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Abstract: This paper presents a hybrid method to predict tunnel surrounding rock
displacement, which is one of the most important factors for quality control and
safety during tunnel construction. The hybrid method comprises two phases, one is
support vector machine (SVM)-based model for predicting the tunnel surrounding
rock displacement, and the other is GA-based model for optimizing the parameters
in the SVM. The proposed model is evaluated with the data of tunnel surrounding
rock displacement on the tunnel of Wuhan-Guangzhou railway in China. The
results show that genetic algorithm (GA) has a good convergence and relative
stable performance. The comparison results also show that the hybrid method can
generally provide a better performance than artificial neural network (ANN) and
finite element method (FEM) for tunnel surrounding rock displacement prediction.
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1. Introduction

Many cities of China are experiencing a rapid development in subway, railway and
other infrastructure, in which tunnel construction may be involved in some cases.
Tunnel construction is always accompanied by a very large cost. Quality control
and safety during tunnel construction represent increasingly important concerns.
It is very important how to perceive the potential danger in a timely and accurate
way for successful tunnel construction. Recently, some works on analysis of tunnel
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surrounding rock have appeared. Li et al. (2005) presented grey majorized model
to predict the displacement of tunnel surrounding rock; this model was based on
the simulation and prediction of equidistant, non-equidistant and high growth data
sequent. Aydan et al. (1993; 1996) firstly analyzed the associated factors and the
mechanism of squeezing rock of tunnels. Then, they presented a practical method
based on the time-dependent behavior of squeezing rock to predict the squeezing
potential and deformation of tunnels in squeezing rock. Hoek and Marinos (2000)
predicted tunnel squeezing problems in weak heterogeneous rock masses by esti-
mating the strength and deformation properties of weak heterogeneous rock masses.
Barla and Borgna (2000) analyzed the rock mass response during tunnel excava-
tion and presented numerical methods to simulate the behavior of different models
for the rock mass. Sunuwar and Fowell (2001) presented a method to predict the
rock squeezing problem in different tunnels of hydropower projects, which indicated
that squeezing ground conditions were greatly influenced by some factors. Tunnel
surrounding rock displacement is one of the most important parameters for quality
control and safety. This paper focuses on the prediction of tunnel surrounding rock
displacement. To the best of our knowledge, there are only a few works dealing
with this problem.

Since there are some stochastic factors (such as temperatures, early age con-
crete shrinkage and creep) during tunnel construction, it is very difficult to predict
the displacement of tunnel surrounding rock. Recently, support vector machines
(SVMs) have been proposed as a novel technique for classification and regression
(Vapnik, 1999). SVM shows very resistant to the overfitting problem, achieving
high generalization performance in solving various time series forecasting problems,
which has been applied in prediction of time series (Cao and Tay, 2003). These
successful applications motivate us to apply SVM in the displacement prediction
of tunnel surrounding rock.

The parameters in SVM, which greatly influence the performance of SVM, need
to be optimized and set by users. As identifying the parameters in SVM, grid-
search (Hsu et al, 2003; Yu et al., 2009; 2011) is the most reliable method when
the search time is not considered. However, for large scale or real-time feature
practice application, the considerable search time cannot be accepted. Heuristic
algorithms have been successfully used in many complex problems (Yu et al., 2011;
2012). Many studies have been devoted to improving the efficiency of the parameter
optimization in SVM by using heuristic algorithms. Lin et al. (2006) introduced a
structural risk minimization principle to determine appropriate parameters in the
SVM prediction model. In order to identify appropriate parameters in the SVM
prediction model, a new kernel function is presented by Ohn et al. (2004). Lorena
et al. (2008) used genetic algorithms to produce a set of parameter values for tuning
the parameters in SVM. Lin et al. (2008) proposed a particle swarm optimization
to optimize the parameters in SVM. Hou and Li (2009) presented evolution strategy
with covariance matrix adaptation to identify the parameters in SVM. The paper
attempts to find the appropriate parameters in SVM by using genetic algorithms
which we use as a search technique and which has been successfully applied in
various optimization problems (Dong et al. 2005; Pai, 2006).
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This paper presents a hybrid prediction model based on SVM and genetic al-
gorithm (GA) for tunnel surrounding rock displacement, which is called SVM-GA.
The remainder of the paper is organized as follows. In Section 2, we provide the
structure of the hybrid model for predicting tunnel surrounding rock displacement,
and a brief introduction about a prediction model on SVM and parameters opti-
mization on GA are presented. In Section 3, computational results are discussed;
and finally, the conclusions are provided in Section 4.

