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Abstract: In this paper, we propose a novel hybrid metaheuristic algorithm, which
integrates a Threshold Accepting algorithm (TA) with a traditional Particle Swarm
Optimization (PSO) algorithm. We used the TA as a catalyst in speeding up
convergence of PSO towards the optimal solution. In this hybrid, at the end of every
iteration of PSO, the TA is invoked probabilistically to refine the worst particle
that lags in the race of finding the solution for that iteration. Consequently the
worst particle will be refined in the next iteration. The robustness of the proposed
approach has been tested on 34 unconstrained optimization problems taken from
the literature. The proposed hybrid demonstrates superior preference in terms of
functional evaluations and success rate for 30 simulations conducted.

Key words: Particle swarm optimization, threshold accepting algorithm, hybrid
metaheuristics, unconstrained optimization

Received: March 13, 2012
Revised and accepted: March 18, 2013

1. Introduction

Optimization is as ageless as time and is omnipresent, existing in every realm.
Optimization in general refers to finding a best solution out of all feasible solutions.
A feasible solution for which the optimization function has the best possible value is
called an optimal solution. Optimization problems in several realms are formulated
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into mathematical formulation and many approaches are proposed in literature to
solve optimization problems. Metaheuristics are one of the best approaches followed
to solve optimization problems which are flexible and easy to implement. These
metaheuristics are developed by basing on the natural phenomenon like the way in
which swarm of birds move, how human generation has evolved, how ants search
for their food, etc. Some of them are Particle Swarm Optimization (PSO) [1],
Genetic Algorithms (GA) [2,3], Ant Colony Optimization (ACO) [4,5,6], Simulated
Annealing (SA) [7], Threshold Accepting (TA) [8], Great Deluge Algorithm (GDA)
[9], Modified Great Deluge Algorithm (MGDA) [10], Differential Evolution (DE)
[11], and Tabu Search (TS) [12,13].

In optimization, a local optimal solution is a point in the search space where all
neighboring solutions are worse than the current solution, and a global optimum
is a point in the search space where all other points are worse than (or equal to)
the current one. Globally optimizing a function in a given search domain consists
of finding its global minima without getting trapped into one of its local minima.
To localize a “promising area”, an area where a global minimum is likely to be
present, it is necessary to well “explore” the whole domain. When a promising
area is detected, appropriate tools must be used to “exploit” this area and obtain
the optimum as quickly as possible.

Many researchers use metaheuristics as an efficient way of solving optimization
problems. Differential Evolution, a global optimization metaheuristic proposed by
Storn and Price [11], is a simple and efficient algorithm. Threshold Accepting,
proposed by Dueck and Scheur [8], is a local search technique that works on an
individual solution to search for the optimal state. Global search techniques like
PSO, DE, ACO, etc., are highly efficient in searching for “promising regions”, while
exploitation could be very well done through local search techniques like Nelder-
Mead Simplex Search (NMSS), Threshold Accepting (TA).

The process of hybridization of the existing metaheurstics has been followed by
researchers for more than last 15 years. The hybrid optimization algorithms bene-
fit from the advantages of the component metaheuristic algorithms. To start with,
Ravi et al. [14] hybridized the Non-Equilibrium Simulated Annealing (NESA)
with a simplex-like heuristic to develop a new algorithm called Improved Non-
Equilibrium Simulated Annealing (INESA). This is one of the earliest hybrid al-
gorithm proposed in the literature. In their paper, the authors improved the Non-
Equilibrium Simulated Annealing (NESA) by taking the solutions at regular in-
tervals of the progress of NESA and then combining them with the best solutions
obtained before the termination of NESA part of algorithm. At this stage they
applied a simplex-like heuristic to obtain the global optimum. Chauhan and Ravi
[20] hybridized the Differential Evolution (DE) with Threshold Accepting (TA),
which takes the advantage of efficient exploration of DE and exploitation of TA.
They reported spectacular reduction function evaluations when tested on test prob-
lems. Schmidt and Thierauf [16] hybridized the TA and DE where the TA was first
applied to all solutions of solution space and the resultant was passed to the DE
to move towards global optimal solution. Bhat et. al. [17] hybridized the DE by
employing reflection property of the simplex method for fast convergence to global
optima. Trafalis et. al. [18] hybridized 3 heuristics namely scatter search, GA
and TS. They introduced the notion of memory to explore the solution space more
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extensively. It used the scatter search by combining the concepts of trajectory and
clustering methods. The later stages of the algorithm combined the characteristics
of TS and GA to test the status of new solutions and to direct the search towards
global optima. Srinivas and Rangaiah [19] developed a hybrid employing the DE
by using tabu lists for solving global optimization problems. Chelouah et al. [16]
hybridized the GA and NMSS search method. They used the GA to do detect
promising regions where we can find the optimal solution and used the NMSS for
intensification i.e., to search locally for global optimum in this promising region.

