
HANDLING MISSING VALUES

VIA A NEURAL SELECTIVE INPUT

MODEL

Noel Lopes∗, Bernardete Ribeiro†

Abstract: Missing data represent an ubiquitous problem with numerous and di-
verse causes. Handling Missing Values (MVs) properly is a crucial issue, in partic-
ular in Machine Learning (ML) and pattern recognition. To date, the only option
available for standard Neural Networks (NNs) to handle this problem has been to
rely on pre-processing techniques such as imputation for estimating the missing
data values, which limited considerably the scope of their application. To cir-
cumvent this limitation we propose a Neural Selective Input Model (NSIM) that
accommodates different transparent and bound models, while providing support
for NNs to handle MVs directly. By embedding the mechanisms to support MVs
we can obtain better models that reflect the uncertainty caused by unknown val-
ues. Experiments on several UCI datasets with both different distributions and
proportion of MVs show that the NSIM approach is very robust and yields good
to excellent results. Furthermore, the NSIM performs better than the state-of-the-
art imputation techniques either with higher prevalence of MVs in a large number
of features or with a significant proportion of MVs, while delivering competitive
performance in the remaining cases. We demonstrate the usefulness and validity
of the NSIM, making this a first-class method for dealing with this problem.

Key words: Missing Values, Neural Networks, Back-Propagation,
Multiple Back-Propagation

Received: April 17, 2012
Revised and accepted: July 10, 2012

1. Introduction

Incomplete data pose an unavoidable problem for most real-world databases which
often contain missing data [1, 2]. In particular, in domains such as gene expression

∗Noel Lopes
UDI/IPG – Research Unit, Polytechnic Institute of Guarda, Portugal; CISUC – Center for Infor-
matics and Systems of University of Coimbra, Portugal, E-mail: noel@ipg.pt

†Bernardete Ribeiro
Department of Informatics Engineering, University of Coimbra, Portugal; CISUC – Center for
Informatics and Systems of University of Coimbra, Portugal, E-mail: bribeiro@dei.uc.pt

c©ICS AS CR 2012 357

Neural Network World 4/12, 357-370

microarray experiments or clinical medicine, databases routinely lack pieces of in-
formation [3, 4]. Missing Values (MVs) can exist either by design (e.g. a survey
questionnaire may allow people to leave unanswered questions) or by a combination
of several other factors which prevent the data from being collected and/or stored.

The reasons for the prevalence of MVs include, among others, sensors failure,
malfunction of the equipment used to record the data, data transmission problems,
different patients performing different medical diagnosis tests according to their
doctor and insurance coverage, merging two or more databases with a different set
of attributes [5, 6, 7].

Independently of the causes associated to the existence of MVs, the fact is that
most scientific data procedures are not designed to handle them [8]. In particu-
lar in the Machine Learning (ML) area, many of the most prominent algorithms
(e.g. support vector machines, Neural Networks (NNs)) fail to consider MVs at
all. Nevertheless, handling them in a proper manner has become a fundamental
requirement for building accurate models and failure to do so usually results in
models with large errors [5].

To circumvent the Missing Values Problem (MVP), ML algorithms usually rely
on data pre-processing techniques such as imputation for estimating the missing
data. Hence, in this case, estimated data will have the same relevance and cred-
ibility of real-data. Thus, wrong estimates of crucial variables can substantially
weaken the capacity of generalization of the resulting model and originate unpre-
dicted and potentially dramatic results [9]. Moreover, estimation methods such
as imputation were conventionally developed and validated under the assumption
that MVs occur in a random manner. Nevertheless this assumption does not always
hold in practice [3].

In this paper we present a solution for the MVP that does not rely on estimation
methods or any other data pre-processing technique and takes into consideration
the uncertainty produced by the absence of such values. The proposed Neural
Selective Input Model (NSIM) accounts for the creation of different transparent
NN models according to the missing features. The resulting models are bound to
share information among them. This paper extends the work proposed in Lopes
and Ribeiro [10] by presenting a formal approach and conducting additional (and
more exhaustive) tests as well as a statistical analysis to demonstrate the validity
of the proposed strategy as compared to traditional methods.

The remainder of the paper is structured as follows. In the next section we
describe several techniques to address the MVP. In Section 3 we describe the
proposed method. Section 4 presents and discusses the results obtained for well-
known benchmarks with different distributions and proportion of MVs. Finally, in
Section 5 conclusions and future work are addressed.

