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Abstract: The paper deals with the adaptive mechanisms in differential evolution
(DE) algorithm. DE is a simple and effective stochastic algorithm frequently used
in solving the real-world global optimization problems. The efficiency of the algo-
rithm is sensitive to setting its control parameters. Several adaptive approaches
have appeared recently in order to avoid control-parameter tuning. A new adaptive
variant of differential evolution is proposed in this study. It is based on a combina-
tion of two adaptive approaches published before. The new algorithm was tested
on the well-known set of benchmark problems developed for the special session of
CEC2005 at four levels of population size and its performance was compared with
the adaptive variants that were applied in the design of the new algorithm. The
new adaptive DE variant outperformed the others in several test problems but its
efficiency on average was not better.
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1. Introduction

Optimization problems are frequent part of human activities in many fields. We
address the single-objective optimization problem defined as follows: for a given
objective function f : S → R, S ⊂ Rd we are searching for a point x∗ which is
called the global minimum point when it satisfies

∀x ∈ S, f(x∗) ≤ f(x). (1)

The search space S is closed compact set S =
∏D

i=1[ai, bi]; ai < bi, i =
1, 2, . . . , D. The f(x) can be evaluated at any point x ∈ S.

It is well-known that there is no deterministic algorithm solving this problem
in polynomial time [1] in general. Standard iterative deterministic algorithms tend
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to stop the search in a local minimum nearest to the input starting point. There-
fore, stochastic search is widely used for solving the global optimization problem.
Differential evolution (DE) is one of such algorithms. DE was proposed by Storn
and Price [13, 14] and appeared to be an efficient algorithm in many optimization
problems [10].

The aim of this study is to propose a new adaptive mechanism for DE and com-
pare its performance with other well-performing DE variants on hard benchmark
problems defined for CEC2005 competition in [15]. This adaptive mechanism is
based on a combination of two successful adaptive mechanisms described in lit-
erature [2, 16, 17]. The remaining part of the paper is organized as follows: DE
algorithm and its control parameters are summarized in Section 2. Two adaptive
mechanisms combined in a newly proposed algorithm are described in Sections 3
and 4. The new adaptive variant of DE combining two adaptive mechanisms is
proposed in Section 5. Experiments and their results are presented in Section 6 and
concluding remarks are made in the last section.

2. Differential Evolution

Differential evolution (DE) is a population based algorithm which was introduced
by Storn and Price [14] as a global optimizer for continuous optimization problems
with a real-value objective function. DE works with two alternating generations
of population, P and Q. The points of population are considered as candidates of
solution. At the beginning, the generation P is initialized randomly in the search
domain S, S =

∏D
j=1[aj , bj ], aj < bj , j = 1, 2, . . . , D . A point y, called the trial

point, is computed by mutation and crossover operations for each point xi ∈ P ,
i ∈ {1, 2, . . . ,NP}, where NP is the size of population. The point y is inserted into
new generation Q if f(y) ≤ f(xi), otherwise the point xi enters into Q. After the
new generation Q is completed, Q becomes the old generation P and the whole
process continues until the stopping condition is satisfied. The basic scheme of DE
is shown in a pseudo-code in Algorithm 1.

Algorithm 1 Differential evolution

generate an initial population P = (x1,x2, . . . ,xNP ), xi ∈ S distributed uni-
formly
while stopping condition not reached do
for i = 1 to NP do

generate a trial point y
if f(y) ≤ f(xi) then
insert y into new generation Q

else
insert xi into new generation Q

end if
end for
P := Q

end while
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The trial point y is generated for each point xi in the following way. The
mutant v is computed by some kind of mutation, and then from mutant v and the
current point xi the trial point y is created by a kind of crossover.