Many hybrid metaheuristics using the PSO have been proposed in the litera-
ture. Deep and Bansal [21] hybridized the PSO with Quadratic Approximation,
where the whole swarm was split into two sub-swarms and the PSO was applied
to one sub-swarm and QA to the other, ensuring that sub-swarms were updated
using the global best particle of the whole swarm. Milie et al. [22] improved the
PSO by including a cross-over operator to maintain diversity in the PSO. Li et
al. [23] hybridized the PSO with Improved Genetic Algorithm (IGA). where the
worst solutions in every iteration particles providing worst solutions were passed
to the IGA and the remaining ones were modified using PSO. Shelokar et al. [24]
hybridized the PSO with Ant Colony Optimization (ACO) for solving highly non-
convex optimization problems. First, the PSO explores the search space thoroughly
and when reaches the promising area, the solutions are passed to ACO that does
the exploitation part by performing local search. The concepts of diversification
and intensification used in this solution were first introduced by Glover [12]. Di-
versification refers to finding the promising regions that have the most probable
solution by considering the entire search space. Intensification is to search locally
for global optimum in the promising regions. Jiang et al. [25] proposed Improved
PSO by dividing the whole swarm into several sub-swarms; the PSO was applied
on each sub-swarm individually and at periodic stages of evolution the population
was shuffled to ensure information sharing. Fan and Zahara [26] hybridized the
Nelder-Mead Simplex Search (NMSS) with the PSO where, at every stage of evo-
lution, the particles providing elite solutions were passed to the NMSS, and the
worst ones were passed to the PSO. Kulakarni and Moorthy [27] proposed an es-
timation of distribution improved PSO where they restricted the particles to best
solutions by probabilistic modeling of an archive of best solutions. Zhang and Xie
[28] hybridized the PSO with Differential Evolution Operator (DEPSO), which pro-
vided the bell-shaped mutations with consensus on the population diversity along
with the evolution, while keeping the self-organized particle swarm dynamics. Ben
and Li [29] developed a hybrid metaheuristic using the PSO and DE where they
divided the entire swarm into two in which the PSO and DE were applied on two
sub-swarms and move towards optimal solution ensuring that they both share same
global best particle.

In the proposed hybrid algorithm we tightly coupled PSO and TA so that the
PSO is the main optimizer, and the TA is the fine tuner. It starts with the PSO
applied on all particles which move towards the optimal solution, and every time
after the end of iteration we invoke the TA probabilistically to update the particle
that provides the worst solution for that iteration. The TA is a robust local search
algorithm that helps the particle in moving towards the optimal solution. The
modified particle will join the group for the next iteration. In this way every time
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by the end of iteration, this probability based calls are made to the TA, which
speeds up the algorithm in approaching the solution and the algorithm terminates
on convergence criterion. Comparison with other evolutionary algorithms is outside
the scope of the paper.

The rest of the paper is organized as follows: The PSOTA HYBRID section
describes the traditional PSO and TA and then our proposed algorithm is described.
The RESULTS and DISCUSSION section discusses the results obtained on various
benchmark problems, and then finally conclusion is drawn.

2. Psota Hybrid

2.1 Overview of PSO

A novel population-based metaheuristic named PSO, developed by Kennedy and
Eberhart [1], is very efficient in solving optimization problems. It was developed
based on the idea of how a swarm of birds or a school of fish moves in search
for their food. A swarm is a set of disorganized moving individuals that tend to
cluster, whereas each individual is moving in random direction. The choreography
of these swarms inspired Kennedy and Eberhart to formulate it into a powerful
metaheuristic.

PSO is very simple to implement and efficacious. It has very few parameters
to tweak, which makes it simpler, and also, with the absence of greediness in the
algorithmic design, it makes it faster. PSO progresses towards the solution by
mutual sharing of knowledge of every particle collectively.

PSO consists of a swarm of particles where each particle has its own position
and velocity. Each particle is initialized randomly at the beginning of the algorithm
and the heuristics update the position and velocity in the latter stages of algorithm.
The change in position of the particle is influenced by the particle’s own experience
and that of the best particle in the swarm, i.e. the particle that provides a better
optimal solution than any other particle in the swarm. Each particle is evaluated
using fitness function that indicates the closeness to the optimal solution. Every
particle has a memory variable that stores the best position obtained by the particle
so far; it is termed as pibest – the best position for ith particle. The particle that
provides the best fitness value in the swarm is stored as gbest. At each iteration,
the position of the particle in each dimension is updated by adding velocity to its
position making it move towards gbest and pibest.

The pseudo code of PSO for global minimization problems is as follows:
Let P = {p1, p2, p3, . . .pn} be set of particles where each pi is of d dimensions;

pid = {pi1, pi2, . . . , pid}. Each particle has its own individual velocities vi i.e.,
V = {v1,v2,v3, . . . vn}.

Start
Initialize positions and velocities randomly of permissible range for each particle.
While convergence criteria is not met
DO
For each particle

Calculate the fitness value
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If the fitness value of the particle is less than pibest (old) then
Update pibest to present value
End if

End
Update gbest with the particle that provides best fitness value of all the particles in
the swarm
For each particle

For each dimension
vid = w ∗ vid(old) +c1*rand*(pibestd− pid)+c2*rand*(g ibestd− pid) // update

particles velocity
pid = pid (old)+v id // updating particles position
end for

end for
END

Where c1, c2 are acceleration coefficients; rand: random number between 0, 1;
and w is the inertia weight.

The quantities pi bestd and gibestd share the knowledge of particles previous
experience and experience of the whole swarm. The way in which birds in a flock
move towards their food by considering their experience and taking the help of
their neighbors to move further, each particle in the PSO, like a bird in the flock,
moves towards the optimal solution.