2. Missing Values Related Work

2.1 Missing data mechanisms

The presence of MVs in data observations is one of the most frequent problems that
researchers face when building ML systems [11]. Given an input matrix χ ∈ IRn×d,
containing n samples and d features, we can build a binary response indicator

358

Lopes N., Ribeiro B.: Handling Missing Values via a Neural Selective Input Model

matrix, τ ∈ {0, 1}
n×d

such that:

τij =

{

1 if χij is observed
0 if χij is missing

. (1)

Assuming we divide χ into the observed input dataset, χobs, containing the vari-
ables (features) for which all values are known, and into the unknown input set,
χmiss containing the variables with MVs:

χ = {χobs,χmiss} (2)

we can define the conditional distribution for the missing data as:

p(τ | χ, ξ) = p(τ | χobs,χmiss, ξ), (3)

where ξ denotes the unknown parameters which define the missing data mecha-
nism [5, 12]. Little and Rubin [13] define three types of missing data mechanisms
according to their causes: Missing At Random (MAR), Missing Completely At
Random (MCAR) and Not Missing At Random (NMAR).

2.1.1 Missing At Random (MAR)

The data are said to be MAR if the causes for their absence are independent of the
missing variables, but traceable or predictable from other observed variables [5]. In
such a case we can define the conditional distribution for the missing data as (4):

p(τ | χobs,χmiss, ξ) = p(τ | χobs, ξ). (4)

Examples of data MAR occur in the following cases:

• While answering questions in a survey, project managers may skip those
related to small projects more often than those related to larger projects,
because they may remember less details about smaller projects [12].

• A sensor occasionally fails due to power outages, preventing the data acqui-
sition process from taking place [5].

In both cases, the cause for the absence is not directly tied to the variables con-
taining the MVs but rather to other external influences. In the first case the MAR
assumption can apply, because the predictor “project size” explains the likelihood
of the value to be missing [12]. Similarly, the power outages in the second case
explain why the sensor data are missing.

2.1.2 Missing Completely At Random (MCAR)

Data are said to be MCAR when the probability that a given variable is missing is
independent of the variable itself and of any other external influences of interest,
i.e. the reason for the MVs is completely random. This condition can be expressed
as (5):

p(τ | χobs,χmiss, ξ) = p(τ | ξ). (5)

359

Neural Network World 4/12, 357-370

Examples of this mechanism include the following [5]:

• A biological sample is accidentally contaminated by the researcher collecting
the data.

• A page from a questionnaire is unintentionally lost.

2.1.3 Not Missing At Random (NMAR)

The alternative for data MAR or MCAR is to consider that the data are NMAR.
This is the case when the pattern of data absence depends on the missing variables
themselves. A typical example of data NMAR is in the case of a personal survey
involving private questions where the nature of some questions will most likely
leave them unanswered. In this scenario, unless the survey can reliably measure
variables that are strongly related to those containing MVs, the MAR and MCAR
assumptions are violated and we must consider that data are NMAR [12].

When data are NMAR valuable information is lost and there is no general
method for handling MVs properly. Otherwise, the missing data mechanism is
termed ignorable and the cause for missing data can simply be ignored, allowing
researchers to simplify the methods used for handling MVs [5].

2.2 Methods for Handling MVs in Machine Learning

According to Laencina et al. [5], there are four types of methods to handle MVs:
case deletion, missing data imputation, model-based procedures and ML methods
for handling missing data. Our view is that those can be further classified into
pre-processing techniques and algorithms with built-in support for MVs. Fig. 1
presents an overview of ML procedures to handle MVs.

Since many algorithms cannot directly handle MVs, a common practice is to
rely on data pre-processing techniques. Usually, this is accomplished by using im-
putation or simply by removing instances (case deletion) and/or features containing

Methods for handling

MVs in machine learning

algorithms built-in

support for MVs
pre-processing

data deletion imputation model based

• case deletion

• feature removal

• single imputation

•multiple imputation

hot deck imputation,

mean imputation, . . .

maximum likelihood

(EM algorithm), . . .

back-propagation

with NSIM

decision trees,

ensembles, . . .

Fig. 1 Overview of the types of techniques for handling MVs in ML.

360

Lopes N., Ribeiro B.: Handling Missing Values via a Neural Selective Input Model

MVs [5, 3, 11, 12, 17, 18, 1]. A review of the methods and techniques to deal with
this problem, including a comparison of some well-known approaches, can be found
in Laencina et al. [5].

