ON POSITIONED ECO-GRAMMAR SYSTEMS
AND PURE GRAMMARS OF TYPE 0

Miroslav Langer’ Alica Kelemenovd*

Abstract: In this paper we extend our results given in [5] where we compared PEG
systems with pure regulated context-free grammars (see [3]). We will show that the
family of languages generated by the pure grammars of type 0 is a proper subclass of
the family of languages generated by positioned eco-grammar systems. We present
a way how to coordinate parallel behavior of agents with one-sided context in a
PEG system in order to simulate the derivation step in a pure grammar of type
0 determined by a single rule which replaces an arbitrarily long string by another
one. Related results concerning PEG systems and pure languages can be found in

[6].

Key words: Fco-grammar systems, positioned eco-grammar systems, pure
grammars

Receiwved: July 15, 2012
Revised and accepted: March 28, 2013

1. Introduction

Eco-grammar systems represent grammar systems which were motivated by the
behavior of ecosystems. They were introduced in 1994 (see [2]) in order to describe
evolving environment and community of agents together with the interplay between
them. We refer to the paper [1] for all introductory informal and formal comments
and results connected with eco-grammar systems.

Positioned eco-grammar systems (PEG systems, for short) were introduced in
[8] as a variant of the eco-grammar systems. Motivation for introducing the PEG
systems and their main difference from the original eco-grammar systems is that
we focus on the embodiment of the agents and their presence in the environment.
Actions of the agent are strictly determined by its position in the environment, by
the symbol located immediately next to the position of the agent.

PEG systems combine approaches known from the study of the above mentioned
eco-grammar systems and PM-colonies (see [10]). The environment of the PEG

*Miroslav Langer, Alica Kelemenova
Institute of Computer Science and Research Institute of the IT4 Innovations Centre of Excel-
lence, Silesian University, Bezrucovo ndm. 13, 74601 Opava, miroslav.langer@fpf.slu.cz,
alica.kelemenova@fpf.slu.cz

©ICS AS CR 2013 81

Neural Network World 2/13, 81-91

system is represented by 0L scheme like in the eco-grammar systems. Similarly
as in PM-colonies, the presence of each agent in the environment is given by its
identifier. Agent rules allow replacing the agent identifier together with one of its
neighbouring environmental symbol by a string composed of environmental symbols
and agent identifiers.

PEG systems bring new view to the investigation of the interplay between the
community of agents and the environment. Our approach allows studying local
changes in evolving environment caused by agents. Moreover, the position of an
agent is strictly given by the special symbol and we are able to predict its behavior
and control the evolution of the environment as well. Actions of agents have priority
over the development of the environment and they are synchronized in a totally
parallel way.

As usual, we use a formal language for representation of all the states of the
PEG systems which are reachable from the starting string, the axiom. A natural
and basic task is to determine the position of the family of PEG languages in known
hierarchies of languages and compare it with other language classes.

In [5] we compared generative power of the PEG systems and generative power
of the pure regulated context-free grammars (see [3]). Main results of the pa-
per state that families of pure programmed context-free languages, pure matrix
context-free languages and pure random context context-free languages are prop-
erly included in the family of PEG languages. We did not consider appearance
checking in the regulated context-free grammars in [5].

In [6] we looked for the relation between the regulated pure context-free fami-
lies with appearance checking and the family of PEG languages. To simulate ap-
pearance checking we have to modify slightly a PEG system by adding boundary
markers to get BPEG systems. After such a modification we proved that each of
the families of pure programmed context-free languages with appearance checking,
pure matrix context-free languages with appearance checking, and pure random
context context-free languages with appearance checking are properly included in
the family of BPEG languages.

The goal of the present paper is to compare family of languages generated by
the pure grammars of type 0 and PEG languages. While in previous papers the
advantages of the context-free rules were used, here we emphasize that we can
coordinate behavior of the agents with one-sided single letter context and simulate
the derivation of the grammar with rules rewriting arbitrarily long substrings of
the environment. Thus we show that the family of languages generated by the
pure grammars of type 0 constitutes a proper subclass of the family of languages
generated by the positioned eco-grammars systems.