2.2 Overview of TA

Threshold Accepting algorithm was proposed by Deuck and Sheur in 1990 [8]. It
is a point-based search technique. It is a variation of Simulated Annealing (SA)
algorithm; however, while in the SA new solutions are accepted probabilistically,
in the TA they are accepted based on a deterministic criterion. In the TA, any
new solution that is not much worse than the previous solution is accepted.

The pseudo code of TA is as follows:

Initialize the solution and set global iteration counter itr=0, old=99999, thresh=2
fi ← fitness value of initial solution
while itr<gitr // gitr is the number of global iterations
DO

itr ← itr+1
ii ← 0 // ii - inner iteration value
while ii < limit or del1 > thresh
DO

ii ← ii+ 1
Generate a candidate solution vector using the following equation

candidate solution = old solution+(max-min)*(2*u-1)pindex

fj ← fitness value for the candidate solution
del1 ← f i −−fj

END
If del1 < thresh, set f i = fj
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If thresh < thrtol, set del2 = (new – old) / old
Report current solution as the optimal one if abs (del2) < acc and exit if itr < gitr
Else

old ← new
thresh = thresh * (1-eps)

END

TA is applied to a single solution. It is run for gitr number of global iterations,
and at every iteration, we generate a candidate solution for every inner iteration ii.
The fitness value is calculated for each candidate solution and the solutions that
are not much worse than the previous one are selected for exploring. The algorithm
terminates when the difference between the previous and present objective function
values is very small. This is determined by the parameter acc which is set to 10−6

to obtain highly accurate solution. The parameter thresh is used to determine
the acceptance of candidate solution and is generally set to 2 at the beginning;
however, it is gradually decreased in a geometric progression based on an epsilon
value that is generally set to 0.01. limit is the number of inner iterations. max,
min are the boundaries of the decision variables, and pindex is generally an odd
integer between 3 and 33 that is used to generate a value that is added to the old
solution to generate a neighborhood solution.

2.3 Proposed PSOTA hybrid algorithm

We proposed a new hybrid algorithm by tightly coupling the PSO with the TA.
In our approach we initially started the searching procedure with the PSO and
then fine tuned the worst solutions using the TA probabilistically. After the swarm
initialization, the particles are updated as in the traditional PSO, and at the end
of every iteration we generate a random number between 0 and 1. If the random
number ≥ 0.9, then we invoke the TA to update the worst solution-. The worst
solution is the solution or particle that gives the worst fitness value of all the
particles. Here we set the PSO as the main optimizer and use the TA to tweak
the worst solution. This is made with an idea that the worst solution that fails
to provide a better fitness value is helped by TA to move towards the optimal
solution. The TA, which is a powerful local search technique, ushers the particle
in moving towards the global optimal solution. Here we are not using the TA for
the whole particles to provide the global optimal solution, but we apply it finely so
that it helps in reenergizing the particle towards optimal solution; then the updated
particle is made to rejoin the swarm for the next round of the PSO. In this way
the process is repeated until convergence criteria are met.

The step wise description of PSOTA hybrid for global minimization problems
is as follows:

1. Initialize the particle swarm

Here every particle is initialized randomly within the range of the decision
variables in the problem and initialize the velocities of the particles within
the range [0, 1]. The acceleration constants c1, c2 are set to 2 and the inertia
is set to 1. Coming to TA parameters epsilon ‘eps’ is set to 0.01, acc set to
0.0000012, thrtol to 0.000001, pindex is set to 29.
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2. While the convergence criteria is not met

3. DO

4. For each particle

4.1 Calculate the fitness value by computing objective function for the par-
ticle.

4.2 If the fitness value of the particle is less than pibest (old) then

3.2.1 Update pibest to present value

End if

End for

5. Update gbest with the particle that provides best fitness value of all the particles
in the swarm

6. For each particle

5.1 For each dimension

vid= w*vid(old) + c1*rand*(pibestd− pid)+c2*rand*(gibestd− pid) //
update particle’s velocity

pid = pid (old)+vid // updating particle’s position

end for

end for

7. if (rand() ≥ 0.9) then

Calculate Threshold Accepting algorithm (TA) for the worst particle

End if

8. Replace the worst particle in the swarm by the solution given by the TA

9. If a convergence criterion was satisfied the PSO is called and algorithm steps
from 3 are repeated

10. Else algorithm exits providing the obtained optimal solution

11. END

We invoke the TA whenever the random number generated ≥ 0.9 i.e., with 10%
probability. This sort of biased sampling helps in reducing the overhead of TA on
the PSO. Here every particle is of ‘d’ dimensions; the values of limit and gitr are
set differently for lower and higher dimensional problems which are specified in the
experimental settings. The sequence of event flow is presented in the form of flow
chart denoted as Fig. 1.

By incorporating the TA, the performance of PSO is considerably enhanced.
The main intention of invoking the TA probabilistically is to enhance the traditional
PSO without having any overload of TA. This approach pushes up the particle that
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Fig. 1 Schematic representation of our proposed hybrid: W represents the worst
particle, N is the number of particles and Rand represents random number genera-

tor.

lags behind other particles in that iteration, rejoins the swarm and continues to
search the global optimal solution. We use the TA to update only the worst par-
ticle because we find that at every iteration, the worst particle is the particle that
gains least knowledge from the other particles in the swarm; thus, invoking the
TA will help to reenergize the particle so that it will certainly move towards the
near optimal solution in the next iteration. The use of TA probabilistically causes
that we have less functional evaluations, but on the other hand, it ensures that
the robustness of PSO is preserved. This approach really helped reduce functional
evaluations without any compromise in the accuracy, which is described below.
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The success rate of our hybrid is higher when compared to the normal PSO. Our
proposed approach utilizes the best features of both the PSO and TA in a very
balanced manner. The schematic representation of our proposed approach is pre-
sented in Fig. 2. A fixed number of functional evaluations was set for both the PSO
and PSOTA. Both algorithms were set to terminate upon completion of complete
number of iterations or if the present best – previous best < epsilon.