Removing features or instances containing a large fraction of MVs is a common
(and appealing) approach for dealing with the MVP, because it is a simple pro-
cess and reduces the dimensionality of the data (therefore potentially reducing the
complexity of the problem). This is a very conservative strategy which guarantees
that errors are not introduced in the dataset [6]. However, it is not applicable when
the MVs cover a large fraction of the instances, or when their presence in essential
attributes is large [18, 6]. In some cases, MVs represent only a small fraction of
the data but they spread throughout a large number of instances, rendering the
option of case deletion inviable. Such scenario usually happens for datasets con-
taining a large number of features with MVs [11]. Moreover, for some problems
the number of samples available is reduced and removing instances with MVs is
simply not affordable. Furthermore, discarding data may damage the reliability of
the derived models [6]: if the eliminated instances are dissimilar to the remaining
ones, the resulting models may not be able to properly capture the underlying data
distribution and consequently will suffer from bad generalization performance [11].
Likewise, by removing features it is assumed that their information is either irrele-
vant or it can be compensated by other variables. However, this is not always the
case and features containing MVs may have critical information which cannot be
compensated by the information embedded in the remaining features.

An alternative for deleting data containing MVs consists of estimating their
values. Naturally, this process can introduce noise into the dataset and if a variable
value is not meaningful for a given set of instances any attempt to substitute the
MVs by an estimate is likely to lead to invalid results [6]. Many algorithms have
been developed for this purpose (e.g. mean imputation, regression imputation,
hot deck imputation, weighted k-nearest neighbor approach, Bayesian principle
component analysis, local least squares) [5, 3, 17, 13]. In the NN domain, an
example of such an approach consists of using a Hopfield network, in which neurons
are considered both inputs and outputs, as an autoassociative memory [14, 15].
Basically, when the Hopfield network receives a noisy or incomplete pattern, it
will iterate to a stable state that best matches the unknown input pattern [15,
16]. Independently of the chosen method, wrong estimates of crucial variables
can substantially weaken the capacity of generalization of the resulting models
and originate unpredicted and potentially dramatic outcomes. Moreover, models
created using imputed (estimated) data consider MVs as if they are the real ones
(albeit their value is not known) and, therefore, the resulting conclusions do not
show the uncertainty produced by the absence of such values [11]. Furthermore,
statistically, the variability or correlation estimations can be strongly biased [11].

Multiple imputation techniques (e.g. metric matching, Bayesian bootstrap)
take into account the variability produced by the absence of MVs, by replacing
each MV with two or more acceptable values, representing a distribution of possi-
bilities [11]. However, although the variability is taken into account, MVs will still
be treated as if they are real. Furthermore, estimation methods were conventionally
developed and validated under the assumption that data are MAR. However, this
assumption does not always hold in practice. In the particular case of microarray

361

Neural Network World 4/12, 357-370

experiments the distribution of missing data is highly non-random due to technical
and/or experimental conditions [3].

Pre-processing methods have the advantage of allowing the same data to be
used by different algorithms. Nevertheless, the burden of pre-processing data,
which already accounts for most of the time that is spent to build an ML system,
is further increased. Moreover, additional knowledge is required to provide a better
foundation for making decisions on choosing strategic options, namely, methods and
tools available to handle MVs.

Finally, these methods result in the loss of information when the absence is by
itself informative. This is the case when the MVs distribution provides valuable
information for the classification task that is lost when the MVs are replaced by
their respective estimates [5]. For example in a bankruptcy real-world problem,
distressed companies tend to omit much more financial information than healthy
ones [9]. A simple explanation for this behavior is that, in general, companies
in the process of insolvency try to conceal their true financial situation from its
stakeholders (suppliers, customers, employees, creditors, investors, etc.). Thus, in
this particular case, the specialized knowledge that a particular set of data variables
is missing can play an important role in the construction of a better model.

Algorithms with built-in support for handling MVs offer numerous advantages
over (more) conventional ones: (i) the amount of time spent in the pre-processing
phase is reduced; (ii) researchers and practitioners are relieved from this expensive
task; (iii) their performance is consistent and does not depend on the knowledge of
proper methods and tools for handling MVs (e.g. some practitioners may rely on
ad-hoc solutions and obtain less reliable models than those built with better skilled
techniques); (iv) noise and outliers are not inadvertently injected in the data and
the uncertainty associated to the missing data is preserved; (v) it can be decided
whether the missing information is informative (or not) resulting in better models.
Despite these advantages, most algorithms are incapable of handling MVs, mostly
because in many cases that would complicate their methods to the point that they
could become impractical and in many situations there would not be any real gains.
Fortunately, this is not always the case and in this paper we present an elegant
and simple solution that empowers NNs with the ability of dealing directly with
the ubiquitous MVP.