Many kinds of mutation have been proposed [3, 6, 14]. The kinds used in the
proposed algorithm are described below. Suppose that r1, r2, and r3 are three
mutually distinct points taken randomly from population P , not coinciding with the
current xi, F > 0 is an input control parameter, and rand(0, 1) is a random number
uniformly distributed between 0 and 1. The mutant vector v can be generated as
follows:

• rand/1
v = r1 + F (r2 − r3) , (2)

• randrl/1
v = rx1 + F (rx2 − rx3) , (3)

where the point rx1 is the best point among r1, r2, and r3, i.e. rx1 =
argmini∈{1,2,3} f(ri), as proposed in [6], and rx2 , rx3 are remaining points
of r1, r2, and r3.

• current-to-rand/1

y = xi + rand(0, 1)× (r1 − xi) + F (r2 − r3) . (4)

Note that the current-to-rand/1 mutation generates a trial point y directly,
because (4) includes so called arithmetic crossover.

The crossover operator constructs the trial vector y from the current individual
xi and the mutant vector v. Two types of crossover were proposed by Storn and
Price in [14]. Binomial crossover combines the elements of vector xi and mutant
vector v using the following rule

yj =

{
vj if Uj ≤ CR or j = l
xij if Uj > CR and j ̸= l ,

(5)

where l is a randomly chosen integer from {1, 2, . . . , D}, and U1, U2, . . . , UD are
independent random variables uniformly distributed in [0, 1). CR ∈ [0, 1] is a
control parameter influencing the number of elements to be exchanged by crossover.
Eq. (5) ensures that y and xi are different at least in one coordinate, even if CR = 0.

In the exponential crossover, the starting position of crossover is also chosen
randomly from 1, . . . , D, but L consecutive elements (counted in circular manner)
are taken from the mutant vector v. Probability of replacing the kth element in the
sequence 1, 2, . . . , L, L ≤ D, decreases exponentially with increasing k. L adjacent
coordinates are changed in exponential variant while in binomial one the changed
coordinates are dispersed randomly over the coordinates 1, 2, . . . , D.

Unlike in binomial crossover the relation between the probability of mutation
and the CR is nonlinear in the exponential crossover. The deviation from the
linearity enlarges with increasing dimension of problem. Probability of mutation
(pm) controls the number of exchanged elements in the crossover, pm × D is the
expected number of mutant elements used in producing offsprings. Zaharie [19, 20]
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derived the relation between pm and CR for exponential crossover. Her result can
be rewritten in the form of polynomial equation

CRD − D pm CR + D pm − 1 = 0 . (6)

The value of CR for given value of pm ∈ (1/D, 1) can be evaluated as the root of
the equation (6).

Compared to the other evolutionary algorithms, DE has a very small number
of control parameters. When the standard differential evolution algorithm is used
to solve a particular optimization problem, the user needs to select a DE strat-
egy, to set up the size of population and the values of F and CR. Using the DE
strategy means a combination of mutation and crossover, usually abbreviated by
DE/m/n/c, where m stands for a kind of mutation, n for the number of differences
of randomly selected points in mutation, and c for the type of crossover. It was
found in many studies that the performance of DE is sensitive to the values of
control parameters, especially to F and CR, and tuning to the values appropriate
for the solved problem can take a lot of time. To avoid this time-consuming process
of parameter setting, many sophisticated and adaptive variants of DE have been
proposed recently [2, 4, 5, 7, 8, 11, 12, 21].

3. Competitive Differential Evolution

Adaptive mechanism for DE algorithm based on the competition of different DE
strategies or F and CR settings was introduced in [16]. Let us have H strategies.
By the strategy we mean the DE strategy together with the fix values of mutation
parameter F and crossover parameter CR.

Any of H strategies can be chosen for the generation of a new trial point y. A
strategy is selected randomly with probability qh, h = 1, 2, . . . , H. At the start,
the values of probability are set up uniformly, qh = 1/H, and they are modified
according to their success rates in the preceding steps of the search process. The
hth strategy is considered successful if it generates such a trial vector y satisfy-
ing f(y) ≤ f(xi). Probabilities qh (h = 1, . . . , H) are evaluated as the relative
frequency according to

qh =
nh + n0∑H

j=1(nj + n0)
, (7)

where nh is the current count of the hth strategy successes, and n0 > 0 is an input
parameter. The setting of n0 > 1 prevents from a dramatic change in qh by one
random successful use of the hth strategy. To avoid degeneration of the strategy-
choosing process, the current values of qh are reset to their starting values if any
probability qh decreases below some given limit δ, δ > 0.

