
QUANTUM ANT COLONY OPTIMIZATION

ALGORITHM BASED ON BLOCH SPHERICAL

SEARCH

Panchi Li∗, Haiying Wang∗

Abstract: In the existing quantum-behaved optimization algorithms, almost all of
the individuals are encoded by qubits described on plane unit circle. As qubits con-
tain only a variable parameter, quantum properties have not been fully embodied,
which limits the optimization ability rise further. In order to solve this problem,
this paper proposes a quantum ant colony optimization algorithm based on Bloch
sphere search. In the proposed algorithm, the positions of ants are encoded by
qubits described on Bloch sphere. First, the destination to move is determined
according to the select probability constructed by the pheromone and heuristic
information, then, the rotation axis is established with Pauli matrixes, and the
evolution search is realized with the rotation of qubits on Bloch sphere. In or-
der to avoid premature convergence, the mutation is performed with Hadamard
gates. Finally, the pheromone and the heuristic information are updated in the
new positions of ants. As the optimization process is performed in n-dimensional
hypercube space [−1, 1]n, which has nothing to do with the specific issues, hence,
the proposed method has good adaptability for a variety of optimization prob-
lems. The simulation results show that the proposed algorithm is superior to other
quantum-behaved optimization algorithms in both search ability and optimization
efficiency.

Key words: Ant colony optimization, quantum ant colony optimization, Bloch
sphere, algorithm design

Received: December 16, 2011
Revised and accepted: June 25, 2012

1. Introduction

At present, colony intelligence optimization algorithms have been widely studied
by many scholars, and have obtained successful applications [1]. Quantum-behaved
optimization algorithm is an emerging interdisciplinary concept based on combina-
tion of quantum computing and information science. In 1996, Ajit et al. proposed

∗Panchi Li – Corresponding author, Haiying Wang
School of Computer & Information Technology, Daqing Petroleum Institute, Daqing 163318,
China, E-mail: lipanchi@vip.sina.com

c⃝ICS AS CR 2012 325

Neural Network World 4/12, 325-341

quantum-inspired genetic algorithms [2], where concepts and principles of quantum
mechanics were used to inform and inspire more efficient evolutionary computing
methods. After this, quantum intelligent optimization quickly became a hot inter-
national research. Beginning of this century, Han et al. proposed several quantum
genetic algorithms [3-5]. Compared with the traditional evolutionary algorithm,
the advantage of Han’s algorithms is a better ability to maintain population diver-
sity. In 2004, Hichem et al. presented a new algorithm for solving the traveling
salesman problem [6], which extended the standard genetic algorithms by com-
bining them to some concepts and principles provided from quantum computing
field such as qubits, states superposition and interference. Many quantum be-
haved optimization algorithms proposed later may be regarded as improvements
of the above-mentioned algorithms [7-11]. In 2009, Balicki proposed an adaptive
quantum-based multi-objective evolutionary algorithm where the crossover proba-
bility is decreased due to the number of new generations [12]. It is an advanced
technique for finding Pareto-optimal task allocation problem with the maximiza-
tion of the system reliability and distributed system performance. In addition, for
the combination of quantum computation and neural networks, Perus presented
an analogous quantum information processing system called a quantum associative
network [13]. It is expected that successful quantum implementation of the model
would yield many benefits. In 2010, we proposed an improved design for CNOT
gated quantum neural networks model and presented a smart algorithm for it [14].
The experimental results shown that our model has a more superior performance
to the standard error back-propagation networks.

It is clear that, first, in the majority of quantum-behaved optimization algo-
rithms, all individuals are encoded by qubits described on the plane unit circle.
Because this description has only an adjustable parameter, quantum properties
have not been fully reflected. Secondly, almost all evolution and mutation used
quantum rotation gates and quantum NOT gates. These operations only change a
parameter of qubit, therefore, quantum properties are weakened. In 2008, we pro-
posed a quantum-inspired evolutionary algorithm for continuous space optimization
based on Bloch coordinates of qubits [15]. This algorithm adopted the qubits’ Bloch
spherical coordinate coding, had two adjustable parameters, and showed some good
optimization performances. However, in this algorithm, the best matching of two
adjustments was not achieved, which affected the optimization ability to further
improve. Based on the above problems, we select ant colony optimization as a
starting point, and then propose a quantum ant colony optimization algorithm
based on Bloch spherical search (BQACO). Unlike traditional ant colony optimiza-
tion, in our algorithm, ants release pheromone not on the paths but on the current
resident points. The individuals are directly encoded by qubits. This algorithm
uses Pauli matrices to establish the rotation axis, uses qubit’s pivoting to achieve
ant’s movement, and uses the Hadamard gates to achieve mutation. This search
approach can simultaneously adjust two parameters of qubits, and can automati-
cally achieve the best matching of two adjustments. In search process, the positive
feedback is formed by sharing in pheromone. Along with the algorithm running,
some pheromone trails can be seen leading to the global optimum solution in the
optimization space. With the typical function extremum optimization and the
fuzzy controller parameters optimization, and comparison with other algorithms,
the experimental results verify the effectiveness of BQACO.