Fig. 2 Graph comparing accuracy of fitness values of PSO and PSOTA for lower
dimensions.

3. Results and Discussion

The proposed algorithm is tested on 34 unconstrained optimization problems. The
most of the problems are taken from Ali et al. [30], others from the Web. The
algorithm is run for 30 simulations for different random seeds. The average, stan-
dard deviations of the objective functions over 30 simulations are computed. The
experimental settings for the proposed hybrid are presented in Tab. II.

The algorithms PSO, PSOTA are implemented in ANSI C using C-Free 4.0.
The tests are made on a system with Intel Pentium 4 processor with 2.39 GHz
clock speed and 1.99 GB of RAM. Both PSO and PSOTA hybrid are run on 34
unconstrained optimization problems (26 lower dimensional and 8 higher dimen-
sional). The performance of PSO and PSOTA is presented in Tabs. III, IV, V
and VI. The results indicate the performance of PSOTA in terms of accuracy and
consistency. Our proposed algorithm provides high accuracy in some cases and at
least the same accuracy as that of PSO with less functional evaluations. The use
of TA to refine the particle helped us in reducing the functional evaluations and
also improved accuracy.

Tab. III presents comparativeness of PSO and PSOTA in terms of accuracy
and functional evaluations for lower dimensional problems. The result shows that
for most of the specified optimization problems, the PSOTA provides efficient re-
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SNo Parameter name Value

For PSO part

1 C1 2

2 C2 2

3 W 1

4 no. of particles 25 (for lower dimensions)

5 no. of particles 50 (higher dimensions)

For TA part

1 eps 0.01

2 acc 0.0000012

3 thrtol 0.000001

3 pindex 29

4 limit 50

5 gitr 25

Tab. I Parameters fixed for the PSOTA hybrid.

Reported
SNo. Name of the function Dimension objective

function value

1 Sphere [31] 2,30 0

2 RosenBrock [32, 33] 2,20 0

3 Goldstein [34] 2 3

4 Schaffer1 [35] 2 0

5 Schaffer2 [35] 2 0

6 Bohachevsky1[36] 2 0

7 Bohachevsky2 [36] 2 0

8 Periodic [37] 2 0.9

9 Camelback6 [34, 35] 2 0

10 Becker and Lago [37] 2 0

11 Ackley [11] 2 0

12 Salomon [38] 5 0

13 Kowalik [39] 4 3.0748 * 10−4

14 Levy and Montalvo1 [40] 3,30 0

15 Levy and Montalvo2 [40,41] 5,30 0

16 Meyer and Roth [42] 3 0

17 Miele and Cantrell [42] 4 0

18 Neumaier2 [43] 4 0

19 Powells [42] 4 0

20 Woods [35,42] 4 0

21 Zakharov [44] 2,20,30,50 0

22 Axis Parallel Hyper Ellipsoidal [45] 2,30 0

23 Rastrigin [11,46] 2 0

24 Shekel5 [34] 4 -10.1499

25 Shekel7 [34] 4 -10.3999

26 Shekel10 [34] 4 -10.5319

Tab. II Details of test functions.
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Function
number

PSO FE’s of PSO PSOTA FE’s of
PSOTA

1 0.000000 1275 0.000000 830
2 0.000000 10025 0.000003 7401
3 3.000000 1275 3.000000 1299
4 0.003715 14040 0.004210 13780
5 0.000000 6275 0.000000 5024
6 0.000000 14040 0.000000 11844
7 0.000000 14040 0.000000 11735
8 0.900000 7525 0.900000 7316
9 0.000000 2275 0.000000 957
10 0.000000 2025 0.000000 1171
11 0.009334 3775 0.000004 1957
12 0.099833 17525 0.006845 14029
13 0.000307 12525 0.000308 4407
14 0.000000 3775 0.000000 1218
15 0.000000 3775 0.000000 3039
16 0.000083 12525 0.000069 10386
17 0.000005 5025 0.000003 2591
18 0.010448 15025 0.007210 13005
19 0.000001 5025 0.000005 3509
20 0.020200 25025 0.029904 18204
21 0.000000 1275 0.000000 911
22 0.000000 650 0.000003 388
23 0.000000 3775 0.000000 2624
24 -9.309608 162525 -10.153199 75109
25 -10.035613 162525 -10.402944 77128
26 -9.997189 162535 -10.536411 77681

Tab. III Objective function values and functional evaluations for lower dimension
problems.