4. jDE

This simple and efficient adaptive mechanism for DE algorithm was proposed by
Brest et al. [2] and nowadays is considered one of the state-of-the-art adaptive DE
algorithms [3]. DE/rand/1/bin is used and the values of F and CR parameters
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are evolutionary self-adapted. Each point of the population has its own values of
parameters F and CR. These values survive when the trial point computed by
them is successful, i.e. the trial vector is inserted into next generation.

The values of F and CR are initialized randomly for each point of the population
from the uniform distributions, CR ∈ [0, 1] and F ∈ [Fl, Fu], Fl and Fu are input
parameters of the algorithm. Before computing a new trial point, the values of F
and CR are mutated with given probabilities τ1 and τ2 by the values from the same
distributions as used for their initialization. If the mutation condition happens, the
mutated values of F and CR are used in generating a trial vector. If the values of
F and CR generate a successful trial point, they are stored in the new generation
together with the trial point instead of the current point xi, otherwise the current
point together with its old values of F and CR continues in the new generation.
Input parameters of jDE algorithm in our experiments are set up to Fl = 0.1,
Fu = 0.9, τ1 = 0.1, and τ2 = 0.1 as applied in [2].

5. New Adaptive DE Algorithm

The adaptive mechanism of the newly proposed algorithm combines the evolution-
ary adaptation of F and CR used in jDE algorithm [2] with the strategy competition
proposed in competitive differential evolution [16]. Three DE strategies compete
and the F and CR parameters are adapted during the search process for each strat-
egy separately. In the proposed variant, called comp3jDE hereafter, the following
different DE strategies are used:

• DE/rand/1/bin using mutation according to (2) together with binomial cross-
over,

• DE/randrl/1/exp using mutation according to (3) together with exponential
crossover,

• DE/current-to-rand/1 using mutation according to (4) without any additional
crossover.

This combination of strategies was chosen due to the fact that each of them is
supposed to have different performance for different optimization problems [8].

Each point of population has own F and CR parameters for each DE strategy,
i.e. five parameters are connected to each point of the population, namely F ,
CR for DE/rand/1/bin strategy, F and CR for DE/randrl/1/exp strategy, and F
for DE/current-to-rand/1 strategy. These three DE strategies compete according
to the rules described in Section 3, and parameters of each DE strategy are self-
adapted by the mechanism of jDE described in Section 4.

6. Experiments and Results

The algorithms were tested on 25 benchmark functions defined for CEC2005 com-
petition and the experiments were carried out in accordance with the suggestions
given in [15]. This benchmark is often required by editors when the performance
of a new algorithm is demonstrated in a publication. 25 independent runs for each
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Functions ε

f1 – f5 1× 10−6

f6 – f16 1× 10−2

f17 – f25 1× 10−1

Tab. I Required accuracy ε for the benchmark functions.

benchmark function and each algorithm were carried out. Each run was stopped
if the number of function evaluation FES = 3 × 105 was achieved. The function
error value (defined as f(xmin) − f(x∗), where xmin is the solution found in the
run and x∗ is the global minimum of the benchmark function [15]) was computed
in each run.