The structure of the paper is as follows: In Section 2 the reader can find pre-
liminaries on pure grammars of type 0 and their language class. Also Lindenmayer
systems are reviewed in this part of the paper. They will be used to describe
behavior of the environment of the PEG system.

Definitions of the positioned eco-grammar system are singled out and illustrated
in Section 3.

Main theorem is proved in detail in Section 4. Simulation of the derivation
process in pure grammar of type 0 by that of PEG system will be realized by
several specialized agents. Before we present all the technical details of formal

82

Langer M., Kelemenova A.: On PEG Systems and Pure Grammars of Type 0

proof we will describe basic ideas of the proof and the roles of individual agents
informally.

We assume that the reader is familiar with the formal language theory including
Lindenmayer systems (see [7, 11]) and pure grammars (see [3, 4]).

2. Preliminaries on Formal Grammars

In order to introduce main object of this paper, the positioned eco-grammar sys-
tems, we recall the notion of Lindenmayer systems which form their substantial
parts and also the notion of the pure grammars, another basic notion of the paper.

In the classical Chomsky classification of formal grammars the alphabet of a
grammar is divided into two disjoint subsets, terminal and non-terminal symbols.
The language generated by Chomsky grammar contains words composed of the
terminal symbols only. The intermediate sentential forms, i.e. strings generated as
intermediate steps in the derivation, are not included in the language.

If we consider pure grammars, we do not divide the alphabet into subsets of
terminal and non-terminal symbols. The language generated by the pure gram-
mar contains all strings obtained from the axiom during the derivation. It means
that the language contains also the procedure of generating the language, thus
the strings match the sentential forms in the Chomsky classification of grammars.
Languages generated by the pure grammars are called pure languages or also the
languages of the sentential forms.

Definition 1 A pure grammar of type 0 is a triplet G = (V, P, S), where
o V is a finite nonempty alphabet,
e P is a finite set of rules of type u — w,u € VT w e V*,

e S C VT is a finite set of the axzioms.

Definition 2 A derivation step in a pure grammar of type 0 is a binary relation
= defined as follows: v = y forx € VT, y € V*, iff x = z1uz0,y = z1w22 and
u—weE P, 21,20 € V",

Definition 3 A language defined by the pure grammar G of type 0 is a set L(G) =
{y:x=*y,x € S}, where =* is reflexive and transitive closure of the relation =.

The class of all languages defined by the pure grammars of type 0 is denoted
by L(pRE).

Lindenmayer systems, L-systems for short, are pure parallel grammars. Lin-
denmayer systems were introduced by Aristid Lindenmayer in 1968 as an attempt
to describe growth of the multicellular organisms.

The simplest type of the L systems is the form of L systems with no interaction,
the 0L systems for short. The alphabet of the 0L system is not divided into subsets
of terminal and non-terminal symbols as well. The rules of the 0L system are
context-free.

Definition 4 A 0L system is triplet G = (V, P,wq), where

83

Neural Network World 2/13, 81-91

o V is finite nonempty alphabet,
o P is finite nonempty set of rules of the type a — «, wherea € V and a € V*,

o wy € V7T is the aziom of the system.

Definition 5 A derivation step in 0L system is a binary relation = defined as
follows: ajas...an = 5182 ... 0Bn, where:

® a1,02,...,a, € V,
® a1 — B1,a3 = Ba,...,an — By € P are rules of the 0L system.

Definition 6 A language defined by the OL system G is a set L(G) = {w: w € V*,
wo =* w}, where =* is reflexive and transitive closure of the relation =.

The class of all languages defined by 0L systems (0L languages) is denoted by
L(OL).

A 0L scheme is a part of a 0L system, where the axiom is not considered, i.e.
the pair (V, P). We will use 0L schemes to describe behavior of the environment
in the eco-grammar systems.