Function
number

PSO FE’s of
PSO

PSOTA FE’s of
PSOTA

1 @ 30d 0.000005 25030 0.000000 12292
14@ 30d 0.017285 35050 0.000000 24125
15@ 30d 0.000000 75050 0.000000 33178
21@ 20d 0.000000 20040 0.000003 15374
21@ 30d 0.000000 35050 0.000000 30050
21@ 50d 0.000724 75050 0.000054 58956
22@ 30d 0.000000 45050 0.000001 26766
2@ 20d 14.854886 400050 0.069339 400100

Tab. IV Objective function values and functional values for higher dimensional
problems.
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Function
number

SR % of PSO S.D. of PSO SR% of PSOTA S.D. of PSOTA

1 100 0 100 9.68468E-07
2 100 0 93.33 9.63805E-06
3 100 0 100 8.89918E-07
4 57 0.004706 57 0.004897
5 96.7 1.82574E-07 96.7 7.48147E-06
6 100 0 100 0
7 100 0 100 0
8 100 4.51681E-16 100 4.51681E-16
9 100 1.82574E-07 100 2.53708E-07
10 100 1.82574E-07 100 1.11211E-06
11 96.66 0.051124 93.33 1.29E-05
12 0 2.82E-17 83.33 0.025298
13 100 1.82574E-07 90 1.17248E-06
14 100 4.61133E-07 100 4.61133E-07
15 100 0 100 0
16 23.33 0.000114927 23.33 2.90144E-05
17 96 3.32169E-05 100 1.19998E-05
18 0 0.013178 3.33 0.009086
19 80 1.02889E-06 80 5.46893E-06
20 0 0.043618 0 0.023845
21 100 1.82574E-07 100 1.82574E-07
22 96.66 0 96.7 5.16E-06
23 100 0 100 0
24 83 1.918587 100 1.81E-15
25 90 1.336582506 100 4.49776E-07
26 90 1.645332 100 1.81E-15

Tab. V Success Rate (SR) and Standard Deviation (S.D.) for lower dimensional
problems.

Function
number

SR% of PSO S.D. of PSO SR% of PSOTA S.D. PSOTA

1 @ 30d 100 1.64701E-06 100 0

14@ 30d 83.33 0.039312 97 1.83077E-06

15@ 30d 96.6 0.004159 100 1.82574E-07

21@ 20d 100 0 96.67 8.13966E-06

21@ 30d 96.6 3.83705E-06 100 6.68675E-07

21@ 50d 23.33 0.001633 33.33 8.79E-05

22@ 30d 100 0 100 2.34128E-06

Tab. VI Success Rate (SR) and Standard Deviation (S.D.) for higher dimensional
problems.
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sults with less functional evaluations. For some problems like Camelback6, Becker
and Lago, Kowalik, Levy and Montalvo1, Miele, Axis Parallel Hyper Ellipsoidal,
Shekel 5, 7, 10 problems, our hybrid outperformed the PSO by providing better
results with very less functional evaluations. Tab. IV presents the performance of
PSO and PSOTA in terms of accuracy and functional evaluations in case of higher
dimensional problems. In the first column, number@dimesion notation is used; for
example, 1@30d means the function of serial number 1 in Tab. I of 30 dimensions;
dimension indicates the number of decision variables. The results show the robust-
ness of our proposed hybrid, the proposed hybrid provides better solutions with
less functional evaluations. Regarding higher dimensional problems, in RosenBrock
(20 dimensions), Sphere (30 dimensions), Levy and Montalvo2 (30 dimensions) and
Zakharov (50 dimensions), our hybrid outperformed the PSO in terms of functional
evaluations. Tabs. V and VI compare the PSO and PSOTA in terms of success
rate and standard deviation. The success rate is considered, based on the results
obtained in the 30 simulations. Here we considered the resultant value as successful
if the obtained objective function value fell within 10−6 difference of the reported
value. So the success rate is defined as number of successful results / total number
of simulations *100. Tab. V indicates that the success rate of PSOTA is better and
more consistent than that of PSO. The consistency of PSOTA is its main asset.
The standard deviations of PSOTA and PSO are also presented, and as can be
seen, our hybrid outperformed the PSO in many functions. Tab. VI presents the
success rate and standard deviation values for higher dimensional problems by the
PSO and PSOTA. The success rate of our hybrid is better than that of PSO, and
when it comes to standard deviation values, our hybrid outperformed the PSO in
all functions.

T-test has been applied to find out whether the obtained results are statistically
significant or not. It was found that for functions: Sphere, Goldstein, Salomon-
5d, Kowalik, Shekel5, Powells, Sphere-30d, Levy and Montalvo1-30d, Levy and
Montalvo2-30d, Axis Parallel Hyper Ellipsoidal-30d, Rosenbrock-20d, the results
of PSOTA hybrid are statistically significant with 95 percent level of confidence.

The proposed experimental setup is made for Un-Constrained optimization
problems only, as this experimental work is meant to be. PSOTA can also be
applied to solve Constrained optimization problems.