3. Proposed Approach

The building blocks of the proposed NSIM are the selective activation neurons of a
multi-layer neural network whose importance and contribution to the NN output
depends on the stimulus presented to the network [19]. Each selective activation
neuron, k, possesses an importance factor, mp

k, that defines its relevance according
to the pattern (sample), p, presented to the network. The output of these neurons,
y
p
k, is given by (6):

y
p
k = m

p
kFk(a

p
k) = m

p
kFk

∑

j

wjky
p
j + θk

 , (6)

362

Lopes N., Ribeiro B.: Handling Missing Values via a Neural Selective Input Model

Fig. 2 Example of a Multiple Feed-Forward (MFF) network. Squares represent
inputs, darker circles (with the symbol ×) multipliers, lighter circles neurons, and

triangles the bias.

where Fk is the neuron activation function, apk its activation, θk the bias and wjk

the weight of the connection between neuron j and neuron k. The farther from zero
m

p
k is the more important the neuron contribution becomes. On the other hand,

a value of zero means the neuron is completely irrelevant for the network output
and one can interpret such a value as if the neuron is not present in the network.

In Lopes and Ribeiro, Multiple Feed-Forward (MFF) networks, which create
a seamless partition of the input space, were proposed [19] yielding good results
in several applications such as financial data analysis [20], analysis of market ori-
entation [21] and character recognition [22]. MFF networks, represented in Fig-
ure 2, combine a main network containing selective activation neurons with a space
network responsible for determining their importance factors. Both networks en-
compassing an MFF are trained together as a whole using the Multiple Back-
Propagation (MBP) algorithm, which can be considered a generalization of the
Back-Propagation (BP) algorithm. Usually this architecture presents better gen-
eralization properties than traditional feed-forward networks trained with the BP
algorithm [23].

MBP uses the same rule for updating the weights as the BP algorithm, i.e. after
presenting a given pattern p the network, the weights are adjusted by (7):

∆pwjk = γδ
p
ky

p
j + α∆lwjk , (7)

where γ is the learning rate, δpk the local gradient of neuron k, ∆lwjk the weight
change for the last pattern l and α the momentum term. However, the equations
of the local gradient for the output, o, and hidden, h, neurons, given respectively

363

Neural Network World 4/12, 357-370

by (8) and (9), differ from the standard neuron equations:

δpo = (dpo − ypo)m
p
oF

′

o(a
p
o) , (8)

δ
p
h = m

p
hF

′

h(a
p
h)

No
∑

o=1

δpowho . (9)

Notice however that if we consider all neurons to be equally important regardless
of the pattern presented to the network, i.e. if we consider all the m

p
k constant

and equal to 1, then equations (6) to (9) are identical to the corresponding BP
equations.

Let us consider that χ =
{

x1,x2, . . . ,xp, . . . ,xn
}

, where xp denotes the input
vector of pattern p, given by the p row of χ. Similarly let us consider that τ =
{

r1, r2, . . . , rp, . . . , rn
}

, where rp denotes the response vector of pattern p, given by
the p row of τ . We may view an NN as a non-linear mapping function, fΛ, which
transforms an input vector xp ∈ IRd into an output vector yp ∈ IRc containing
the associated outputs (fΛ : x 7→ y), where c represents the number of outputs
(classes). Typically fΛ has a set of t parameters (w1, w2, . . . , wt) (network weights)
which are adjusted during the training procedure, seeking to minimize the errors
between the actual output provided by the network and the desired outputs for the
samples in the training dataset.

Assume that r
p
j is a random variable with Bernoulli distribution representing

the act of obtaining the value of xp
j (rpj ∼ Be(qj)). In order to deal with the missing

data values we propose transforming the values xp
j by taking into consideration r

p
j :

x̃
p
j = f(xp

j , r
p
j) . (10)

This transformation can be carried out by a neuron, k, with selective activation
(named selective input), containing a single input, xp

j , and an importance factor
m

p
k identical to r

p
j , in which case (10) can be rewritten as (11) using (6):

x̃
p
j = r

p
jFk(wjkx

p
j + θk) . (11)