Example 1 An example of the OL system generating strings of the length of the
Fibonacci numbers: G = (V, P,wy),

o V ={a,b},
o P={a—abb— a},
e wy =b.

We show several derivation steps in G: b = a = ab = aba = abaab = abaababa =
abaababaabaab = abaababaabaababaababa . . .

3. Positioned Eco-Grammar Systems

In the present section we will deal with the positioned eco-grammar systems intro-
duced in [8]. They are modification of the earlier introduced eco-grammar systems
(see [2, 1]).

Definition 7 A positioned eco-grammar system (PEG system, for short) of degree
m, m>1,1is an (m+3) — tuple ¥ = (Vg,Np, E, By, ..., By,), where

o Vg is a finite nonempty alphabet of the environment,

e Ng = {[j] : 1 < j < m} is the set of identifiers of agents, [j] determines
positions of the j-th type agent in the environment,

e E = (Vg,Pg) is a OL scheme of the environment with alphabet Vg and de-
velopmental rules Pg,

84

Langer M., Kelemenova A.: On PEG Systems and Pure Grammars of Type 0

e B; = ([j],Qj), is the j-th type agent for 1 < j < m and Q; — a set of rules of
type alj] — u, or [jla = u, where a € Vg is a symbol marking (left or right)
vicinity with the agent [j] and u € (Vg U Np)*.

Note that the definition requires at least one agent in each positioned eco-
grammar system. An agent can arise or die via the rules and its appearance in the
environment is given by a symbol from the set Np.

Definition 8 A configuration of the PEG system ¥ = (Vg,Ng,E, By,...,By,) is
a word v in (Vg U Np)*. The starting configuration will be called the axiom.

Derivation step of the PEG system will describe following behavior of the sys-
tem: All agents in the configuration are active and work in parallel. In a derivation
step each agent has to rewrite one symbol on its right or left context according to
a rule from corresponding ;. Otherwise no derivation step is possible. The rest
of the symbols (i.e. those not touched by agents) are rewritten by the rules of the
environment.

The derivation step of the PEG system is introduced as follows:

Definition 9 A derivation step of PEG system ¥ = (Vg,Np,E,B1,...,By,) is a
binary relation =y, over (Vg U Np)*, such that w =x w iff

o w=apai[j1]bioq ... an_1an[jn]bncn, where

ar € Vi for 0 <k <n and arby, € Vg, [ji] € Ng,1 <k <mn,

’ ’ ’ ’ ’
o w =yf1ey ...y _1Bn,, where

ar[jk)bk = Bk € Qk for 1 <k <n and o =g a;ﬁ for0 <k <n.
By =* we denote the reflexive and transitive closure of the relation =.

Note that the derivation step is not determined if two agents have the only
possibility to rewrite their common neighbouring symbol. Agents are in conflict in
a given string and our systems are not able to solve such a conflict. The derivation
is blocked. Another case occurs when derivation stops due to absence of rule for the
agent in actual context. Completeness of sets (); are not required in the definition.

To define the language of PEG system we have also to fix the axiom. The
language defined by the positioned eco-grammar system and axiom is given by all
strings produced by the system from the axiom, ignoring agents identifiers.

Definition 10 Language defined by PEG system ¥ = (Vg,Np,E,B1,...,Bn)
and aziom w € (Vg U Ng)* is a set of strings

L(Z,w) ={y(u): v e (VEUNB)*",w =% u},
where vy is the morphism such that v(a) = a for a € Vg and y(b) = € for b € Np.

The family of languages defined by positioned eco-grammar systems (PEG lan-
guages) is denoted L(PEG).

85

Neural Network World 2/13, 81-91

Example 2 We present an example of PEG system X. Let
= ({CL, b7 C}7 {[1]7 [2]7 [3]}7 ({a7b7 C}7 {a’ — avb — bu c— C})7 Blv B27 BS)

([1); {a[1] = aa[2],b[1] — [1]b, [1] = [1]c}),
o By = ([2],{[2]b = 0b[3]}),
o Bz = (3], {[3]c = [Hee, [3]b = [3]}).