3.1 Visual presentation of the results

The performance of PSO and PSOTA is depicted in Figs. 3–10, where the dark
line denotes our proposed PSOTA hybrid and the dotted line denotes the PSO.
The optimal objective function values obtained by both algorithms for lower and
higher dimensional problems are depicted in Figs. 3 and 4, respectively. The aver-
age functional evaluations consumed by the PSO and PSOTA for lower and higher
dimensions are depicted in Figs. 5 and 6, respectively. For the sake of convenience,
we depicted the function evaluations consumed in case of Shekel 5, 7 and 10 func-
tions in Fig. 6 because both algorithms consumed a very high number of function
evaluations there. The success rate obtained by the PSO and PSOTA for both
lower and higher dimensional problems is depicted in Figs. 7 and 8, respectively,
whereas the standard deviation values obtained by the PSO and PSOTA for lower
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and higher dimensional problems are depicted in Figs. 9 and 10, respectively. Here
X-axis represents optimization functions and Y-axis represents measuring param-
eter. The performance of PSO and PSOTA on individual functions is depicted in
the rest of the figures. Out of 30 simulations run for each function, the results of
the best simulation are plotted in these figures. Figs. 11–36 depict the performance
of PSO and PSOTA on lower dimensional functions, and Figs. 37–44 depicts the
performance of PSO and PSOTA on higher dimensional problems. Evidently, all
the above mentioned plots demonstrate the superiority of PSOTA over PSO not
only in the success rate but also in function evaluations. Fig. 11 and the following
ones represent how the algorithms PSO and PSOTA performs on every individual
function for the first 100 iterations: X-axis represents functional evaluations and
Y-axis represents fitness values.

Fig. 3 Graph comparing accuracy of fitness values of PSO and PSOTA for lower
dimensions.

Fig. 4 Graph comparing accuracy of fitness values of PSO and PSOTA for lower
dimensions.
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Fig. 5 Graph comparing accuracy of fitness values of PSO and PSOTA for higher
dimensions.

Fig. 6 Graph comparing accuracy of fitness values of PSO and PSOTA for lower
dimensions.

Fig. 7 Graph comparing accuracy of fitness values of PSO and PSOTA for higher
dimensions.
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Fig. 8 Graph comparing accuracy of fitness values of PSO and PSOTA for higher
dimensions.

Fig. 9 Graph comparing accuracy of fitness values of PSO and PSOTA for lower
dimensions.

Fig. 10 Graph comparing accuracy of fitness values of PSO and PSOTA for higher
dimensions.
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Fig. 11 Sphere function. Fig. 12 Rosenbrock function.

Fig. 13 Goldstein function. Fig. 14 Schaffer1 function.

Fig. 15 Schaffer2 function. Fig. 16 Bohachevsky1 function.
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Fig. 17 Bohachevsky2 function. Fig. 18 Periodic function.

Fig. 19 CamelBack6 function. Fig. 20 Becker and Lago function.

Fig. 21 Ackley function. Fig. 22 Salomon function.
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Fig. 23 Kowalik function. Fig. 24 Levy and Montalvo1 function.

Fig. 25 Levy and Montalvo2 function. Fig. 26 Meyer and Roth function.

Fig. 27 Miele and Cantrell function. Fig. 28 Neumaier function.
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Fig. 29 Powell’s function Fig. 30 Woods function.

Fig. 31 Zakharov function. Fig. 32 Axis parallel hyper ellipsoidal.

Fig. 33 Rastrigin function. Fig. 34 Shekel5 function.
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Fig. 35 Shekel7 function. Fig. 36 Shekel10 function.

Fig. 37 Sphere Function: 30d. Fig. 38 Levy and Montalvo1 Function: 30d.

Fig. 39 Levy and Montalvo2 function: 30d. Fig. 40 Zakharov function: 20d.
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Fig. 41 Zakharov function: 30d. Fig. 42 Zakharov function: 50d.

Fig. 43 Axis parallel hyper Fig. 44 RosenBrock function: 20d.
ellipsoidal function: 30d.

4. Conclusions

A novel PSOTA hybrid is presented in this paper. The proposed hybrid metaheuris-
tic is compared with the traditional PSO by testing it on a set of 34 unconstrained
problems. The results show that our hybrid provides consistent and efficient fit-
ness values with less functional evaluations. The process of invoking TA at the end
of each iteration probabilistically helped the PSO approach the optimal solution
faster. By using the TA we are enabling the PSO to do local search that it never
does as per original algorithm. This process really helps improvise the PSO; and
also, with the biased sampling aspect of invocation of TA, we do not increase the
complexity of the algorithm, but reduce functional evaluations taken to solve the
objective function, as presented in the results section. Here the TA acts like a
catalyst that speeds up the PSO in moving towards the global optimal solution by
enhancing the performance of the worst particle and also increasing its experience
by making it do local search. The success rate and standard deviation of PSO and
our hybrid are compared in several graphs which demonstrate the robustness of our
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algorithm. Based on numerical results it is concluded that our proposed hybrid is
more promising in providing global optimal solutions.
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APPENDIX

1. Sphere Problem

Sphere function is defined as

min
x

f(x) =
n∑

i=1

x2
i

where n is the number of variables and its search domain ranges from −5.12 ≤
xi ≤ 5.12, i = 1, 2, . . . , n. There are no local minima and has a global minima
x∗ = (0, 0, . . ..0), f(x∗) = 0.

2. Rosenbrock’s Function (Schwefel, 1995)

Minimize f(x) =
n∑

i=1

100(xi+1 − x2
i )

2 + (1− xi)
2 − 2.048 ≤ xi ≤ 2.048

It is a classic optimization problem, also known as Banana function. The global
optimum is inside a long, narrow, parabolic shaped flat valley. To find the valley
is trivial, however convergence to the global optimum is difficult. The global min-
imum occurs at (1, 1, . . ., 1) with objective function value of 0. We tested the two
dimensional version.