326

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

2. The Basic Principles of BQACO

2.1 The spherical description of qubits

In quantum computing, a qubit is a two-level quantum system, described by a two-
dimensional complex Hilbert space. From the superposition principles, any state
of the qubit may be written as follows

|φ⟩ = cos
θ

2
|0⟩+ ei

∗ϕ sin
θ

2
|1⟩, (1)

where 0 6 θ 6 π, 0 6 ϕ 6 2π, i∗ is the imaginary unit.
Therefore, unlike the classical bit, which can only be set equal to 0 or 1, the

qubit resides in a vector space parametrized by the continuous variables θ and ϕ.
Thus, a continuum of states is allowed. The Bloch sphere representation is useful
in thinking about qubits since it provides a geometric picture of the qubit and of
the transformations that one can operate on the state of a qubit. Owing to the
normalization condition, the qubit’s state can be represented by a point on a sphere
of unit radius, called the Bloch sphere. This sphere can be embedded in a three-
dimensional space of Cartesian coordinates (x = cosϕ sin θ, y = sinϕ sin θ, z =
cos θ). Thus, the state |φ⟩ can be written as follows

|φ⟩ =

[√
1 + z

2
,
x+ i∗y√
2(1 + z)

]T
. (2)

By definition, a Bloch vector is a vector whose components (x, y, z) single out a
point on Bloch sphere. We can also say that the angles θ and ϕ define a Bloch
vector, as shown in Fig. 1.

|

z

A

B

G
y

F

D

EC

x

P

Fig. 1 Bloch-sphere representation of a qubit.

where the points corresponding to the following states are shown: |A⟩ = [1, 0]T,
|B⟩ = [0, 1]T, |C⟩ = |E⟩ = [1√

2
,− 1√

2
]T, |D⟩ = [1√

2
, 1√

2
]T, |F ⟩ = [1√

2
,− i∗√

2
]T,

|G⟩ = [1√
2
, i∗√

2
]T.

327

Neural Network World 4/12, 325-341

2.2 The BQACO encoding method

In BQACO, all ants are encoded by qubits described on Bloch sphere. Set the
colony size to m, and the space dimension to n. Then, the ith ant is encoded as
follows

pi = [|φi,1⟩, |φi,2⟩, · · · , |φi,n⟩], (3)

where |φi,j⟩ = [cos
θi,j
2 , eiϕ sin

θi,j
2]T; 0 6 θi,j 6 π; 0 6 ϕi,j 6 2π; i = 1, 2, · · · ,m;

j = 1, 2, · · · , n.
As the optimization process is performed in n-dimensional hypercube space

[−1, 1]n, which has nothing to do with the specific issues, hence, the proposed
method has good adaptability for a variety of optimization problems.

2.3 Projective measurement of ant position

From the principles of quantum computing, the coordinates x, y, and z of a qubit
on the Bloch sphere can be measured by using the Pauli operators written in the
computational basis as follows

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (4)

Let |φij⟩ denote the jth qubit on the ith ant. The coordinates (xij , yij , zij) of
|φij⟩ can be obtained by the follows equations

xi,j = ⟨φi,j |σx|φi,j⟩ = ⟨φi,j |
[

0 1
1 0

]
|φi,j⟩, (5)

yi,j = ⟨φi,j |σy|φi,j⟩ = ⟨φi,j |
[

0 −i
i 0

]
|φi,j⟩, (6)

zi,j = ⟨φi,j |σz|φi,j⟩ = ⟨φi,j |
[

1 0
0 −1

]
|φi,j⟩. (7)

2.4 Solution space transformation

In BQACO, each ant in colony contains 3n Bloch coordinates of n qubits that can
be transformed from hypercube space [−1, 1]n to solution space of the continuous
optimization problem. Each of Bloch coordinates corresponds to an optimization
variable in solution space. Let the jth variable of optimization problem Xj ∈
[Aj , Bj], and (xij , yij , zij) denote the coordinates of the jth qubit on the ith ant.
Then, the corresponding variables (Xij , Yij , Zij) in solution space are respectively
computed as follows

Xi,j =
1

2
[Aj(1− xi,j) +Bj(1 + xi,j)], (8)

328

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

Yi,j =
1

2
[Aj(1− yi,j) +Bj(1 + yi,j)], (9)

Zi,j =
1

2
[Aj(1− zi,j) +Bj(1 + zi,j)], (10)

where i = 1, 2, · · · ,m; j = 1, 2, · · · , n.