Let w = a[l]be be the aziom for PEG system 3.

We show several derivation steps: a[llbc = aa[2]bc = aabb[3]c = aabb[l|cc =
aab[1]bce = aa[l]bbce = aaa2]bbce = aaabb[3]bcc = aaabbb[3]cc = aaabbb[l]cce.

All the derived strings, where we eliminate positions of the agents, are in the
language generated by X from the axiom w.

One can verify that the PEG system ¥ with w = a[l]bc generates the language
L(2,a[l]be) = {a™b"c™ : n > 1} U {a" o™ : n > 1} U {a" T e i n > 1),

o B =

4. Positioned Eco-Grammar Systems and the Pure
Grammars of Type 0

In this section we extend our results given in [5] where we compared PEG systems
with pure regulated context-free grammars. Some basic and closure properties of
the PEG systems can be found in [8] and [9)].

Theorem 1 The class of languages defined by the pure grammars of type 0 is a
proper subclass of the class of the languages defined by the positioned eco-grammar
systems L(pRE) C L(PEG).

Let us explain the idea of the proof first: Consider pure grammar of type 0
G = (V,P,S). We construct PEG system 3 generating the same language as the
grammar G. G starts the computation with one of the finite set of axioms, while
the PEG system ¥ has to have one axiom. It can be constructed from an arbitrary
word w € L(G), where there is each symbol except one taken by a special deleting
agent. The remaining symbol of the axiom is taken by the initializing agent. The
only job of each deleting agent is to delete its neighbour symbol and the initializing
agent generates from the symbol any one of the axioms of grammar G and rewrites
itself into production choosing agent.

In order to simulate derivation step of the grammar G in PEG system ¥ we
will consider three sets of the agents. Countdown deleting agents, initializing agent
and the agents simulating the rules of the grammar G, simulating agents.

The context of the PEG system agent is given by the only symbol on its left
or right side, so the agent can rewrite in one derivation step this only symbol. To
simulate the rule of pure grammar of type 0 we have to replace one string (left
side of the rule) of an arbitrary length with other string (right side of the rule) in
one derivation step. It means that we have to find the sequence of the symbols
in the environment first. Then we have to delete the entire string and generate
the other one in one derivation step. By the timing of deletion of each symbol of
the string we ensure the deletion of the whole string. Every symbol except one

86

Langer M., Kelemenova A.: On PEG Systems and Pure Grammars of Type 0

is taken by the countdown deleting agent. The last symbol is taken by the agent
which generates the right side of the rule. The countdown deleting agents count
down the derivation steps to delete all the symbols at the same time. At the same
moment the generating agent generates the right side of the rule. Particular types
of the countdown deleting agents are denoted by the indexes. The index represents
the number of the derivation steps in which the context symbol of the agent will
be deleted. The highest index of the countdown deleting agent is one less than the
length of the longest left side of all the rules of the grammar G.

Each rule of the grammar G is represented by three subsets of the set of sim-
ulating agents. The agents from the first set (left side checking agents) ensure
verification of occurrence of the left side of the rule. The agents from the second
set (deploying agents) ensure deploying of the countdown deleting agents by each
symbol of the left side of the rule. The agent from the third set (generating agent)
ensures generating the right side of the rule.

The axiom of the PEG system X is constructed from an arbitrary word
w € L(G), where there is each symbol except one taken by the deleting agent.
The last symbol is taken by the initializing agent. The initializing agent generates
one of the axioms of grammar G and rewrites itself into production choosing agent.
The production choosing agent wanders in the environment and looks for the first
symbol of the left side of some rule of grammar G. If the required symbol is found,
the production choosing agent rewrites itself into the first left side checking agent.
These agents verify whether there is a sequence of the symbols corresponding to
the left side of the chosen rule of grammar G. If the required sequence of the sym-
bols is in the environment, the deploying agents deploy countdown deleting agents
and the entire sequence is deleted in one derivation step and, at the same time,
the right side of the rule together with the production choosing agent is generated.
In this way we obtain the same word which can be generated by the grammar G.
Detailed proof with all technical details follows.