In order to find the influence of the population size on the performance of the
algorithms, comp3jDE and jDE algorithms were tested at four levels of population
size, NP = 30, 60, 90, 120. The means and the standard deviations of the function
error values are given in Tabs. V and VI in Appendix.

median rank
func. NP=30 NP=60 NP=90 NP=120 NP=30 NP=60 NP=90 NP=120

f1 0 0 0 0 2.5 2.5 2.5 2.5
f2 0 0 1.50E-06 4.58E-05 1.5 1.5 3 4
f3 1.44E+05 1.24E+05 1.43E+05 1.99E+05 2 2 2 4
f4 2.97E+00 9.74E-03 1.90E-02 8.14E-02 4 2.5 2.5 3
f5 1.49E+03 8.97E+02 3.45E+02 3.87E+02 4 3 1.5 1.5
f6 0 4.79E-01 8.72E+00 1.41E+01 1.5 1.5 3 4
f7 0 1.48E-02 0 0 3.5 3.5 1.5 1.5
f8 2.09E+01 2.09E+01 2.09E+01 2.10E+01 2.5 2.5 2.5 2.5
f9 0 0 0 0 4 2 2 2
f10 3.18E+01 4.21E+01 4.81E+01 5.53E+01 1 2 3 4
f11 2.53E+01 2.65E+01 2.73E+01 2.81E+01 1.5 1.5 3.5 3.5
f12 4.60E+03 3.26E+03 1.47E+04 1.52E+04 1.5 1.5 3.5 3.5
f13 9.93E-01 1.31E+00 1.48E+00 1.63E+00 1 2.5 2.5 4
f14 1.27E+01 1.29E+01 1.30E+01 1.31E+01 1 3 3 4
f15 400 400 400 400 2.5 2.5 2.5 2.5
f16 7.00E+01 6.52E+01 6.75E+01 7.35E+01 3 1 3 3
f17 9.10E+01 1.04E+02 1.20E+02 1.35E+02 1.5 1.5 3.5 3.5
f18 9.07E+02 9.04E+02 9.04E+02 9.04E+02 4 2 2 2
f19 9.07E+02 9.05E+02 9.04E+02 9.04E+02 4 3 1.5 1.5
f20 9.07E+02 9.05E+02 9.04E+02 9.04E+02 4 2 2 2
f21 5.00E+02 5.00E+02 5.00E+02 5.00E+02 2.5 2.5 2.5 2.5
f22 8.81E+02 8.84E+02 8.76E+02 8.67E+02 2.5 2.5 2.5 2.5
f23 5.34E+02 5.34E+02 5.34E+02 5.34E+02 4 2 2 2
f24 200 200 200 200 4 2 2 2
f25 2.13E+02 2.11E+02 2.11E+02 2.10E+02 4 3 1.5 1.5

average rank 2.70 2.22 2.44 2.76

Tab. II Comparison of jDE variants using different levels of the population size.
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Comparison of DE variants using different levels of the population size was
carried out by one-way analysis of variance, separately for each type of algorithm
(comp3jDE and jDE ) and each benchmark function. Due to the violation of normal-
ity assumptions in most test problems the non-parametric Kruskal-Wallis method
was applied together with non-parametric multiple comparison. The required ac-
curacy of solution is defined for the benchmark functions in [15], see Tab. I. The
solutions satisfying the prescribed accuracy are considered equivalent and they were
replaced by zero before starting the non-parametric comparison. The medians of
variants with various levels of the population size and the rank of variant’s perfor-
mance based on the results of the multiple comparison are presented in Tabs. II and
III. If there are two or more variants not differing significantly, they are assigned
by their average rank. As we can see in Tab. II, jDE algorithm performed best at
NP = 60, where the average rank is the smallest (2.22), while comp3jDE showed
the best performance with NP = 120, where the average rank is 1.84.

