.02106

Tab. III Unseen dataset of six jobs (24 tasks) and their respective output, P, by
the BPNN.

13.1 Comparison of the proposed scheduler with the EDF
algorithm

The EDF scheduling algorithm considers independent jobs and jobs are ordered
in their increasing order of deadlines. The algorithm is applicable to both single-
and multi-machine problems. The optimality criterion of the EDF algorithm is to
minimize the lateness (FT of the last job – deadline of the last job), that is, a
negative lateness value can indicate an optimal schedule. In order to compare the
proposed scheduler with the EDF algorithm, a sample scheduling problem with six
jobs (J1, J2, J3, J4, J5 and J6) on two machines (M1 and M2) is considered, hence,
the six independent jobs are assumed to be equal to that of the six independent
tasks.

Like what has been described above, each job is represented by four attributes:
Ki– computation time of job i, D – deadline of job i, Ri – release-event of job
i, and Li – critical nature of job i. Tab. V shows the six jobs and their assigned
attribute values. Fig. 4 shows the possible schedule of the problem with six jobs
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Schedule (a) – FT a = 3

M1 t53
(0.1)

t63
(0.8)

t12
(0.2)

t51
(0.4)

t61
(0.4)

t32
(0.2)

M2 t33
(0.2)

t43
(0.3)

t54
(0.2)

t34
(0.5)

t21
(0.4)

t13
(0.4)

M3 t14
(0.2)

t52
(0.2)

t44
(0.2)

t62
(0.8)

t11
(0.3)

t23
(0.5)

M4 t22
(0.4)

t31
(0.4)

t24
(0.4)

t42
(0.5)

t41
(0.4)

t64
(0.9)

Schedule (b) – FT b = 3.2

M1 t14
(0.2)

t53
(0.1)

t62
(0.8)

t44
(0.2)

t13
(0.4)

t41
(0.4)

M2 t22
(0.4)

t63
(0.8)

t52
(0.2)

t61
(0.4)

t42
(0.5)

t64
(0.9)

M3 t33
(0.2)

t12
(0.2)

t21
(0.4)

t54
(0.2)

t34
(0.5)

t23
(0.5)

M4 t43
(0.3)

t24
(0.4)

t11
(0.3)

t31
(0.4)

t51
(0.4)

t32
(0.2)

Schedule (c) – FT c = 2.9

M1 t43
(0.3)

t14
(0.2)

t31
(0.4)

t41
(0.4)

t23
(0.5)

t51
(0.4)

M2 t53
(0.1)

t63
(0.8)

t12
(0.2)

t21
(0.4)

t34
(0.5)

t64
(0.9)

M3 t22
(0.4)

t44
(0.2)

t62
(0.8)

t52
(0.2)

t61
(0.4)

t13
(0.4)

M4 t33
(0.2)

t24
(0.4)

t42
(0.5)

t11
(0.3)

t54
(0.2)

t32
(0.2)

Tab. IV Three feasible schedules (a, b, and c) for the problem with six jobs on
four machines.

on two machines (M1 and M2) by the EDF algorithm. It is noticed that the EDF
algorithm fails to deliver true Sat to the user, which means that the EDF algorithm
fails to fulfill the satisfying criterion of the scheduler, as discussed earlier in Section
10. But the schedule is optimal as per its lateness criterion which equals -0.2.

Fig. 5 shows the scheduling result by the subjective scheduler. The said sched-
uler finds the priority of the jobs based on the given subjective criteria similarly
to the cases in Subsections 12.1 and 12.2. It is noticeable that the result is not
optimal with the EDF algorithm due to its positive lateness value (2.0), but the
schedule is reasonable with a cost value 0.1.
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Attributes J1 J2 J3 J4 J5 J6
K 0.1 0.1 0.1 0.3 0.2 0.2
D 0.3 0.99 0.7 0.8 0.5 0.4
E 0.2 0.4 0.2 0.3 0.6 0.5
L 0.8 0.2 0.4 0.3 0.6 0.5

Tab. V Six jobs and their four attribute values.

Fig. 4 Scheduling result with the EDF algorithm (FT = 0.6).

Fig. 5 Scheduling result with the subjective scheduler (FT = 0.6).