Proof Consider the pure grammar of type 0 G = (V, P, S), where P is the
finite set of rules of type @ — 5. Let r = |P| be the number of the rules and
n = maz{|a| : « — B € P} be the length of the longest left side of the rules of the
grammar G. We assign to each rule integer number from the range [1,7] which is
uniquely determining the rule.

We construct the PEG system ¥ = (V,Np,E,B;,Bp,,..., Bp,_,,Br,
Bpi,..., Bry ., BB%7...,BB[v+1) where |; = |oy| and a; — ; € P is the i-
th rule of the grammar, such that L(X,w) = L(G). E= (V,{a »a:a€V})is

0L scheme of the PEG system X.

Particular types of agents are defined as follows:

Initializing agent is defined as follows: By = ([I],{[I]a — [R]y,a € V, y € S}).
This agent is responsible for choice of the axiom of the grammar G and it generates
production choosing agent.

Countdown deleting agents Bp,,...,Bp, _, are defined as follows:

n—1
Bp, = ([D:],{[Dila = [Di—1]la : a € V}), for i = 2,...,n — 1 and Bp, =
([D1],{[D1]a — € : @ € V'}). These agents are responsible for deleting the whole

left side of the rule of the grammar G.

87

Neural Network World 2/13, 81-91

Rule choosing agent: Br = ([R],Qr) and Qr = {[R]a — a[R)],a|R] — [R]a :
a € VYU{[R]b; — [R}]b; : 1 <i < r} where b;y — 3 is the i-th rule of the grammar
G and b; is the first symbol of its left side, for 1 < i < r.

Rule choosing agent wanders in the environment without changing it. Whenever
it finds the first symbol of an arbitrary rule of the grammar G, it can rewrite
itself into the first left side checking agent of the particular rule. This represents
nondeterministic choice of the rule in the derivation of the grammar G.

For each rule of the grammar G we define simulating agents containing three
parts. Namely left side checking agents, deploying agents and a generating agent.

Left side checking agents have to verify if there is a sequence of the symbols
corresponding to the left side of the rule in the environment. If the identification
of the left side of the simulated rule is successful, the deploying agents ensure
deployment of the countdown deleting agents and the generating agent.

The left side checking agents are defined as follows: Consider o; — f;, a; =
ay ...a, i-th rule of the grammar G, [; is the length of its left side and 1 <4 <
r,1 <75 <1

o By = ([R]],Q]) where Q] = {([R{la; — a;[R]""]), ([R]]b — [Rb);b € V}.
o Bygoor = (RIF)QU) where QI = fan [REH] = an[B1)

The last, (I; + 1)-th agent from the set of left side checking agents is generated
if there is sequence of the symbols corresponding to the left side of the simulated
rule in the environment. (I; + 1)-th agent rewrites itself into the first deploying
agent.

The deploying agents are defined as follows: Consider o; — B, a; = a1 ... ay,

i

i-th rule of the grammar G, [; is the length of its left side and 1 < i <r,2 < j <.

o By = ([B]],Q]) where Q] = {(a;[B]] — [B]7'][D;-1]a;)}). Agent ensures
deploying of the countdown deleting agents so that all the symbols a; ... q;
are deleted and string f; is generated in one derivation step.

i

The generating agent generate the string 3. The agent is defined as follows:

e B = ([B}],Q}) where Qf = {(a1[B}] — [R]B:}. Agent Bp: ensures re-
plaéement of the first symbol of the left side of the i-th rule by the string f;;
the right side of the rule. After that the agent rewrites itself into the rule
choosing agent Bpg.

The axiom w of the PEG system X is a string w = [I]ai[D1]az ... [D1]ay where
a1as ... ay € L(G) is an arbitrary word from the set L(G).