2.5 Selecting target position of ant moving

Suppose τ(xr) denotes the pheromone of point xr held by the rth ant which is
a constant in the beginning of the optimization, and η(xr) denotes the heuristic
information of point xr whose meaning is similar to the pheromone of point xr,
and it is also set to a constant in the beginning of the optimization. The rules of
the rth ant moving from xr to xs is described as follows

xs =

x1, q ≤ q0 and [τ(x1)]

α[η(x1)]
β = max

xi∈X
{[τ(xi)]α[η(xi)]β}

x2, q > q0 and q > [τ(x2)]
α[η(x2)]

β∑
xi∈X

[τ(xi)]α[η(xi)]β
, (11)

where α and β are parameters controlling the relative importance between τ(xi)
and η(xi), q is a random number uniformly distributed in (0, 1), q0 is a pre-specified
parameter (0 < q0 < 1) used to switch two select ways, X is the set of points held
by ant colony in solution space

∏n
j=1[Aj , Bj].

2.6 The ant movement to target position

In BQACO, we realize research on Bloch sphere. Namely, make qubit on Bloch
sphere rotate to the target around a fixed axis. This approach can simultaneously
adjust two parameters θ and ϕ, and can automatically achieve the best matching
of two adjustments, which can enhance optimization efficiency. Let xr denote an
ant’s current position, and xs denote its target position.

xr = [|φr,1⟩, |φr,2⟩, · · · , |φr,n⟩], (12)

xs = [|φs,1⟩, |φs,2⟩, · · · , |φs,n⟩]. (13)

To make the ant move from xr to xs, the determination of rotation axis and rota-
tion angle is crucial, which can directly impact on convergence speed and efficiency
of algorithm. For rotation axis, we propose the following method for determining.

Theorem 1 Let the vectors P⃗ = [px, py, pz] and Q⃗ = [qx, qy, qz] denote
respectively qubits |φP ⟩ and |φQ⟩ on Bloch sphere, then, the axis of rotating qubit
from |φP ⟩ to |φQ⟩ can be written as follows

R⃗axis = P⃗ × Q⃗. (14)

Proof In the sphere, the shortest distance between two points is defined as the
length of minor arc on the great circle through these two points. To make |φP ⟩ ap-
proximate to |φQ⟩ after rotating, we should make |φP ⟩ rotate along with the minor

329

Neural Network World 4/12, 325-341

arc on the great circle. From R⃗axis = P⃗ × Q⃗, we know that the direction of R⃗axis

is perpendicular to the plane consisting of the vector P⃗ and Q⃗, and the direction of
these three vectors meets the right-hand rule. Namely, right hand four fingers grip
from point P to point Q with angle less than π, at this time, the direction of thumb
is defined as the direction of R⃗axis. The relation of these three vectors is shown
in Fig. 2. Therefore, if we let |φP ⟩ rotate around axis R⃗axis, then its path will be
the minor arc on great circle through points P and Q. Hence, the rotation axis is
R⃗axis = P⃗ × Q⃗. @

Fig. 2 The rotation axis of a qubit on Bloch sphere.

Let O denote the centre of Bloch sphere, and points P and Q on Bloch sphere
denote respectively qubits |φrj⟩ and |φsj⟩. According to the above theorem, the
rotation axis of rotating |φrj⟩ to |φsj⟩ can be written as follows

R⃗axis =

−−→
OP r,j ×

−−→
OQs,j

∥
−−→
OP r,j ×

−−→
OQs,j ∥

. (15)

From the principles of quantum computing, on Bloch sphere, the rotation matrix
through an angle δ about unit vector n⃗ = [nx, ny, nz] is defined as follows [16]

Rn⃗(δ) = cos
δ

2
I − i sin

δ

2
(n⃗× σ⃗), (16)

where σ⃗ = [σx, σy, σz].
Hence, on Bloch sphere, the rotation matrix through an angle δ about the axis

R⃗axis of rotating the current qubit |φrj⟩ to the target qubit |φsj⟩ can be written
as follows

MR⃗axis
(δ) = cos

δ

2
I − i sin

δ

2
(R⃗axis × σ⃗), (17)

where the rotation angle δ 6 0.05π.

330

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

The rotation operation of rotating the current qubit |φrj⟩ to the target qubit
|φsj⟩ can be written as follows

|φr,j(k + 1)⟩ =MR⃗axis
(δ)|φr,j(k)⟩, (18)

where r = 1, 2, · · · ,m; j = 1, 2, · · · , n; k is the iterative step.
For each ant in colony, the move method is described as follows. For each qubit

in the current position, determine the rotation axis according to the corresponding
qubit in target position, perform rotation around axis to achieve the movement
of this ant. By the above method, all the ants’ positions are in turn updated to
complete the entire colony update.

2.7 The mutation of ant position

In order to increase colony diversity and prevent premature convergence, a vari-
ety of evolutionary algorithms introduce mutation. Most of the current quantum
evolutionary algorithm use the quantum NOT gate (namely, Pauli metrix σx) to
perform the mutation, in which two probability amplitudes are exchanged, and
only one parameter is changed. In BQACO, we propose a new mutation based on
the Hadamard gate whose possible description is defined as follows [16]

H =
1√
2

[
1 1
1 −1

]
. (19)

This gate is an important unitary operator in quantum computing, it can be
written as the linear combinations of two Pauli matrices, and has the following
property.