median rank
func. NP=30 NP=60 NP=90 NP=120 NP=30 NP=60 NP=90 NP=120

f1 0 0 0 0 4 2 2 2
f2 8.76E-02 0 0 0 4 2 2 2
f3 1.65E+06 8.20E+05 5.12E+05 3.91E+05 4 3 1.5 1.5
f4 2.69E+03 2.97E+01 2.76E-02 5.00E-05 4 3 2 1
f5 5.66E+03 3.47E+03 2.54E+03 2.25E+03 4 3 1.5 1.5
f6 8.21E+01 1.18E+01 1.65E+01 1.75E+01 4 2 2 2
f7 1.48E-02 1.23E-02 0 1.97E-02 2.5 2.5 2.5 2.5
f8 2.10E+01 2.09E+01 2.09E+01 2.09E+01 2.5 2.5 2.5 2.5
f9 3.98E+00 0 0 0 4 3 1.5 1.5
f10 9.55E+01 5.47E+01 4.58E+01 3.48E+01 4 2.5 2.5 1
f11 2.14E+01 1.76E+01 1.37E+01 1.25E+01 4 3 1.5 1.5
f12 1.18E+04 5.60E+03 3.52E+03 4.42E+03 4 2 2 2
f13 1.24E+00 1.63E+00 1.86E+00 1.95E+00 1 2.5 2.5 4
f14 1.21E+01 1.24E+01 1.26E+01 1.27E+01 1 2 3.5 3.5
f15 4.17E+02 4.00E+02 4.02E+02 4.00E+02 2.5 2.5 2.5 2.5
f16 1.58E+02 7.45E+01 6.08E+01 5.32E+01 4 3 1.5 1.5
f17 1.17E+02 7.35E+01 6.25E+01 5.44E+01 4 3 1.5 1.5
f18 9.56E+02 9.19E+02 9.15E+02 9.09E+02 4 3 1.5 1.5
f19 9.38E+02 9.20E+02 9.11E+02 9.11E+02 4 3 1.5 1.5
f20 9.46E+02 9.16E+02 9.14E+02 9.08E+02 4 2.5 2.5 1
f21 1.18E+03 5.00E+02 5.00E+02 5.00E+02 4 3 1.5 1.5
f22 9.51E+02 9.22E+02 8.99E+02 9.04E+02 3.5 3.5 1.5 1.5
f23 1.06E+03 5.57E+02 5.40E+02 5.34E+02 4 3 1.5 1.5
f24 200 200 200 200 4 2 2 2
f25 2.28E+02 2.13E+02 2.13E+02 2.12E+02 4 3 1.5 1.5

average rank 3.56 2.66 1.94 1.84

Tab. III Comparison of comp3jDE variants using different levels of the population
size.

The best performing jDE and comp3jDE variants were compared with a com-
petitive DE variant. This DE variant (denoted b6e6rl) is described in [18] and it
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was also successfully tested on CEC2005 benchmark [9]. The comparison was again
carried out with the use of non-parametric one-way analysis of variance, separately
for each benchmark function. The results of the comparison are given in Tab. IV.
According to the average rank, the most successful algorithm was b6e6rl followed
by jDE, and comp3jDE was the worst. However, when counting the number of win-
ning positions, comp3jDE with three wins was the second best after b6e6rl with
5 wins, while standard jDE achieved only one win. On other hand, jDE was the
the worst only twice, while comp3jDE was outperformed by the other two algo-
rithms in comparison 10 times. The proposed combination of three strategies in
the adaptive mechanism is beneficial for some optimization problems but in spite
of expectations it is less robust compared to jDE using only one strategy.