If the value x
p
j cannot be obtained then the selective input associated to it

will behave as if it does not exist, since r
p
j will be zero. On the other hand, if

the value of xp
j is available (rpj = 1), the selective input will actively participate

in the computation of the network outputs. This can be viewed as if there are
two different models, bound to each other, sharing information. One model for
the case where the value of xp

j is known and another one for the case where it
cannot be obtained (is missing). Fig. 3 shows the physical model (NSIM) of a
network containing a selective input and the two conceptual models inherent to it.
A network with N selective inputs will have 2N different models bonded to each
other and constrained in order to share information (network weights). This can be
viewed as if we decompose fΛ into sub-functions that share information (parame-
ters) among each other. For the simpler case of a network having a single selective
input, fΛ could be decomposed into two different functions, fΛ1(w1, w2, w3, . . . , ws)
and fΛ2(w1, w2, w3, . . . , ws, ws+1, . . . , wt), that share s parameters (for the network
presented in Fig. 3, s corresponds to the number of weights of the Model 1. It is
guaranteed that all the models share at least s parameters, s being equal to the

364

Lopes N., Ribeiro B.: Handling Missing Values via a Neural Selective Input Model

Fig. 3 Physical and conceptual models of a network with a selective input (k = 3).

number of weights that the network would have if the inputs with MVs were not
considered at all [10].

Although conceptually there are multiple models, from the point of view of the
training procedure there is a single model (NSIM), fΛ with t adjustable parame-
ters (weights). When a pattern is presented to the network, only the parameters
directly or indirectly related to the inputs with known values are adjusted (ob-
serve equations (8) and (9)). Thus, only the relevant (conceptual) models will be
adjusted [10].

The NSIM presents a high degree of robustness, since it is prepared to deal with
faulty sensors. If the system which integrates the NSIM realizes a given sensor has
stopped working it can easily deactivate (discard) all the models inherent to that
specific sensor, by setting r

p
j = 0. Thus, consequently the best model available for

the remaining sensors working properly will be considered. In addition, the NSIM
does not require MAR or MCAR assumptions to hold, since only the known data
is used actively to build the model.

We have implemented a standalone and a Graphics Processing Unit (GPU)
version of the NSIM, integrated with the BP and MBP algorithms. The GPU
version can be found both in the Multiple Back-Propagation software and in the
GPU Machine Learning Library (GPUMLib) [24]. The MBP software which also
implements the standalone version is available at http://dit.ipg.pt/MBP or al-
ternatively at http://sourceforge.net/projects/mbp/, while GPUMLib can be
obtained at http://gpumlib.sourceforge.net/.

365

Neural Network World 4/12, 357-370

Proportion Features MVs per feature

Database n d c of MVs (%) with MVs (avg. %) (stdev. %)

Annealing 898 47 5 49.22 37 (78.72%) 62.52 37.04

Audiology 226 93 24 2.85 23 (24.73%) 11.54 22.43

Breast cancer 699 9 2 0.25 1 (11.11%) 2.29 0.00

Congressional 435 16 2 5.63 16 (100.00%) 5.63 5.41

Hepatitis 155 19 2 5.67 15 (78.95%) 7.18 11.05

Horse colic 368 92 2 15.26 59 (64.13%) 23.79 16.01

Japanese credit 690 42 2 0.97 32 (76.19%) 1.27 0.24

Mammographic 961 5 2 3.37 5 (100.00%) 3.37 3.22

Mushroom 8124 110 2 1.11 4 (3.64%) 30.53 0.00

Soybean 683 77 19 8.73 76 (98.70%) 8.85 6.03

Tab. I Main characteristics, proportion and distribution of the MVs for the UCI
database benchmark experiments, after data pre-processing. Note that the average
(avg.) and the standard deviation (stdev.) of MVs per feature does not include

features without MVs.

4. Results and Discussion

4.1 Experimental Setup

To evaluate the performance of the NSIM, we carried out extensive experiments
on several UCI databases [25] with different distributions and proportion of MVs.
Tab. I presents the main characteristics of the databases and an overview of the
proportion and distribution of the MVs in each database, after pre-processing.

For our experiments we use 5-fold stratified cross validation partitions and for
statistical significance 30 different networks were trained in each partition for each
method and algorithm used.

The results of the NSIM were compared with single imputation and multiple
imputation methods. Multiple imputation is considered one of the most powerful
approaches for estimating MVs [18]. For single imputation the version 3.7.5 of the
Weka software package was used [26]. For multiple imputation the NORM (Multi-
ple imputation of incomplete multivariate data under a normal model) software was
used [27]. NORM uses the Expectation-Maximization (EM) algorithm either with
the maximum-likelihood or the posterior mode estimates. Since the maximum-
likelihood estimate fails for many of the databases in Tab. I, the posterior mode
was used. The EM algorithm is a technique for fitting models to incomplete data,
by capitalizing on the relationship between the unknown parameters associated to
the data model and the missing data itself [7].