2. Model Developments

The hybrid model consists of two phases: one is an SVM-based model for prediction
of the tunnel surrounding rock displacement; the other is a GA-based model for
optimization of the parameters in SVM. The prediction model can be described as
in Fig. 1. Then, two sub-models are discussed, respectively.

Fig. 1 The framework of the hybrid model.

2.1 SVM-GA for tunnel surrounding rock displacement
prediction

SVM is a learning technique which is based on the structural risk minimization
principle to minimize an upper bound of generalization error. By applying a set
of high dimensional linear functions, SVM is shown to have high generalization
ability, and so it can more easily capture reliability data patterns than other the
models.

2.1.1 SVM for regression

Given the training data set {xk, yk}, k = 1, 2, . . . , s,xk ∈ Rm, yk ∈ Rn, k is the num-
ber of training samples. These points are randomly and independently generated
from an unknown function. SVM estimates the function by the following function:
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f(x) =< w, x > +b, w, x ∈ Rm, b ∈ Rn, (1)

where < w, x > is the feature of the inputs. The coefficients w and b are estimated
by the so-called regularized risk functional:

MinJ =
1

2
∥w∥2 + C ·Remp[f ]. (2)

The first term 1
2 ∥w∥

2
is called the regularized term which is used as a measurement

of function flatness. The second term Remp[f ] is the so-called loss function for
measuring the empirical error. C is regularization constant to determine the trade-
off between the training error and the generalization performance. Here, we use
the ε-insensitive loss function to measure empirical error:

|y − f(x)|ε = max{0, |y − f(x)| − ε} (3)

Fig. 2 The parameters for the support vector regression.

This defines a ε tube (Fig. 2). The loss is zero if the predicted value is within
the tube. If the predicted point is outside the tube, the loss is the magnitude of the
difference between the predicted value and the radius ε of the tube. Both C and
ε are user-determined parameters. Two positive slack variables ξ, ξ* are used to
cope with infeasible constraints of the optimization problem. To get the estimation
of w and b, the Eq. (2) can be transformed to a primal objective function (4).

MinJ =
1

2
∥w∥2 + C

s∑
i=1

(ξ∗i + ξi) (4)

s.t.

 yi− < w, xi > −b ≤ ε+ ξ∗i
< w, xi > +b− yi ≤ ε+ ξi
ξ∗i , ξi ≥ 0

266



Yao J. B. et al.: Hybrid model for displacement prediction of tunnel. . .

This constrained optimization problem is solved using the following primal La-
grangian form:

L = 1
2 ∥w∥

2
+ C

s∑
i=1

(ξ∗i + ξi)−
s∑

i=1

(ηiξi + η∗i ξ
∗
i )−

s∑
i=1

αi(ε+ ξi − yi + ⟨w, xi⟩+ b)−
s∑

i=1

α∗
i (ε+ ξ∗ − yi + ⟨w, xi⟩+ b),

(5)
where L is the Lagrangian and ηi, η

∗
i , αi, α

∗
i are Lagrange multipliers. Hence the

dual variables in (5) have to satisfy the positive constraints.

ηi, η
∗
i , αi, α

∗
i ≥ 0 (6)

The above problem can be converted into a dual problem where the task is to
optimize the Lagrangian multipliers, αi and α∗

i . The dual problem contains a
quadratic objective function of αi and α

∗
i with one linear constraint:

MaxJ = −1

2

s∑
i,j=1

(α∗
i − αi)(α

∗
j − αj) < xi, xj > +

s∑
i=1

α∗
i (yi − ε)−

s∑
i=1

αi(yi + ε)

(7)

s.t.


s∑

i=1

αi =
s∑

i=1

α∗
i

0 ≤ αi ≤ C
0 ≤ α∗

i ≤ C

Let

w =
s∑

i=1

(αi − α∗
i )xi (8)

Thus,

f(x) =
s∑

i=1

(αi − α∗
i ) < xi, xj > +b (9)

By introducing kernel function K(xixj) the Eq. (8) can be rewritten as follows:

f(x) =
s∑

i=1

(αi − α∗
i )K(xi, xj) + b, (10)

where K(xi, xj) is the so-called kernel function, which is proven to simplify the
use of mapping. The value of K(xixj) is equal to the inner product of two vectors
xi and xj in the feature space ϕ(x i) and ϕ(xj), that is, K(xi, xj)= ϕ(x i)· ϕ(x j).
By the use of kernels, all necessary computations can be performed directly in
input space, without having to compute the map ϕ(x). More details can be seen
in (Vapnik, 1999; Cao, 2003).