3. Goldstein-Price (Dixon and Szego, 1978)

Minimize

f(x) = [1 + (x1 + x2 + 1)2.(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

× [30 + (2x1 − 3x2)
2.(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

−2 ≤ x1, x2 ≤ 2

There are four local minima and the global minima occurs at (0,−1) with f(0,−1)=3.

4. Schaffer1 problem (SF1) (Michalewicz, 1996)

min
x

f(x) = 0.5 +
(sin

√
(x2

1 + x2
2))

2 − 0.5

1 + 0.001(x2
1 + x2

2)
2

Subject to −100 ≤ x1, x2 ≤ 100, the number of local minima is not known but
global minima is located at x∗ = (0, 0) with f(x∗) = 0.

5. Schaffer2 Problem (SF2) (Michalewicz, 1996)

min
x

f(x) = (x2
1 + x2

2)
0.25(sin2(50((x2

1 + x2
2)

0.1) + 1)

Subject to −100 ≤ x1,x2 ≤ 100, the number of local minima is not known but
global minima is located at x* = (0,0) with f(x*) = 0.
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6. Bohachevsky1 Problem (BF1) (Bohachevsky et al., 1986)

min
x

f(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.7

Subject to −50 ≤ x1, x2 ≤ 50. The number of local minima is unknown but the
global minimizer is located at x∗ = (0, 0) with f(x∗) = 0.

7. Bohachevsky2 Problem (BF1) (Bohachevsky et al., 1986)

min
x

f(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1) cos(4πx2) + 0.3

Subject to −50 ≤ x1, x2 ≤ 50. The number of local minima is unknown but the
global minimizer is located at x∗ = (0, 0) with f(x∗) = 0.

8. Periodic Problem (PRD) (Price, 1977)

min
x

f(x) = 1 + sin2 x1 + sin2 x2 − 0.1 exp(−x2
1 − x2

2)

Subject to −10 ≤ x1, x2 ≤ 10. There are 49 local minima all with minimum values
1 and global minimum located at x∗ = (0, 0) with f(x∗) = 0.9.

9. Camel Back – 6 Six Hump Problem (CB3) (Dixon and
Szego, 1978; Michalewicz, 1996)

min
x

f(x) = 4x2
1 − 2.1x4

1 +
1

3
x6
1 + x1x2 − 4x2

2 + 4x4
2

Subject to −5 ≤ x1, x2 ≤ 5. This function is symmetric about the origin and has
three conjugate pairs of local minima with values f ≈ −1.0316,−0.2154, 2.1042.
The function ≈ −1.0316.

10. Becker and Lago Problem (BL) (Price, 1977)

min
x

f(x) = (|x1| − 5)
2
+ (|x2| − 5)

2

Subject to −10 ≤ x1, x2 ≤ 10. The function has four minima located at (±5,±5),
all with f(x∗) = 0.
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11. Ackley’s Problem (ACK) (Storn and Price, 1997)

min
x

f(x) = −2 exp

−0.02
√√√√n−1

n∑
i=1

x2
i

− exp

−0.02
√√√√n−1

n∑
i=1

cos(2πxi)

+ 20 + e

Subject to −30 ≤ xi ≤ 30, i ∈ {1, 2, . . ., n}. The number of local minima is not
known. The global minimum is located at the origin with f(x∗) = 0. Tests were
performed for n = 10.

12. Salomon Problem (SAL) (Salomon, 1995)

min
x

f(x) = 1− cos(2π||x||) + 0.1||x||

where ||x|| =
√∑n

i=1 x
2
i and −100 ≤ xi ≤ 100. The number of local minima is not

known but global optimum lies at x∗ = (0, 0, . . . 0) with f(x∗) = 0 and n is the
number of variables.

13. Kowalik Problem (KL) (Jansson and Knuppel, 1995)

min
x

f(x) =
11∑
i=1

(
ai −

x1(1 + x2bi
1 + x3bi + x4b2i

)2

subject to 0 ≤ xi ≤ 0.42. The global optimum lies at x∗ ≈ (0.192, 0.190, 0.123, 0.135)
and f(x∗) ≈ 3.0748 ∗ 10−4.

The values for ai, bi constants are:
a[1−11] = {0.1957, 0.1947, 0.1735, 0.16, 0.0844, 0.0627, 0.0456, 0.0323, 0.0235, 0.0246}
b[1− 11] = {0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0}

14. Levy and Montalvo1 Problem (LM1) (Levy and Mon-
talvo, 1985)

min
x

f(x) = (π/n)

(
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2

)
where yi = 1 + 1/4(xi + 1)

where yi = 1/4(xi + 1) for −10 ≤ xi ≤ 10. i ∈ {1, 2, . . . n}. There are 5n local
minima and global minima is f(x∗) = 0 with x∗ = (−1,−1, · · · − 1). Here ‘n’ is the
number of variables.
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15. Levy and Montalvo2 Problem (LM1) (Levy and Mon-
talvo, 1985; Dekker and Aarts, 1991)

min
x

f(x) = 0.1

(
sin2(3πx1) +

n−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] +

+(xn − 1)2[1 + sin2(2πxn)]

)

Subject to -5 ≤ xi ≤ 5, i∈ {1, 2, . . . n}. There are approximately 15n local minima
and global optimum is f(x∗)=0 at x∗ = (1, 1, . . . 1). Here ‘n’ is the number of
variables.