4.2 Benchmarks Results

Tab. II presents the macro-average F-Measure performance (%) according to the
algorithms used to train the NNs and the methods chosen for handling the MVs.
As expected, the MBP algorithm performs better than BP regardless of the method
used to handle MVs. On average the F-Measure performance of MBP excels the
one of BP by 0.20%, 0.50% and 0.82% respectively for single imputation, multiple

366

Lopes N., Ribeiro B.: Handling Missing Values via a Neural Selective Input Model

NSIM Single Imputation Multiple Imputation

Database BP MBP BP MBP BP MBP

Annealing 97.13±02.69 97.77±02.55 91.93±06.79 93.22±06.65 93.04±07.40 93.16±06.53

Audiology 56.46±14.16 58.64±13.08 53.73±14.56 55.33±13.25 56.76±14.16 61.07±14.72

Breast cancer 95.05±01.59 95.42±01.69 95.38±01.21 95.53±01.67 95.01±01.53 95.37±01.66

Congressional 93.20±02.07 94.30±01.58 93.84±01.86 94.12±02.24 94.83±01.79 94.70±01.46

Hepatitis 70.10±06.23 73.55±05.99 72.63±07.96 72.20±07.53 75.89±10.35 75.44±09.98

Horse colic 84.31±02.56 84.86±02.44 83.29±02.80 83.11±02.78 87.30±02.06 87.37±02.30

Japanese credit 81.98±02.45 81.50±02.81 81.43±02.53 81.07±02.25 81.27±01.93 81.59±02.45

Mammographic 81.62±01.74 81.07±01.97 79.78±02.28 78.23±02.56 79.93±02.00 79.45±02.36

Mushroom 99.97±00.02 99.96±00.02 99.98±00.02 99.98±00.01 99.97±00.02 99.98±00.01

Soybean 93.43±00.68 94.34±00.94 91.63±01.26 92.87±00.85 92.54±00.68 93.48±00.66

Tab. II Macro-average F-Measure performance (%) according to the methods used
to handle the MVs and the algorithms used to train the NNs.

imputation and NSIM methods. Using the Wilcoxon signed rank test, for the case
of the NSIM, the null hypothesis of BP having an equal or better F-Measure than
the MBP algorithm is rejected at a significance level of 0.05.

Comparing our method with the use of single imputation, we can verify that
our method outperforms single imputation both for the BP and MBP algorithms,
respectively by 0.96% and 1.58% on average. This considerable gain in terms of
F-Measure performance, especially in the case of the MBP algorithm, is validated
by Wilcoxon signed rank test: the null hypothesis of the MBP models created using
single imputation having an equal or better F-Measure than those with the NSIM
is rejected at a significance level of 0.01.

In contrast with single imputation, multiple imputation yields better results
than the NSIM, concerning the BP algorithm (+0.33% on average). However, if
we make use of the statistical evidence and adopt MFF networks trained with the
MBP algorithm, then both approaches will perform similarly (on average multiple
imputation performs better than NSIM by less than 0.02%).

Note however that if we consider only the datasets for which the proportion of
MVs represents at least 5% of the whole data (annealing, congressional, hepatitis,
horse colic and soybean), then concerning the MBP algorithm, our method excels
the multiple imputation on average by 0.14%. These results seem intuitive since in
principle multiple imputation works better when the proportion of MVs is smaller,
in which case more data are available for validating the estimates inferred. These
results assume particular relevance, if we consider that the appropriate choice of
the method for handling MVs is especially important when the fraction of MVs is
large [18].

Another important consideration is the impact that the proportion of features
with MVs has on each method. For example if we look at the datasets contain-
ing a high-proportion of features with MVs then the F-Measure performance of
the NSIM is once again superior to the corresponding performance of multiple
imputation. Considering only the datasets for which at least 3/4 of the features
contain MVs (annealing, congressional, hepatitis, Japanese credit, mammographic
mass and soybean) we can verify that, for the MBP algorithm, on average NSIM

367

Neural Network World 4/12, 357-370

improves the F-Measure performance by 0.79% relatively to multiple imputation.
This shows that our model tends to perform better than multiple imputation when
the MVs spread throughout a large proportion of the features.