median rank
func. b6e6rl60 jDE60 comp3jDE120 b6e6rl60 jDE60 comp3jDE120

f1 0 0 0 2 2 2
f2 0 0 0 2 2 2
f3 7.69E+04 1.24E+05 3.91E+05 1 2 3
f4 0 9.74E-03 5.00E-05 1 3 2
f5 2.87E+02 8.97E+02 2.25E+03 1 2 3
f6 0 4.79E-01 1.75E+01 1 2 3
f7 0 1.48E-02 1.97E-02 1 2.5 2.5
f8 2.10E+01 2.09E+01 2.09E+01 2 2 2
f9 0 0 0 2 2 2
f10 6.52E+01 4.21E+01 3.48E+01 3 1.5 1.5
f11 2.66E+01 2.65E+01 1.25E+01 2.5 2.5 1
f12 1.63E+04 3.26E+03 4.42E+03 3 1.5 1.5
f13 1.42E+00 1.31E+00 1.95E+00 2 1 3
f14 1.27E+01 1.29E+01 1.27E+01 1.5 3 1.5
f15 400 400 400 1.5 1.5 3
f16 9.51E+01 6.52E+01 5.32E+01 3 2 1
f17 1.38E+02 1.04E+02 5.44E+01 3 2 1
f18 9.05E+02 9.04E+02 9.09E+02 1.5 1.5 3
f19 9.05E+02 9.05E+02 9.11E+02 1.5 1.5 3
f20 9.05E+02 9.05E+02 9.08E+02 1.5 1.5 3
f21 5.00E+02 5.00E+02 5.00E+02 2 2 2
f22 8.87E+02 8.84E+02 9.04E+02 1.5 1.5 3
f23 5.34E+02 5.34E+02 5.34E+02 1.5 1.5 3
f24 200 200 200 2 2 2
f25 2.11E+02 2.11E+02 2.12E+02 2 2 2

average rank 1.84 1.92 2.24
# wins 5 1 3

Tab. IV Comparison of the newly proposed algorithm with two well-performing
adaptive DE variants.

Rates of successful use of DE strategies in comp3jDE using NP = 120 were
monitored in 20 periods of the search process. The average number of success
in 25 runs was computed in each period for each strategy. It was observed that
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the development of the strategy frequencies can be classified into seven different
categories:

• f2–f7 and f12 – The overall success rate is constant through the search pro-
cess, DE/current-to-rand/1 was used most frequently and DE/rand/1 least
frequently. The development is almost the same as for f6 depicted in Fig. 1a
for all those functions.

• f18–f20 – The overall success rate at the beginning is about 1/3 and slightly
decreases and then it increases up to about 50% till the end of the search.
The rates of strategies are ordered the same way as in the previous category.
The development is similar to f18 depicted in Fig. 1b.

• f1, f21, f24 – At the beginning, the overall success rate is almost 50% and
decreases to zero in the middle of the search, then the population development
stagnates either due to the correct solution is found in the case of f1 or
population is not able to find any point substantially better. The development
is almost the same as for f1 depicted in Fig. 1c.

• f13, f22, f23, f25 – The overall success rate at the beginning is about 1/3 and
decreases rapidly to less 5%. In the case of f13, the DE/randrl/1/exp is the
most frequent strategy, while the DE/current-to-rand/1 is the most frequent
strategy for the other functions. The development for f23 is depicted in
Fig. 1d.

• f10, f11, f15–f17 – The overall success rate at the beginning is less than 5%,
then it increases up to about 1/3 at the end of the search. DE/current-to-
rand/1 and DE/randrl/1/exp are used more frequently than DE/rand/1/bin.
The typical development is shown for f11 in Fig. 1e.

• f9 – At the beginning, the overall success rate is about 10% and increases up
to 50% in the middle, then decreases to zero because the correct solution is
found, see Fig. 1f. DE/randrl/1/exp is the most frequent strategy.

• f8, f14 – Very low success rate at the beginning and even decreasing over the
whole search. The typical development is shown for f14 in Fig. 1g.

7. Conclusion

A new adaptive DE algorithm (comp3jDE ) combining two adaptive mechanisms
successfully applied in former experimental studies [2, 17] was proposed and exper-
imentally tested. The novel algorithm outperformed the standard jDE algorithm
in several CEC2005 benchmark problems but its efficiency on average was worse
compared to the standard jDE and b6e6rl variant of adaptive DE.