16. Meyer and Roth Problem (MR) (Wolfe, 1978)

min
x

f(x) =
5∑

i=1

(
x1x3ti

(1 + x1t1 + x2vi)
− yi

)2

Subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, . . . , n}. This is a least squares problem with
minimum value f(x∗) = 0.4 ∗ 10−4 located at x∗ = (3.13, 15.16, 0.78).

data:
t[1− 5] = {1.0, 2.0, 1.0, 2.0, 0.1}
v[1− 5] = {1.0, 1.0, 2.0, 2.0, 0.0}
y[1− 5] = {0.126, 0.219, 0.076, 0.126, 0.186}

17. Miele and Cantrell Problem (MCP) (Wolfe, 1978)

min
x

f(x) = (exp(x1)− x2)
4 + 100(x2 − x3)

6 + (tan(x3 − x4))
4 + x8

1

Subject to −1 ≤ xi ≤ 1, i ∈ {1, 2, 3, 4}. The number of local minima is unknown
but the global optimizer is located at x∗ = {0, 1, 1, 1} with f(x∗) = 0.

18. Neumaier2 Problem (NF2) (Neumaier, 2003b)

min
x

f(x) =

n∑
k=1

(
bk −

n∑
i=1

xk
i

)2

Subject to 0 ≤ xi ≤ n, i ∈ {1, 2, . . ., n}. The case considered here is n = 4 and
b = {8, 18, 44, 114}. The global minimum is f(1, 2, 2, 3) = 0.
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19. Powell’s Quadratic Problem (PWQ) (Wolfe, 1978)

min
x

f(x) = (x1 + 10x1)2 + 5(x3 − x4)
2 + (x2 − 2x3)

4 + 10(x1 − x4)
4

Subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, 3, 4}. This is a unimodal function with f(x∗) =
0, x∗ = (0, 0, 0, 0). This minimiser is difficult to obtain with accuracy as the hessian
matrix at the optimum is singular.

20. Wood’s function (WF) (Michalewicz, 1996; Wolfe, 1978)

min
x

f(x) = 100(x2− x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2 +

+ 10.1
[
(x2 − 1)2 + (x4 − 1)2

]
+ 19.8(x2 − 1)(x4 − 1)

Subject to −10 ≤ xi ≤ 10, i ∈ {1, 2, 3, 4}. The function has a saddle near (1, 1, 1, 1).
The only minimum is located at x∗ = (1, 1, 1, 1) with f(x∗) = 0.

21. Zakharov (Zn) (n variables) (Chelouah and Siarry, 2003)

Zn(x) =
(∑n

j=1
x2
j

)
+
(∑n

j=1
0.5jxj

)2
+
(∑n

j=1
0.5jxj

)4
;

5 functions were considered: Z2, Z5, Z10, Z50 and Z100; search domain: −5 ≤ xj ≤
10, j = 1, . . ., n;n several local minima (exact number unspecified in usual litera-
ture); 1 global minimum: x∗ = (0, . . ., 0);Zn(x∗) = 0.

22. Axis Parallel Hyper-ellipsoidal Function

min
x

f(x) =

n∑
i=1

ix2
i

Subject to −5.12 ≤ xi ≤ 5.12. It is also known as weighted sphere model. It
is continuous, convex and unimodal. It has a global minimum at f(x∗) = 0 at
x∗ = {0, 0, . . ., 0}.

23. Rastrigin Problem (RG) (Storn and Price, 1997; Torn
and Zilinskas, 1989)

min
x

f(x) = 10n+

n∑
i=1

[
x2
i − 10 cos(2πxi)

]
Subject to −5.12 ≤ xi ≤ 5.12, i{1, 2, . . . , n}. The total number of minima for this
function is not exactly known but global optimizer is located at x∗ = {0, 0, . . . 0}
with f(x∗) = 0.
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24. Shekel5 Problem (S5) (Dixon and Szegö, 1978)

min f(x) = −
5∑

i=1

1∑4
j=1 (xj − aij)2 + ci

Subject to 0 ≤ xj ≤ 10, j ∈ {1, 2, 3, 4} with constants aij and cj given in
Tab. VII. There are five local minima and the global minimiser is located at
x∗ = (4.00, 4.00, 4.00, 4.00) with f(x∗) ≈ −10.1499.

i
aij ci
j = 1 2 3 4

S5 1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4

S7 6 2 9 2 9 0.6
7 5 5 3 3 0.3

S10 8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Tab. VII Data for Shekel5, Shekel7, Shekel10 problem.

25. Shekel7 Problem (S7) (Dixon and Szegö, 1978)

min f(x) = −
7∑

j=1

1∑4
i=1 (xj − aij)2 + ci

Subject to 0 ≤ xj ≤ 10, j ∈ {1, 2, 3, 4} with constants aij and cj given in
Tab. VII. There are seven local minima and the global minimiser is located at
x∗ = (4.00, 4.00, 4.00, 4.00) with f(x∗) ≈ −10.3999.

26. Shekel10 Problem (S10) (Dixon and Szegö, 1978)

min f(x) = −
10∑
j=1

1∑4
i=1 (xj − aij)2 + ci

Subject to 0 ≤ xj ≤ 10, j ∈ {1, 2, 3, 4} with constants aij and cj given in
Tab. VII. There are 10 local minima and the global minimiser is located at x∗ =
(4.00, 4.00, 4.00, 4.00) with f(x∗) ≈ −10.5319.
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