−iH = cos
π

2
I − i sin

π

2

(
σx√
2
+ 0σy +

σz√
2

)
. (20)

From this equation it is clear that the Hadamard gate is a rotation through an
angle δ = π about the axis n⃗ = [1√

2
, 0, 1√

2
]. Indeed, the above equation coincides

Rn⃗(π), up to an overall phase. This transformation rotates the x-axis to z-axis
and vice versa. As this rotation does not compare with the target position and the
rotation angle is great, it can avoid premature convergence and increase diversity
of positions.

For each ant in colony, first generate a random number, if the number is less
than the mutation probability, then randomly select a qubit of this ant, and apply
the Hadamard gate to perform its mutation.

2.8 The update rules of pheromone and heuristic
information

For the optimization problem, we always hope to find such a point not only with
a high fitness but also with a faster rate of fitness change, which can stride in
the search process instead of roaming in the flat places. Based on this concept,
in BQACO, the idea of pheromone updating is to add the fitness value of the
current ant position to pheromone, which makes the better position hold the greater

331

Neural Network World 4/12, 325-341

pheromone. The idea of heuristic information updating is to add the fitness change
to heuristic information, which makes the position with the faster fitness change
hold the greater heuristic information. In fact, in our approach, the fitness change
is regarded as heuristic information. After all ants finish a step search, we compute
the fitness and its change for ants’ new position, and update the pheromone and
heuristic information according to the following equations. Let xq denote the ant’s
previous position, xr denote the ant’s current position, and xs denote the ant’s
target position. Local update rules as follows

τ(xs)(t+ 1) = (1− ρ)τ(xs)(t) + ρ× fitα, (21)

η(xs)(t+ 1) = (1− ρ)η(xs)(t) + ρ× |∆fit|β , (22)

∆fit = fit(xs)− fit(xr), (23)

where 0 < α < 1 and 0 < β < 1 denote the update index of pheromone and
heuristic information, respectively, ρ denotes the update coefficient of pheromone
and heuristic information, 1− ρ denotes the evaporation coefficient, and t denotes
the current iteration steps.

The global update of pheromone and heuristic information is performed after
all ants finish a step search according to the following equation.

τ(xu)(t+ 1) =

{
(1− ρ)τ(xu)(t) + ρfit(xu) xu = x
(1− ρ)τ(xu)(t) xu ̸= x

, (24)

η(xu)(t+ 1) =

{
(1− ρ)η(xu)(t) + ρfit(xu) xu = x
(1− ρ)η(xu)(t) xu ̸= x

, (25)

where x denotes the optimal solution in current colony and t denotes the current
iteration steps.

The design of fitness function usually depends on the specific optimization prob-
lem. For maximum optimization of the object function F , the fitness function may
be defined as fit = exp(F), and for minimum optimization of the object function
F , the fitness function may be defined as fit = exp(−F).

2.9 Population assessment and the optimal solution update

Substituting three solutions [Xi1, Xi2, · · · , Xin], [Yi1, Yi2, · · · , Yin], [Zi1, Zi2, · · · , Zin]
described by the ith ant into the fitness function, respectively, we may compute its
fitness, where i = 1, 2, · · · ,m. Let gfitbest denote the best fitness so far, and
gpbest denote the corresponding best ant, fit(pi) = max(fit(Xi), fit(Yi), fit(Zi)),
fitbest = max

16i6m
(fit(pi)), if gfitbest < fitbest then gfitbest = fitbest and gpbest =

pbest.

3. The Implementation Scheme of BQACO

Step1 Ant colony initialization. Include: colony size m, space dimension n, ro-
tation angle δ, pre-specified parameter q0, mutation probability pm, iterative steps
G, pheromone update index α, heuristic information update index β, evaporation

332

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

coefficient 1−ρ. According to equation (3), generate the initial colony, and initial-
ize each ant’s pheromone and heuristic information to a constant. Set the current
iterative step t = 0.

Step2 For each ant, select the target position according to Eqs. (11), compute
the rotation axis according to Eq. (14), compute the rotation matrix according to
Eq. (17), rotate qubit according to Eq. (18) to achieve ant move. Mutate ant by
the Hadamard gates according to mutation probability.

Step3 Derive the ants’ positions by means of projective measurements Eqs.
(5-7), perform solution space transformation according to Eqs. (8-10), compute the
fitness of each ant and its change.

Step4 Perform the local update and the global update of pheromone and heuris-
tic information according to Eqs. (21-25).

Step5 Perform the global maximum solution update, set t = t + 1, if t > G,
then save the optimization results and stop, else go back to step2.

4. The Convergence of BQACO

In this section, considering that the iterative sequence of colony is similar to a finite
homogeneous Markov chain, we use the theory of Markov chains to prove BQACO’s
convergence. Let Qt = {pt1, pt2, · · · , ptm} denote the tth generation colony, where
the ith ant’s coding can be described as follows

pti =

[
cos

θt
i,1

2

eiϕ
t
i,1 sin

θt
i,1

2

∣∣∣∣∣ · · ·
∣∣∣∣∣ cos

θt
i,n

2

eiϕ
t
i,n sin

θt
i,n

2

]
. (26)

For the convergence of BQACO, we have the following conclusions.