Each deleting agent deletes itself and the symbol on its right side in the first
derivation step of the PEG system. At the same time the initializing agent gen-
erates from the last symbol an arbitrary axiom from the set S of the grammar G
and rewrites itself to the production choosing agent Bgr. This behavior of the PEG
system simulates choosing of the axiom of the grammar G.

We prove the equality L(3,w) = L(G) by showing both of the set inclusions.
Firstly, we call attention to the fact that by the construction of ¥, its environment
is stable and all changes in the derivation are done by the agents.

88

Langer M., Kelemenova A.: On PEG Systems and Pure Grammars of Type 0

The inclusion L(G) C L(Z,w).

At first we show that we can derive an arbitrary axiom of the grammar G. Let
wo € S in the grammar G. Corresponding derivation in the PEG system ¥ is of
the form:

[(I]a1[D1]agz ... [Di]ar = [R]wo whereas we used the rules [Di]a — € and [I]a; —
[R]wp. Evidently v ([R]wo) = wo.

Now we show that if the derivation w; = w;41, is in the pure grammar G of

type 0, then there exists the derivation in the PEG system ¥ w; =* w; 41 such

that y(w;) = w; and W(w;_H) = Wiy1.

e The derivation in the grammar G: w;_; = w; whereas we used the rule
o; — B; on the word w;_1 = za,y, let a; = ay ... a;, and w; = x5;y.

e Let the configuration of the PEG system Y be without loss of generality
[R]za;y, whereas v([R]zayy) = zayy = wi—1. Corresponding derivation in
the PEG system X is:

— [Rlzay ...ai,y ='* 2[Rla;y ... a1,y =
choice of the rule, beginning of verification of the left side of the rule
= z[Rla;y...a,y =
= za1[RY...ay = ... = zay...[R¥]a,y = zay...a,[Ri)y =
successful verification of the left side of the rule, deploying countdown
deleting agents
= zay...a;,[Bly = zay... [BE 7Y [Dy,]ayy ... =
countdown deleting agents deployed
= za1[B}]|[Di]as ... [Dilai,y = z[R]Biy
left side of the rule deleted, rule applied.

Whereas we used the rules:

[Rla — a[R), [Rla1 — [R?]ay, [RYai — a1[R?] ... [RY]ai, — ay,[RETY,
ar, [RVT] = ay, [BY], ay,[By] = [BY[Dy,—1lay, - .. a2[B?] — [B}][D1]as,
al[Bll] — [R]ﬂ“ [Dli_ﬂa — [Dlj_g]a A [Dg]a — [Dl]a, [Dl]a — &

It holds v(z[R]Biy) = zBiy = w;.

We show that L(X,w) C L(G) so we show that for each word w; derived in the
PEG system ¥ holds v(w;) € L(G).

For the axiom of the PEG system X we have:

e According to the definition of the PEG system ¥ holds, v(w) = ajas...ax
where aqas ... a; € L(G).

For the first derivation step from the axiom of the PEG system ¥ we have:
e Derivation in the PEG system ¥ is: w = [R]Jwy whereas we used the rules
[D1]a — € and [I]a; — [R]wo.

According to the definition it holds v(w) = a; ... a; € L(G) and v([R]wy) =
wp € L(Q) is the axiom of the grammar G.

89

Neural Network World 2/13, 81-91

Now we show that if w; = w; 1 is the derivation in the PEG system X, then
there is in the pure grammar of type 0 G the derivation w; =* w; 41 such that if
w; = y(w;), then w;,y = y(wit1).

From the definition of the PEG system X it implies that only the agents
Bp: ...Bp: and Bp, can change the environment.

By the acting of the other agents we get the derivation w; = w;41 where
y(w;) = y(w;y1). Corresponding derivation in the grammar G is y(w;) =0 y(w;11).

The configurations in which the environment is changed are:

w; = Wy, a1 [B}][Dl]ag . [Dl]aliwm

where w;,,w;, € V* and ay...q;, € V7T is the left side of the i-th rule of the
grammar G. In the next derivation step each agent Bp, deletes itself and the
symbol on its right side and agent Bp: generates the string [R]5;. The following
configuration is '

wiy1 = wy, [R]Biw,.