2.1.2 Applying SVM in tunnel surrounding rock displacement
prediction

The estimation of tunnel surrounding rock displacement is a difficult task due to
some stochastic factors. Furthermore, tunnel surrounding rock displacement has
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become one of the most important parameters for quality control and safety. It is
obvious that the tunnel surrounding rock displacement is highly related with the
conditions of rock. Therefore, it is appropriate to use the historical surrounding
rock displacements to estimate the future displacements. The prediction model
for surrounding rock displacements focuses on generalizing the relationship of the
following equation:

D̂(t) = f [d(t− 1), d(t− 2), ..., d(t− n)], (11)

where D̂(t) denotes the estimated surrounding rock displacements of the tth data,
and d(t-1) denotes the surrounding rock displacements of the (t-1)th data.

In general, the parameter n will induce different prediction effect. At first, the
displacement changes obviously, and the value of n will greatly affect the prediction
accuracy. As time goes by, the surrounding rock is becoming stable gradually and
the effect of n turns smaller correspondingly. In this paper, we want to determine
the suitable value for the first stage. Thus, we adopt a simulation approach with
the use of historical data. From the result of the simulation, it can be found out
that lengthening or reducing the number of preceding data cannot improve the
prediction accuracy, and it can be also observed that the prediction accuracy is
the best while the number of data is equal to 4. This can be due to the fact that
the preceding data can reflect the following data. However, since the conditions
vary during tunnel construction, it will diminish the effect of the very old data.
Therefore, in this paper, we apply the displacement of the first four data sets to
predict the displacement of the 5th data set. Then the data (from the 2nd data set
to the 5th data set) are used as input to predict the 6th data set. The rest can be
done in the same manner.

2.2 GA for parameter optimization

Thus, SVM is feasible and applicable in predicting the tunnel surrounding rock
displacement. However, the ability of SVM mainly depends on the kernel function.
In general, the RBF kernel, as a nonlinearly kernel function, is a reasonable first
choice (Dong et al., 2005). The parameters C, ε and σ, are the key elements of the
RBF kernel and they directly decide about the prediction performance of SVM.
So the parameter optimization is an important factor for improving the prediction
accuracy of SVM. GA is applied to optimize the parameters in SVM.

GA is inspired by evolutionary biology like inheritance, selection, crossover,
and mutation. Based on a fitness function, GA attempts to retain relatively good
genetic information from generation to generation. The process of GA can be
briefly described as follows:

Encoding of chromosome In GA, solution is firstly represented by a chromo-
some that is composed of “genes”. For parameter optimizations in SVM, the real
encodings were adopted since the parameters C, ε and σ are continuous-valued. To
represent the parameters in SVM, thus, each chromosome consists of gent1, gen

t
2

and gent
3, which represent three parameters, respectively. Here t is the current

generation. To reduce the search spacereferring to previous literature using SVM,
it is recommended to the constraints of the three parameters which respectively
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attribute to the range C ∈ [2−5, 25], ε ∈ [2−13, 2−1], and σ ∈ [0, 2]. An example of
encoding of chromosome is shown in Fig 3

Fig. 3 An example of chromosome encoding.

where 2−5 ≤ gent1 ≤ 25, 2−13 ≤ gent2 ≤ 2−1, 0 ≤ gent3 ≤ 2.

Fitness function Fitness function determines possible solutions to the problem
and is used to estimate the quality of the represented solution (chromosome). For
parameter optimizations in SVM, the best solution is able to minimize the error of
prediction. Generally, GA is an optimal searching method to find the maximum
fitness of the individual chromosome. Thus, negative root mean squared error
(NRMSE), which is used in literature (Dong et al., 2005), is also adopted in this
paper.

fit = −

[∑n
i=1 (V − V̂ )

n− p

]1/2

, (12)

where V̂ is the prediction value by the model; V is the observed value; n is the
number of observations, and p is the number of model parameters.

Crossover operation Crossover is a reproduction operation in GA, which is
used to vary the programming from one generation to the next by exchanging
genetic information between parent chromosomes.