Theorem 2 BQACO convergence with probability 1.

Proof Let colony size be m, space dimension be n, the number of digits of θ be
v1, and the number of digits of ϕ be v2. From the above provisions, we know that
the number of states of colony Qt equal to (v1v2)

nm. From BQACO’s update, it is
clear that the colony Qt+1 is only related to the colony Qt. Therefore, the random
process {Qt, t ≥ 1} is a finite homogeneous Markov chain.

Let bpk = max
pk
i ∈Qk

{fit(pki), i = 1, 2, · · · , n} denote the best ant in Qk, s
∗ =

{bp| max
16k6(v1v2)nm

fit(bpk) = fit∗} denote the global optimal solution set, fit∗ de-

note the global best fitness. Let I = { i| bpi ∩ s∗ = ϕ}, where Qi
t denotes that

the colony is in the ith state after t iterative steps, and i = 1, 2, · · · , (v1v2)nm. Let
one-step transition probability of random process {Qt, t > 1} be Pt(i, j) = P (Qi

t →
Qj

t+1).

Because the elite reserved strategy is applied in BQACO, fit(Qj
t+1) > fit(Qi

t).
Hence, when i ̸∈ I and j ∈ I, Pt(i, j) = 0, when i ∈ I and j ̸∈ I, Pt(i, j) > 0.
Suppose Pt(i) denotes the probability that the colony Qt is in the ith state, and let
Pt =

∑
i∈I

Pt(i). According to the nature of the Markov chain, the probability that

the colony Qt+1 is in the jth state can be written as Pt+1 =
∑
i∈I

∑
j∈I

Pt(i)Pt(i, j) +

333

Neural Network World 4/12, 325-341

∑
i ̸∈I

∑
j∈I

Pt(i)Pt(i, j). From Pt =
∑
i∈I

∑
j∈I

Pt(i)Pt(i, j)+
∑
i∈I

∑
j ̸∈I

Pt(i)Pt(i, j), we derive

Pt+1 = Pt −
∑
i∈I

∑
j ̸∈I

Pt(i)Pt(i, j) 6 Pt. Therefrom, lim
t→∞

Pt = 0, lim
t→∞

P (fit(bpt) =

fit∗) = 1 − lim
t→∞

∑
i∈I

Pt(i) = 1 − lim
t→∞

Pt = 1. Namely, BQACO convergence with

probability 1. @
5. Comparative Experiment

To verify the effectiveness of the BQACO, we design the two experiments. In
these experiments, we implemented and evaluated the proposed method in Matlab
(Version 7.1.0.246) on a Windows PC with 2.19 GHz CPU and 1.00 GB RAM,
and we also compared BQACO with double chains quantum genetic algorithm
(DCQGA) in [11] and Bloch quantum-inspired evolutionary algorithm (BQEA) in
[15].

5.1 Function extremum optimization

For function extremum optimization, there already exists a lot of benchmark test
functions. In this section, we select the following four typical 2-dimension functions
as simulation objects. These four functions are complex and there exist a number
of local extreme points in their domain of definition, whose performance of different
algorithms can be investigated by these functions.

(1) Shaffers F5 function

f(xi) =
1

500
+

25∑
j=1

1

j +
2∑

i=1

(xi − aij)6
, (27)

where xi ∈ (−65.536, 65.536),

(akij) =

(
−32 −16 0 16 32

−32 + 16k −32 + 16k −32 + 16k −32 + 16k −32 + 16k

)
,

(aij) = (a0ij a1ij a2ij a3ij a4ij), i = 1, 2, j = 1, 2, · · · , 25, k = 0, 1, 2, 3, 4.

This function has multiple local maximum points, and the global maximum
point is (-32,-32), the global maximum is 1.002. When the optimization result is
greater than 1.000, the algorithm is considered convergence.

(2) Shubert function

f(x, y) =

(
5∑

i=1

i cos[(i+ 1)x+ i]

)
×
(

5∑
i=1

i cos[(i+ 1)y + i]

)
+

0.5
[
(x+ 1.42513)2 + (y + 0.80032)2

]
,

(28)

where x, y ∈ [−10, 10]. This function has 760 local minimum points, and the global
minimum is -186.73090882259. This function can easily fall into local minimum
-186.34. When the optimization result is less than -186.34, the algorithm is con-
sidered convergence.

334

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

(3) Branin function

f(x, y) =

(
x− 5.1

4π2
y2 +

5

π
y − 6

)2

+ 10

(
1− 1

8π

)
cos y + 10, (29)

where x ∈ [0, 15], y ∈ [−5, 10]. This function has a global minimum 0.3979, and
a local minimum 0.4004 that is very close to the global minimum. When the
optimization result is less than 0.4000, the algorithm is considered convergence.