It can be concluded from the aforesaid simulation that even though the proposed
scheduler is not optimal with the EDF algorithm, its true Sat indicates, as per Eq.
(15), that the result is a satisfying one.

13.2 Comparison of the proposed scheduler with the LLF
algorithm

The LLF scheduling algorithm assigns priority to jobs according to their relative
laxity (deadline – computation time). Therefore, jobs with smallest laxity will be
executed at the highest priority. A schedule with a zero lateness value indicates
an optimal one. Preemption is allowed and in order to compare the performance
of the subjective scheduler with the LLF algorithm, the same problem described
in the previous section is considered (see Tab. V). Fig. 6 shows the schedule with
the LLF algorithm. Though the LLF algorithm generates optimal schedule (with
lateness 0), it fails to show a true Sat, thus the LLF algorithm fails to fulfill the
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satisfiability conditions.

Fig. 6 Scheduling result with the LLF algorithm (FT = 0.5).

Fig. 7 shows the schedule by the subjective scheduler. It can be noticed that
the result is not optimal with the LLF algorithm due to its non-zero lateness value
(+1.0), but the schedule is reasonable with a cost equal to 0.1.

Even though the result with the subjective scheduler is not optimal as with the
LLF algorithm, it is a satisfying one as per the Eq. (15).

Fig. 7 Schedule with the subjective scheduler (FT = 0.6).

14. Conclusion

The presented subjective job scheduler shows its ability in generating user satisfied
schedules by establishing proper neural net training paradigm, exempting invalid
job inputs and evaluating the schedules with its cost evaluation. The scheduler
utilizes the customizable nature of the BPNN and the quick solution feature of the
greedy algorithm.

The term ‘task priority’ of the scheduler cannot be described formally; that
is, it is not possible to define the priority of a task in a normal way because that
depends only on the given subjective influence. That is the results of the scheduler
are biased towards certain objective based on its subjective criteria.

The proposed scheduler is flexible enough to adopt views of various users for
a given problem and it functions like an intelligent scheduling agent for providing
user satisfied schedules. The said scheduler is most suitable in machine automation
and robotics applications.
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APPENDIX A

R K D L P
0.1 0.1 0.1 0.9 0.01
0.1 0.5 0.1 0.9 0.03
0.1 0.3 0.3 0.7 0.1
0.1 0.3 0.3 0.9 0.04
0.1 0.3 0.5 0.7 0.08
0.1 0.5 0.5 0.7 0.06
0.1 0.7 0.7 0.3 0.7
0.1 0.3 0.5 0.7 0.12
0.3 0.5 0.3 0.9 0.2
0.3 0.5 0.5 0.7 0.45
0.3 0.5 0.3 0.7 0.35
0.3 0.9 0.7 0.5 0.68
0.3 0.1 0.9 0.3 0.72
0.3 0.1 0.1 0.9 0.03
0.3 0.1 0.7 0.5 0.64
0.3 0.1 0.3 0.7 0.32
0.3 0.5 0.9 0.3 0.74
0.5 0.7 0.7 0.5 0.58
0.5 0.1 0.9 0.3 0.74
0.5 0.3 0.7 0.5 0.55
0.5 0.3 0.5 0.7 0.55
0.5 0.7 0.9 0.3 0.76
0.5 0.7 0.7 0.5 0.46
0.5 0.3 0.9 0.1 0.78
0.5 0.1 0.7 0.3 0.73
0.5 0.5 0.7 0.1 0.76
0.5 0.3 0.7 0.3 0.7
0.7 0.3 0.7 0.5 0.65
0.7 0.1 0.9 0.1 0.82
0.7 0.7 0.7 0.3 0.78
0.7 0.7 0.9 0.1 0.85
0.7 0.5 0.9 0.1 0.83
0.7 0.1 0.9 0.7 0.66
0.7 0.1 0.5 0.5 0.54
0.7 0.5 0.7 0.3 0.77
0.7 0.1 0.7 0.3 0.67
0.9 0.3 0.9 0.1 0.95
0.9 0.9 0.9 0.1 0.99
0.9 0.7 0.9 0.1 0.97
0.9 0.1 0.9 0.1 0.89

Tab. VI A seen dataset with forty inputs and their respective output data patterns.
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