In the paper, an arithmetic crossover (Yu et al., 2007) is used to create new
offspring.

gent
k,I = αigen

t−1
k,I + (1− αk)gen

t−1
k,II

gent
k,II = αigen

t−1
k,II + (1− αk)gen

t−1
k,I

, (13)

where gent−1
k,I , gen

t−1
k,II is a pair of “parent” chromosomes; gentk,I , gen

t
k,II is a pair

of “children” chromosomes; αk is a random number between (0,1); k ∈ [1, 2, 3] (k
is the total genes for the crossover operation).

For example, Fig. 4 shows the parents selected for crossover. When k = 1,
αk = 0.2, the children can be seen in Fig. 5 after crossover.

Fig. 4 Parent chromosomes before crossover.
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Fig. 5 Children chromosomes after crossover.

Mutation operation Mutation is also a reproduction operation in GA, which is
used to maintain genetic diversity during evolution. A genetic mutation operation
is used in this paper.

Assume a chromosome is G = (gent
1, gen

t
2, gen

t
3), if the gen

t
2 was selected for

the mutation, the mutation can be shown in (14).

G′ = (gent−1
1 , gent2, gen

t−1
3 )

gent
2 =

{
gent−1

2 +∆(t, gent
2max − gent−1

2 ) if random(0, 1) = 0

gent−1
2 +∆(t, gent−1

2 − gent2min) if random(0, 1) = 1
.

(14)
The function ∆(t, y) returns a value between [0,y] given in (15).

∆(t, y) = y × (1− r(1−t/Tmax)
λ

), (15)

where r is a random number between [0,1]; Tmax is the maximum number of gen-
erations; and here λ = 3. This feature causes this operation to do a uniform search
in the initial space when t is small, and a very local one in later stages.

Since the genes from the mutation operations may violate the parameters con-
straints, there are two approaches to deal with this situation. One is to assign a
relatively high weight to reduce their probability of being selected in the following
search. The other one is that the solution can remain but the value needs to be
adjusted to the constraints. The advantage of the second approach over the first
one is that it can maintain the solution which may enable GA to investigate further
points in the search space. Therefore, the second approach is adopted to deal with
the chromosome which violates the constraints of parameters. The chromosome
will be re-assigned a random value which meets the parameters constraints.

Termination In this paper, the search continues until RMSEn-RMSEn−1<0.0001
or the number of generation reaches the maximum number of generations Tmax.

3. Case Study

An experiment has been carried out to test the performance of the presented model.
The Majiachong tunnel of the Wuhan-Guangzhou railway, which is a high-speed
rail line between Wuhan city and Guangzhou city in China, is considered as the
test bed in this study. The length of the tunnel is about 133 m and its location
is from DK1692+935 to DK1693+068 of the Wuhan-Guangzhou railway. We have
chosen three sections, which are uniformly distributed throughout the tunnel, to
acquire the data on the tunnel surrounding rock displacement.
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The embedded depth of tunnel is light and the surrounding rock of this section
is soft rock belonging to V class of surrounding rock. The measurement distance on
the tunnel surrounding rock displacement is mainly based on the rock classification,
the tunnel section size and the embedded depth. The measurement frequency is
determined by the displacement rate and the distance to the working face. In
this paper, the main characteristics of the measurement distance and measurement
frequency can be seen in Tab. I and Tab. II respectively.

Rock classification Measurement distance (m)
V (shallow buried) 10∼15
V (deep buried) 20∼30
IV (shallow buried) 10∼15
IV (deep buried) 20∼30
III 40∼50
II 50∼100

Tab. I Longitudinal pacing of measurement points.

displacement distance to measurement
rate (mm/d) working face (m) frequency

≥5 (0∼1)B 2∼4 times /day
1∼5 (1∼2)B 2 times /day
0.5∼1 (1∼2)B 1∼2 times /day
0.2∼0.5 (2∼5)B 1 times /day
< 0.2 > 5B 2 times /week

note B: excavation span of the tunnel

Tab. II Frequency of measurement on crown subsidence and horizontal
convergence.

The measurement frequency is generally based on the tunnel background. For
example, it can be more in special cases (Schubert et al., 2002). Since the surround-
ing rock around the three sections is the soft rock belonging to class V (Singh and
Goel, 1999), the measurement frequency is twice a day in the initial seven days.
Then the frequency is once after the seventh day. The experiment continues until
the tunnel surrounding rock displacement is almost stable (e.g. the difference of
two consecutive measurement <0.1 mm). The date of data collection is June 22 to
July 30, 2007.