(4) Camel function

f(x, y) = (4− 4x2)x2 − xy − (4− 2.1y2 +
y4

3
)y2, (30)

where x, y ∈ [−10, 10]. This function has a global maximum 1.031628. When the
optimization result is greater than 1.000, the algorithm is considered convergence.

For the above four functions, we use respectively BQACO, DCQGA, BQEA to
perform optimization. In order to reflect the fairness of comparing results, three
algorithms use the same colony size, mutation probability, rotation angle, and
iterative steps. These parameters are set as: colony size m = 20, space dimension
n = 2, iterative steps G = 100, pre-specified parameter q0 = 0.8, evaporation
coefficient 1 − ρ = 0.5, pheromone update index α = 0.5, heuristic information
update index β = 0.5, rotation angle δ = 0.01π, mutation probability pm = 0.001.

In order to manifest the objectivity of the comparison results, for the above four
functions, we use each algorithm to optimize 1000 times, and record convergence
times, average iterative steps, average results, and variance of results. For the case
of convergence, we also record the times that converge to X solutions, Y solution,
and Z solutions, respectively. The experimental results are shown in Tabs. I-IV.
For the Shaffers F5 function, after it is optimized by BQACO, the pheromone
distribution in solution space is shown in Fig. 3.

0
−20

−40
−60

0
−20

−40
−60
0

1

2

3

xy

P
he

ro
m

on
e

Fig. 3 The pheromone distribution of Shaffers F5.

335

Neural Network World 4/12, 325-341

Con. X Y Z average average variance of
Alg.

times times times times steps results results
BQACO 784 311 280 193 66.1220 0.8970 0.0502
BQEA 723 289 266 168 68.7330 0.9044 0.0473
DCQGA 328 174 154 − 89.2410 0.7534 0.1024

Tab. I The optimization results of Shaffer’s F5.

Con. X Y Z average average variance of
Alg.

times times times times steps results results
BQACO 944 343 310 291 61.6470 -186.4801 0.1860
BQEA 543 197 193 153 76.5250 -186.0720 0.7106
DCQGA 334 157 177 − 87.1210 -184.8086 56.1972

Tab. II The optimization results of Shubert.

Con. X Y Z average average variance of
Alg.

times times times times steps results results
BQACO 996 321 286 389 49.8420 0.3990 8.6× 10−7

BQEA 826 266 239 321 58.9750 0.3995 2.5× 10−6

DCQGA 489 242 247 − 80.0120 0.4018 7.8× 10−5

Tab. III The optimization results of Branin.

Con. X Y Z average average variance of
Alg.

times times times times steps results results
BQACO 999 451 431 117 36.5520 1.0143 7.2× 10−4

BQEA 947 360 344 243 44.6050 1.0109 0.0021
DCQGA 658 314 344 − 75.8260 -8.5867 1.2× 104

Tab. IV The optimization results of Camel.

It can be seen from Tabs. I-IV that, for the above four functions, three al-
gorithms have the same sort in the optimization ability, from high to low, in turn,
for BQACO, BQEA, DCQGA. These results can be analyzed as follows.

For DCQGA, individual’s coding is based on the qubit described in unit circle.
Because of only one adjustable parameter, quantum behavior cannot be fully re-
flected. Hence, in the three algorithms, its optimization ability is the lowest.

For BQEA, because individual’s coding is directly based on the Bloch coordi-
nates of qubits, which transform the description of qubit from the unit circle to
Bloch sphere and fully reflect the quantum behavior, the search ability is effectively
improved, which results in the optimization efficiency being obviously superior to
that of DCQGA. In BQEA, because the two parameters θ and φ of a qubit are
respectively adjusted, the best matching of two adjustments needs to be consid-

336

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

ered. However, in BQEA, this best matching is ignored. In other words, when the
current qubit moves toward the target qubit, the path is not the shortest.

For BQACO, ants’ coding directly based on qubits described on Bloch sphere,
by means of projection measurement, the Bloch coordinates of qubits can be easily
obtained. Therefore, BQACO have all the advantages of BQEA. In addition, par-
ticularly noteworthy that, in BQACO two parameters θ and φ of a qubit can be
simultaneously adjusted by means of rotating the current qubit through an angle δ
about the rotation axis. This rotation method can automatically achieve the best
matching of two adjustments. In other words, when the current qubit moves to-
ward the target qubit, the path is the minor arc on the great circle, which is clearly
the shortest. Obviously, this rotation with the best matching of two adjustments
has a higher optimization efficiency. So BQACO is more efficient than BQEA, and
it also is the most efficient in three algorithms. The above analysis is consistent
with the experimental results.