According to the definition of the PEG system X the ay ...a;, — §; is the i-th
rule of the grammar G. Corresponding derivation in the grammar G is:

Wiy G102 . . . AL, Wiy, = Wiy BiWi,.

Because y(w;) = w;,a1as . .. a,w;, and y(w;11) = w;, fiw;,, hence L(X,w) C
L(G).

Because L(X,w) C L(G) and L(G) C L(¥,w) hence L(3,w) = L(G).

Hence we showed that the class of the languages defined by the pure grammars
of type 0 is subclass of the class of the languages defined by the positioned eco-
grammar systems.

According to the [3, p. 202, claim 5.1.5. i)] for the PEG language L from the
Example 2 it holds: L ¢ L(pRE). Hence the class of the languages defined by the
pure grammars of type 0 is a proper subclass of the class of the languages defined
by the positioned eco-grammar systems.

5. Conclusion

The main result of the paper formulated in Section 1 states that family of pure
recursively enumerable languages is properly included in the family of PEG lan-
guages. Together with the results stated in [5] we are able to cover with PEG
systems all pure (regulated) languages (without appearance checking) languages.

Acknowledgement

This work was supported by the European Regional Development Fund in the
IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070).

Research was also supported by the SGS/24/2013 Project of the Silesian Uni-
versity in Opava.

90

Langer M., Kelemenova A.: On PEG Systems and Pure Grammars of Type 0

References

[1] Csuhaj-Varju E., Kelemen J., Kelemenova A., Pidun G.: Eco-grammar systems. A grammat-
ical framework pro studying lifelike interactions, Artificial Life, 3, 1997, pp. 1-28.

[2] Csuhaj-Varju E., Kelemen J., Kelemenova A., Paun G.: Eco(grammar) systems — A preview,
Cybernetics a Systems '94 (R. Trappl, ed.), World Scientific, Singapore, 1994, pp. 941-948.

[3] Dassow J., Pdun G.: Regulated Rewriting in Formal Language Theory, Akademie — Verlag,
Berlin, 1986.

[4] Dassow J., Paun G., Salomaa A.: Grammars with controlled derivations, Handbook of
Formal Languages, vol. 2 (G. Rozenberg, A. Salomaa, eds.), Springer-Verlag, Berlin, 1997,
pp. 101-154.

[5] Kelemenova A., Langer M.: Positioned Agents in Eco-Grammar Systems, International Jour-
nal of Foundations of Computer Science, 22, 2011, pp. 237-246.

[6] Kelemenova A., Langer M.: Positioned agents in eco-grammar systems with border markers
and pure regulated grammars, Kybernetika, 48, 2012, pp. 502-517.

[7] Kari L., Rozenberg G. Salomaa A.: L-systems, Handbook of Formal Languages. Vol. 1,
(G. Rozenberg, A. Salomaa eds.), Springer-Verlag, Berlin, 1997, pp. 253-324.

[8] Langer M.: Agents placed in the environment of eco-grammar systems — Positioned eco-
grammar systems, Pre-Procs. 1st Doctoral Workshop on Mathematical a Engineering Meth-
ods in Computer Science (M. Ceska et al., eds.), FI MU, Brno, 2005, pp. 31-37.

[9] Langer M.: On Generative Power of Positioned Eco — grammar systems, 15! International
Workshop on Formal Models, WFM ’06, (Kolar D., Meduna A., eds.), Ostrava, 2006, pp.
35-42.

[10] Martin-Vide C., Pdun G.: PM-Colonies, Computers and Artificial Intelligence, 17, 1998, pp.
553-582.

[11] Pdun G., Salomaa A.: Families Generated by Grammars and L Systems, Handbook of Formal
Languages, Vol. 1. (Rozenberg G., Salomaa A., eds.) Springer, Berlin, 1997, pp. 811-859.

91

92