3.1 Parameter identification

In our experiment, there are 138 samples in total. The data is divided into three
subsets, which represent training samples, testing samples and inspection samples
respectively. There are about 70% samples for training, 70% samples for testing
and the remaining samples for inspection.
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To properly optimize the three parameters C, ε and σ for SVM, GA is used.
Before the implementation of GA, four GA parameters, namely pc, pm, psize and
Tmax, need to be predetermined. In general, pc varies from 0.3 to 0.9, pm varies
from 0.01 to 0.1, psize is the population size which is set according to the size of the
samples. Tmax is the maximum number of generations which can be determined
according to a good convergence of the calculation (Yu et al., 2012). Considering
the features of this problem and our experiences in GA, the characteristic of GA
can be acquired, as can be seen in Tab. III. Then, GA continues running 10 times
under the same condition. Fig. 6 shows the convergence of the calculation. It can
be observed that the prediction error decreases fast before the 4,000th generation,
and then it changes smoothly. The least prediction error appears in about the
5,000th generation, and it almost remains unchanged. Further analysis found the
differences between the results from the 10 times change little. This means that GA
has a good convergence. The calculation with the minimum testing NRMSE value
is chosen as the most appropriate parameters in this example. Tab. IV provides
prediction results and the parameters of SVM model. At last, the three parameters
were optimized as (6.1263, 0.0018, and 1.3011) with the best optimization value
among the 10 results for the practical prediction model of the tunnel surrounding
rock displacement SVM-GA.

Parameter (pc) (Pm) (Psize) (Tmax)
value 0.6 0.05 80 5000

Tab. III The characteristic of GA.

Fig. 6 Fitness of each calculation by GA.
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Number of Parameters Testing
calculation C ε σ NRMSE

1 84.63 0.0008 0.7297 -1.700822944
2 177.41 0.004 0.4581 -1.693469975
3 49.32 0.00064 0.2556 -2.006978326
4 0.231 0.0128 1.5372 -1.761244713
5 13.6 0.0032 1.4213 -1.72546207
6 6.1263 0.0018 1.3011 -1.614026132
7 0.054 0.0256 0.5114 -2.174146668
8 2.261 0.0512 0.851 -2.024489722
9 5.02 0.048 1.1369 -1.89456351
10 22.96 0.02 1.3845 -1.972954724

Tab. IV Prediction results and the parameters of SVM model.

3.2 Results

After parameters C, ε and σ are selected, the final SVM-GA is confirmed. Then, to
evaluate the performance of the proposed model, a standard Artificial Neural Net-
work (ANN) with three-layer and Finite Element Method (FEM) were introduced
using the same input data as SVM-GA. A scaled conjugate gradient algorithm
(Moller, 1993) is employed for training, and the hidden neurons are optimized by
trial and error. The final ANN architecture consists of five hidden neurons. Then,
we compare the performance of the SVM-GA, ANN and FEM. From the results it
is obvious that the RMSE values of FEM models were the largest among the three
models. The RMSE of FEM is 18.21, 17.83 and 18.54 on three sections respec-
tively. It can be explained in such a way that the FEM is a numerical technique
for finding approximate solutions. It does not consider the effect of the errors in
the input data, which may lead to larger MAPE values. Then, we further com-
pare the performance of the SVM with the ANN, as can be seen in Fig. 7. From
Fig. 7, it can be found out that the SVM models generally provide better tunnel
surrounding rock displacement prediction. This can be attributed to the fact that
SVM uses the structural risk minimization principle to minimize the generalization
error, while ANN uses the empirical risk minimization principle to minimize the
training error. In addition, SVM may find the global solution while ANN may tend
to fall into a local optimal solution. If the parameters are properly selected, SVM
may avoid over-fitting. So SVM is feasible and applicable for tunnel surrounding
rock displacement prediction.

4. Conclusions

One of the most important phases during tunnel construction is to perceive the
potential danger occasions such as collapse accidents as possible. Displacement
prediction of tunnel surrounding rock can indirectly estimate the situation of tunnel
construction. Due to the complexity of the environment in tunnel construction, this
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Fig. 7 The comparison between SVM-GA and ANN.

paper attempts to develop a hybrid model based on SVM and GA to predict the
tunnel surrounding rock displacement. To evaluate the performance of the proposed
method, an experiment on a tunnel of the Wuhan-Guangzhou railway is carried out.
The results show that GA has a good convergence and relative stable performance.
Furthermore, the comparison of results of the proposed method, ANN and FEM
suggest that the SVM-GA provides lower prediction errors than the ones of the
other approaches. This indicates that SVM-GA seems to be a powerful tool for
tunnel surrounding rock displacement prediction.
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