The combination of strategies selected to comp3jDE was appropriate for solving
some problems but not suitable for others. The different development of strategy
success for various benchmark functions indicates that the combination of the three
strategies chosen to this variant is too greedy for some problems, where the total
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a) function f6 b) function f18
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c) function f1 d) function f23
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e) function f11 f) function f9
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g) function f14
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Fig. 1 The development of rates of DE strategy successes in comp3jDE for selected
functions.
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success rates decrease to very small values. Due to the fact the search process
tends to the stagnation because the population is not able to move towards better
candidates of the solution and continuation of search becomes ineffective. Never-
theless, a combination of competing strategies within the jDE frame of evolutionary
control-parameter adaptation is a promising way towards new adaptive DE vari-
ants. A proper selection of suitable strategies into such combined adaptive model
will be addressed in our future research.
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Appendix

NP=30 NP=60 NP=90 NP=120
func. mean std mean std mean std mean std

f1 8.94E+00 2.83E+01 3.17E−09 1.58E−08 6.37E−14 1.89E−14 6.59E−14 2.13E−14
f2 6.93E+00 3.06E+01 2.22E−07 8.60E−07 4.37E−09 1.06E−08 1.46E−08 6.48E−08
f3 1.80E+06 8.90E+05 8.95E+05 6.23E+05 5.84E+05 2.71E+05 4.41E+05 2.16E+05
f4 3.72E+03 3.03E+03 9.56E+01 1.81E+02 2.10E−01 5.93E−01 2.89E−03 5.94E−03
f5 5.48E+03 1.16E+03 3.44E+03 6.25E+02 2.67E+03 5.80E+02 2.25E+03 6.08E+02
f6 4.04E+06 1.46E+07 4.45E+04 2.04E+05 2.89E+01 3.48E+01 9.29E+01 3.29E+02
f7 1.64E+00 8.10E+00 2.37E−02 2.55E−02 5.32E−02 1.77E−01 2.54E−02 2.17E−02
f8 2.09E+01 4.66E−02 2.09E+01 4.93E−02 2.09E+01 4.88E−02 2.09E+01 5.96E−02
f9 6.92E+00 9.93E+00 4.38E−01 7.64E−01 4.55E−14 2.32E−14 3.98E−02 1.99E−01
f10 1.02E+02 4.63E+01 5.29E+01 1.20E+01 4.85E+01 1.73E+01 3.60E+01 1.25E+01
f11 2.14E+01 3.02E+00 1.73E+01 2.56E+00 1.41E+01 2.83E+00 1.24E+01 3.99E+00
f12 1.30E+04 8.43E+03 9.36E+03 1.18E+04 5.86E+03 5.44E+03 7.18E+03 9.90E+03
f13 1.27E+00 2.18E−01 1.61E+00 1.37E−01 1.85E+00 1.69E−01 2.05E+00 2.56E−01
f14 1.18E+01 7.34E−01 1.22E+01 5.30E−01 1.26E+01 2.30E−01 1.26E+01 3.47E−01
f15 4.25E+02 7.95E+01 4.05E+02 8.14E+01 4.17E+02 6.84E+01 4.09E+02 6.44E+01
f16 1.69E+02 9.80E+01 1.29E+02 1.21E+02 6.03E+01 1.24E+01 6.70E+01 7.03E+01
f17 2.17E+02 1.69E+02 1.06E+02 7.94E+01 8.82E+01 7.89E+01 7.38E+01 7.67E+01
f18 9.59E+02 4.96E+01 9.16E+02 3.86E+01 8.94E+02 4.82E+01 8.84E+02 4.84E+01
f19 9.48E+02 4.92E+01 9.06E+02 4.85E+01 8.96E+02 4.35E+01 9.02E+02 3.11E+01
f20 9.46E+02 3.67E+01 9.05E+02 4.91E+01 9.16E+02 1.22E+01 8.88E+02 4.53E+01
f21 9.79E+02 3.36E+02 5.93E+02 2.27E+02 5.27E+02 1.34E+02 5.14E+02 7.03E+01
f22 9.45E+02 3.95E+01 9.24E+02 2.17E+01 8.96E+02 2.15E+01 8.99E+02 2.41E+01
f23 9.92E+02 2.43E+02 6.44E+02 1.88E+02 6.12E+02 1.63E+02 5.41E+02 1.23E+01
f24 3.29E+02 3.09E+02 2.00E+02 4.65E−12 2.00E+02 2.23E−12 2.00E+02 1.63E−12
f25 3.17E+02 2.76E+02 2.14E+02 1.68E+00 2.13E+02 1.47E+00 2.12E+02 1.31E+00