5.2 Fuzzy controller parameters optimization

In the fuzzy control system, the performance of the controller has a significant im-
pact on the performance of system. Fuzzy controller performance to a large extent
depends on the fuzzy control rules and its scalability. Therefore, we can introduce
an adjustable parameter to adjust the control rules, so that the controlled object
can obtain satisfactory control performance. This is the design problem of the fuzzy
controller with a group of adjustable fuzzy rules. In this kind of fuzzy controller
design, the control action depends on the error and error change. To adapt to dif-
ferent requirements of the controlled object by introducing an adjustment factor,
we may obtain a kind of fuzzy control rule with analytical description as follows

u = −⟨αE + (1− α)EC⟩, α ∈ (0, 1). (31)

By adjusting the size of α, we can achieve varying degrees of weighting error and
error change. When the error is large, the main control task is to eliminate error,
at this time, we should increase the error’s weighting. On the contrary, when the
error is small, the main control task is to reduce the overshoot in order to stabilize
the system as soon as possible. Therefore, in the different error levels, there is need
to introduce different weighting factors in order to achieve self-adaptive adjusting
of control rules. Taking the following second-order system for the controlled ob-
ject, and using the step signal as input, we investigate the optimization ability of
BQACO.

F (s) =
20

(2s+ 1)(4s+ 1)
. (32)

The domain of error, error change, and control size is selected as {E} = {EC} =
{u} = {−3,−2,−1, 0, 1, 2, 3}. Taking into account the fuzzy control system in
different system states should have different requirements for the control parameter
α, in this experiment, the α is divided into three levels.

u =

 −⟨α1E + (1− α1)EC⟩ E = 0,±1
−⟨α2E + (1− α2)EC⟩ E = ±2
−⟨α3E + (1− α3)EC⟩ E = ±3

. (33)

337

Neural Network World 4/12, 325-341

Therefore, this study need to optimize the six fuzzy controller parameters such
as quantization factor ke, kec, scale factor ku, adjustment factor α1, α2, α3. With
the help of the ITAE integral performance index, the evaluation function is designed
as follows

f =
1

a+ J(ITAE)
, (34)

where J(ITAE) =
∫∞
0
t|e(t)|dt, a is a small positive number so that the denomina-

tor is not zero.
According to experience, the initial scopes of six controller parameters are given

by ke, kc, ku ∈ (0, 10), α1 ∈ (0, 0.4), α2 ∈ (0.4, 0.8), α3 ∈ (0.8, 1.0). These six pa-
rameters are respectively optimized by three algorithms. The colony size m = 15,
space dimension n = 6, iterative steps G = 50, the other setting is the same as in
the previous experiment. The optimization results of three algorithms are shown
in Tab. V, the ITAE performance comparisons are shown in Fig. 4, and the system
response for step signal input under the control action of three fuzzy controllers
optimized by three algorithms are shown in Fig. 5.

algorithm ke kec ku α1 α2 α3 J(ITAE)
BQACO 4.5036 2.7263 9.9703 0.2468 0.4769 0.9194 3.9503
CQACA 4.2562 3.7794 4.1931 0.3712 0.5059 0.9967 5.4465
BQGA 6.1607 5.6757 6.2983 0.0751 0.4728 0.8917 4.8329

Tab. V Optimization results contrast of fuzzy controller parameters.

0 10 20 30 40 50
0

10

20

30

40

Iterative Steps

J(
IT

A
E

)

BQACO
BQEA
DCQGA

Fig. 4 ITAE integral index comparison.

Tab. V shows that, in the same colony size and iterative steps, BQACO’s
J(ITAE) is the smallest, followed by BQEA and DCQGA. It is clear from Fig. 4,
that the BQACO has obtained the minimum 3.9503 after about 20 iterative steps,
while, the BQEA and DCQGA have respectively obtained 4.8329 and 5.4465 after

338

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

Fig. 5 Tracking response curve comparisons of Fuzzy controllers.

50 iterative steps. Fig. 5 shows that the controller optimized by BQACO has a
faster tracking speed and a less tracking time than that optimized by BQEA and
DCQGA, which shows that BQACO obtains more excellent controller parameters
combination than BQEA and DCQGA, and makes the fuzzy controller have an ex-
cellent control performance. The experimental results show that the optimization
ability of BQACO indeed better than that of BQEA and DCQGA. These results
can be explained as follows.

For DCQGA, qubit contains only one adjustable parameter while qubit contains
two adjustable parameters for BQEA and BQACO. Hence, quantum behavior of
DCQGA cannot be fully reflected, and its optimization ability is inferior to that of
BQEA and BQACO.

For BQEA, the Bloch coordinates of qubits are directly used for individual’s
coding whose quantum behavior is fully reflected, and the search ability is effec-
tively improved. Hence, its optimization efficiency is obviously superior to that of
DCQGA. However, the two parameters θ and φ of a qubit are respectively adjusted
and the best matching of two adjustments is ignored, which limits the optimization
capabilities to further improve.

For BQACO, its qubits are described on Bloch sphere and are directly used
for coding individuals. Using the Pauli matrices, it is easy to obtain the Bloch
coordinates of qubits. Hence, BQACO have all the advantages of BQEA. On the
other hand, two parameters θ and φ of a qubit can be simultaneously adjusted
by means of rotation matrix, and this rotation can automatically achieve the best
matching of two adjustments, which make BQACO more efficient than BQEA.