Additionally the NSIM presents the best solution in terms of system integration,
in particular for hardware realization. Multiple imputation requires the system to
include not only the multiple imputation algorithm itself, but also all the data
needed for computing the adequate estimates. While tools such as the MBP soft-
ware can generate code for any NN, to our knowledge there are no such tools or
open source code (in general purpose languages) which would allow to easily em-
bed multiple imputation in their NN systems. Moreover, the time and memory
constraints necessary for the imputation process to take place would in many cases
render such systems useless.

5. Conclusions and Future Work

In this paper we present a solution to the MVP that involves the integration of an
NSIM into NNs allowing them to cope directly with MVs. To our best knowledge
this is the first method that allows NNs, otherwise considered to be highly sensitive
to MVs [28], to cope directly with this ubiquitous problem without requiring data
to be pre-processed. Thus, NNs turn out to be positioned as an excellent alternative
to (other) algorithms capable of dealing directly with the MVP (e.g. decision trees,
rule extractors).

Through the use of selective inputs the proposed approach accounts for the
creation of different conceptual models, while maintaining a single physical model.
The NSIM works as if we divide the original training dataset into several subsets
of data containing all the combinations of complete features, one for each set of
maximal independent data without MVs, in order to create an ensemble of NNs.
However, by using a single physical model, the training time of the NSIM is that of a
single model (a fraction of the time that would be required to create the ensemble).
Moreover, by independently training each subset of data we could attain models
with significant discrepancies in terms of classification performance. Most likely
those trained with a small fraction of the original samples would exhibit smaller
performance than those trained with more samples. In this context the NSIM is
also advantageous as it harmonizes the performance of all the models by forcing
conceptual models to share as much parameters as possible.

The proposed solution presents several advantages as compared to traditional
methods for handling MVs, making this a first-class method for dealing with this
crucial problem: (i) it reduces the burden and the amount of time associated to
the pre-processing task by not requiring the estimation of MVs; (ii) it preserves
the uncertainty inherently associated to the MVP allowing the algorithms to dif-
ferentiate between missing and real data; (iii) it does not require MAR or MCAR
assumptions to hold, since only the known data are used actively to build the
models; (iv) unlike pre-processing methods which may inject outliers into the data
and cause undesirable bias, the NSIM uses the best conceptual model depending
exclusively on the available data; (v) the NSIM can infer and take advantage of any
informative information associated to the presence of MVs; (vi) it presents the best
solution in terms of system integration, in particular for hardware realization as it

368

Lopes N., Ribeiro B.: Handling Missing Values via a Neural Selective Input Model

does not require the inclusion of additional and most likely complex systems; (vii)
NSIM shows a high degree of robustness, since it is prepared to deal with faulty
sensors. Deactivating the models inherent to that specific sensor and consequently
using the best model available for the remaining working sensors is a simple opera-
tion; (viii) its classification performance, considering the MBP algorithm, is similar
to state-of-the-art multiple imputation methods and the tests conducted show that
the NSIM performs better than multiple imputation methods when the proportion
of MVs is significant (more than 5% in our tests) or when the prevalence of MVs
affects a large number of features.

Future work will exploit the possibility of using selective inputs on other types
of NNs and extend this work to radial basis functions and recurrent networks.

References

[1] Kotsiantis S. B., Zaharakis I. D., Pintelas P. E.: Machine learning: a review of classification
and combining techniques, Artificial Intelligence Review, Springer Netherlands, 26, 3, 2006,
pp. 159–190.

[2] Karhunen J.: Robust PCA Methods for Complete and Missing Data, Neural Network World,
21, 2011, pp. 357–392.

[3] Tuikkala J., Elo L. L., Nevalainen O. S., Aittokallio T.: Missing value imputation improves
clustering and interpretation of gene expression microarray data, BMC Bioinformatics, 9,
no. 202, 2008.

[4] Markeya M. K., Tourassi G. D., Margolis M., DeLong D. M.: Impact of missing data in
evaluating artificial neural networks trained on complete data, Computers in Biology and
Medicine, 36, 5, 2006, pp. 516–525

[5] Garćıa-Laencina P. J., Sancho-Gómez J.-L., Figueiras-Vidal A. R.: Pattern classification
with missing data: a review, Neural Computing & Applications, 19, 2010, pp. 263–282.

[6] Bramer M. A.: Principles of data mining, Springer-Verlag, 2007.

[7] Nelwamondo F. V., Mohamed S., Marwala T.: Missing data: A comparison of neural network
and expectation maximization techniques, Current Science, 93, 11, 2007, pp. 1514–1521.