Tab. V Means and standard deviations of the function error values of comp3jDE
at different levels of the population size.
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NP=30 NP=60 NP=90 NP=120
func. mean std mean std mean std mean std

f1 2.96E−14 2.90E−14 2.27E−15 1.14E−14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 1.25E−11 1.49E−11 2.22E−08 4.27E−08 2.07E−06 2.08E−06 7.95E−05 1.04E−04
f3 1.55E+05 8.85E+04 1.67E+05 1.15E+05 1.61E+05 7.90E+04 2.10E+05 8.72E+04
f4 2.01E+02 7.45E+02 8.86E−02 1.84E−01 1.72E−01 4.71E−01 1.55E−01 1.72E−01
f5 1.57E+03 5.84E+02 9.29E+02 4.14E+02 5.54E+02 4.85E+02 3.88E+02 2.46E+02
f6 1.12E+00 1.83E+00 1.42E+00 1.85E+00 1.58E+01 2.04E+01 3.25E+01 2.77E+01
f7 2.08E−02 1.89E−02 1.97E−02 1.30E−02 1.28E−02 7.37E−03 8.77E−03 4.27E−03
f8 2.09E+01 6.45E−02 2.09E+01 4.17E−02 2.09E+01 6.14E−02 2.09E+01 5.09E−02
f9 2.79E−01 5.39E−01 3.98E−02 1.99E−01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f10 3.41E+01 5.88E+00 4.12E+01 6.34E+00 4.89E+01 7.95E+00 5.78E+01 1.00E+01
f11 2.47E+01 3.72E+00 2.64E+01 2.12E+00 2.74E+01 1.61E+00 2.80E+01 1.69E+00
f12 6.60E+03 6.33E+03 6.12E+03 5.90E+03 1.36E+04 7.43E+03 1.35E+04 6.17E+03
f13 9.95E−01 1.13E−01 1.28E+00 1.05E−01 1.45E+00 1.44E−01 1.65E+00 1.21E−01
f14 1.27E+01 3.42E−01 1.28E+01 2.78E−01 1.29E+01 2.06E−01 1.30E+01 1.97E−01
f15 3.40E+02 1.14E+02 3.49E+02 1.02E+02 3.88E+02 5.26E+01 3.60E+02 8.55E+01
f16 1.52E+02 1.45E+02 8.06E+01 6.87E+01 6.98E+01 7.73E+00 8.03E+01 2.85E+01
f17 1.41E+02 1.23E+02 1.10E+02 3.38E+01 1.32E+02 4.20E+01 1.34E+02 1.57E+01
f18 9.08E+02 3.07E+00 9.05E+02 1.26E+00 9.04E+02 8.47E−01 9.05E+02 1.06E+00
f19 9.07E+02 2.45E+00 9.05E+02 1.10E+00 9.05E+02 1.24E+00 9.04E+02 6.13E−01
f20 9.07E+02 2.72E+00 9.05E+02 1.01E+00 9.05E+02 1.05E+00 9.04E+02 8.80E−01
f21 5.00E+02 1.16E−13 5.00E+02 1.16E−13 5.00E+02 1.16E−13 5.00E+02 1.16E−13
f22 8.78E+02 1.69E+01 8.81E+02 1.34E+01 8.76E+02 1.68E+01 8.69E+02 1.95E+01
f23 5.41E+02 3.42E+01 5.34E+02 3.67E−04 5.34E+02 2.53E−04 5.34E+02 2.81E−04
f24 2.00E+02 1.13E−12 2.00E+02 0.00E+00 2.00E+02 0.00E+00 2.00E+02 0.00E+00
f25 2.13E+02 1.75E+00 2.12E+02 1.13E+00 2.11E+02 5.64E−01 2.10E+02 7.49E−01

Tab. VI Means and standard deviations of the function error values of jDE at
different levels of the population size.
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