6. Conclusions

This paper presents a quantum ant colony optimization algorithm based on Bloch
sphere search. The experimental results reveal that the coding method based on

339

Neural Network World 4/12, 325-341

qubits described on Bloch sphere can better simulate the quantum behavior, the
search method based on qubits’ rotating around axises can improve search effi-
ciency, and the integration of the following three aspects of ant colony optimiza-
tion, coding method based on qubits described on Bloch sphere, and qubits rotating
around axises on Bloch sphere, can really improve the optimization ability of the ant
colony optimization algorithms. The advantages and disadvantages of the Bloch
spherical search and the integration of this search method with other intelligent
optimization algorithms are two issues which we need to study in the future.

Acknowledgment

This work was supported by the National Natural Science Foundation of China
(Grant No. 61170132), the Chinese Postdoctoral Science Foundation (Grant Nos.
20090460864, 201003405), the Postdoctoral Science Foundation of Heilongjiang
Province, China (Grant No. LBH-Z09289), and the Scientific Research Founda-
tion of the Education Department of Heilongjiang Province, China (Grant Nos.
11551015, 11551017, 12511009). We also thank the reviewers for providing many
valuable suggestions.

References

[1] Coskun O., Celal O., Filiz S.: Quantum-inspired genetic algorithms, The Artificial Bee
Colony algorithm in training Artificial Neural Network for oil spill detection, Neural Network
World, 21, 6, 2011, pp: 473-492.

[2] Ajit N., Mark M.: Quantum-inspired genetic algorithms, Proceedings of the IEEE Interna-
tional Conference on Evolutionary Computation, Nagoya: IEEE Press, 1996, pp. 61-66.

[3] Han K. H., Kim J. H.: Genetic quantum algorithm and its application to combinational
optimization problem, Proceedings of the IEEE International Conference on Evolutionary
Computation, La Jolla: IEEE Press, 2000, pp. 1354-1360.

[4] Han K. H., Park K. H., Lee C. H.: Parallel quantum-inspired genetic algorithm for combi-
natorial optimization problem. Proceedings of the IEEE International Conference on Evolu-
tionary Computation, Seoul: IEEE Press, 2001, pp. 1422-1429.

[5] Han K. H., Kim J. H.: Quantum-inspired evolutionary algorithm for a class of combinational
optimization, IEEE Transactions on Evolutionary Computing, 6, 6, 2002, pp. 580-593.

[6] Talbi H., Draa A., Batouche M.: A new quantum-inspired genetic algorithm for solving the
travelling salesman problem. Proceedings of the IEEE International Conference on Industrial
Technology, Constantine: IEEE Press, 2004, pp. 1192-1197.

[7] Wang L., Tang F., Wu H.: Hybrid genetic algorithm based on quantum computing for
numerical optimization and parameter estimation, Applied Mathematics and Computation,
171, 2, 2005, pp. 1141-1156.

[8] Zhang G. X., Jin W. D., Hu L. Z.: A novel parallel quantum genetic algorithm, Proceedings
of the International Conference on Parallel and Distributed Computing, Applications and
Technologies, Chengdu: IEEE Press, 2003, pp. 693-697.

[9] Chen H., Zhang J. H., Zhang C.: Chaos updating rotated gates quantum-inspired genetic
algorithm, Proceedings of the International Conference on Communications, Circuits and
Systems, Chengdu: IEEE Press, 2004, pp. 1108-1112.

[10] Yang J. A., Li B., Zhuang Z. Q.: Multi-universe parallel quantum genetic algorithm and
its application to blind-source separation, Proceedings of the International Conference on
Neural Networks and Signal Processing, Nanjing: IEEE Press, 2003, pp. 393-398.

340

Panchi Li, Haiying Wang: Quantum ant colony optimization algorithm based. . .

[11] Li P. C., Song K. P., Shang F. H.: Double chains quantum genetic algorithm with application
to neuro-fuzzy controller design, Advances in Engineering Software, 42, 2011, pp. 875-886.

[12] Balicki J.: An adaptive quantum-based multiobjective evolutionary algorithm for efficient
task assignment in distributed systems, Proceedings of 13th WSEAS International Confer-
ence on Computers, Greece: WSEAS Press, 2009, pp. 417-422.

[13] Perus M.: Neural networks as a basis for quantum associative networks, Neural Network
World, 10, 4, 2000, pp. 1001-1013.

[14] Panchi L., Kaoping S., Erlong Y.: Model and algorithm of neural networks with quantum
gated nodes, Neural Network World, 20, 2, 2010, pp. 189-206.

[15] Li P. C., Li S. Y.: Quantum-inspired evolutionary algorithm for continuous spaces optimiza-
tion based on Bloch coordinates of qubits, Neurocomputing, 72, 2008, pp. 581-591.

[16] Giuliano B., Giulio C., Giuliano S.: Principles of quantum computation and information
(Volume I: Basic concepts), Singapore: World Scientific, 2004, pp. 108-111.

341