[8] Schafer J. L., Graham J. W.: Missing Data: Our View of the State of the Art, Psychological
Methods, 7, 2, 2002, pp. 147–177.

[9] Lopes N., Ribeiro B.: A robust learning model for dealing with missing values in many-core
architectures, Proceedings of the 10th International Conference on Adaptive and Natural
Computing Algorithms – Part II (ICANNGA 2011), LNCS 6594, Springer-Verlag, 2011, pp.
108–117.

[10] Lopes N., Ribeiro B.: A Strategy for Dealing With Missing Values by Using Selective Ac-
tivation Neurons in a Multi-Topology Framework, The 2010 International Joint Conference
on Neural Networks (IJCNN 2010), 2010, pp. 1–5.

[11] López-Molina T., Pérez-Méndez A., Rivas-Echeverŕıa F.: Missing values imputation tech-
niques for neural networks patterns, Proceedings of the 12th WSEAS International Confer-
ence on Systems (ICS 2008), World Scientific and Engineering Academy and Society, 2008,
pp. 290–295.

[12] Mockus A.: Guide to Advanced Empirical Software Engineering, Chapter 7 – Missing Data in
Software Engineering, Forrest Shull, Janice Singer and Dag I.K. Sjberg eds., Springer-Verlag
London, 2008, pp. 185–200.

[13] Little R. J. A., Rubin D. B.: Statistical analysis with missing data. 2nd ed., Wiley, New
Jersey, 2002.

[14] Serpen G.: A heuristic and its mathematical analogue within artificial neural network adap-
tation context, Neural Network World, 15, 2005, pp. 129–136.

369

Neural Network World 4/12, 357-370

[15] Alavala C. R.: Fuzzy Logic and Neural Networks: Basic Concepts & Applications. New Age
International Publishers, 2008.

[16] Wang S.: Classification with incomplete survey data: a Hopfield neural network approach.
Computers & Operations Research, 32, 2005, pp. 2583–2594.

[17] Aikl L. E., Zainuddin Z.: A Comparative Study of Missing Value Estimation Methods:
Which Method Performs Better?, Proceedings of the International Conference on Electronic
Design (ICED 2008), 2008, pp. 1–5.

[18] Ayuyev V. V., Jupin J., Harris P. W., Obradovic Z.: Dynamic Clustering-Based Estimation
of Missing Values in Mixed Type Data, Proceedings of the 11th International Conference on
Data Warehousing and Knowledge Discovery (DaWaK 2009), LNCS 5691, Springer-Verlag,
2009, pp. 366–377.

[19] Lopes N., Ribeiro B.: Hybrid learning in a multi-neural network architecture. Proceedings
of the International Joint Conference on Neural Networks (IJCNN 2001), 4, 2001, pp. 2788–
2793.

[20] Bucur L.: Exploring Chaos with Sparse Kernel Machines, Proceedings of the 12th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC
2010), 2010, pp. 239–242.

[21] Silva M., Moutinho L., Coelho A., Marques A.: Market orientation and performance: mod-
elling a neural network, European Journal of Marketing, 43, 3/4, 2009, pp. 421–437.

[22] Chacko B. P., Babu Anto P.: Character Recognition using Multiple Back Propagation Al-
gorithm, Proceedings of the National Conference on Image Processing, 2010, pp. 209–212.

[23] Lopes N., Ribeiro B.: An efficient gradient-based learning algorithm applied to neural net-
works with selective actuation neurons, Neural, Parallel & Scientific Computations, Dynamic
Publishers, Inc., Atlanta, USA, 11, 2003, pp. 253–272.

[24] Lopes N., Ribeiro B.: GPUMLib: An Efficient Open-Source GPU Machine Learning Li-
brary, International Journal of Computer Information Systems and Industrial Management
Applications, 3, 2011, pp. 355–362.

[25] Frank A., Asuncion A.: UCI Machine Learning Repository, University of California, Irvine,
School of Information and Computer Sciences, http://archive.ics.uci.edu/ml

[26] Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I. H.: The WEKA Data
Mining Software: An Update; SIGKDD Explorations, 11, 1, 2009, pp. 10–18.

[27] Schafer J. L.: NORM: Multiple imputation of incomplete multivariate data under a normal
model, version 2, http://www.stat.psu.edu/~jls/misoftwa.html, 1999.

[28] Ye N. (editor): The handbook of data mining, Lawrence Erlbaum Associates, 2003.

370

