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Abstract: This paper proposes a model of neural tree architecture with probabilis-
tic neurons. These trees are used for classification of a large amount of computer
grid resources to classes. The first tree is used for classification of hardware part
of dataset. The second tree classifies patterns of software identifiers. Trees are
implemented to successfully separate inputs into nine classes of resources. We pro-
pose Particle Swarm Optimization model for tasks scheduling in computer grid.
We compared time of creation of schedule and time of makespan in six series of
experiments without and with using neural trees. In experiments with using neural
tree we gained the subset of suitable computational resources. The aim is effective
mapping of a large batch of tasks into particular resources. On the base of expe-
riments we can say that improvements have been made even for middle and small
batch of tasks.
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1. Introduction

Computational grids can be used for solving problems that require processing of
large quantity of operations or data. Grid computing allows sharing of distributed
computing and data resources such as processing, network bandwidth and stor-
age capacity to create a cohesive resource environment for executing distributed
applications [1].
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Job scheduling in its different forms is computationally hard. It has been shown
that the problem of finding optimal scheduling in heterogeneous systems is, in gene-
ral, NP-hard [6, 8]. An application can generate several jobs which, in turn, can be
composed of subtasks and the Grid system is responsible for sending each subtask
to a resource to be solved. Grid systems contain schedulers that automatically and
efficiently find the most appropriate machines to execute an assembly of tasks.

Task represents a computational unit which runs on a grid node. Typically it
is a program and possibly associated data. A task is considered as an indivisible
schedulable unit.

Job is a computational activity made up of several tasks that could require dif-
ferent processing capabilities and could have different resource requirements (CPU,
number of nodes, memory, software libraries, etc.) and constraints, usually ex-
pressed within the job description. In the simplest case, a job could have just one
task.

Grid scheduler is created by software components, which are responsible for a
mapping of tasks to grid resources under multiple criteria and grid environment
configurations. The computational grid, hierarchical by nature, is usually modeled
as a multi-level system, which allows efficient management of geographically dis-
tributed resources and tasks scheduling under various criteria, including security
and resource reliability requirements [31, 32]. The model is often a hybrid of cen-
tralized and decentralized modules. In the centralized module, there is a central
authority. It is some metascheduler or meta-broker and it has knowledge of the
system by monitoring the resources and interacts with local job dispatchers in or-
der to define optimal schedules. In the decentralized module, the local schedulers
interact with each other to manage the task pool. This kind of scheduler has the
knowledge about the resource clusters, but they cannot monitor the whole system
[38, 39, 17]. The hierarchical model addresses scalability and fault-tolerance issues.
A meta-broker model is an example of the hierarchical two level grid system. In
this model, grid users submit their tasks or applications to the meta-broker which
uses also the information supplied by the resource owners to match the users tasks
to appropriate resources [18].

This paper is organized as follows. Section 2 shortly reports on related works.
Section 3 introduce Computational model for Grid scheduling and optimization
criteria. Neural networks focused on multilayer perceptron (MLP) and radial basis
activation function (RBF) with competitive learning rule are briefly outlined in
Section 4. Neural tree is described in Section 5. There is a model of particle swarm
optimization (PSO) algorithm for discrete variables introduced in Section 6. Data
description and simulation tools are proposed in Section 7. Section 8 is focused on
simulations and experimental results.

2. Related Works

Several stochastic and heuristic optimization methods have been proposed for job
scheduling in computational grids. Monte Carlo methods, Simulated Annealing,
Tabu Search, Genetic Algorithms [33, 34], among others, attempt to avoid the pre-
mature convergence to the local minima. An implementation of Simulated Anne-
aling for grid scheduling was proposed in [25, 26]. Recently some parallel genetic
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algorithms frameworks have been used for designing the effective grid schedulers.
Lim et al. [19] propose Grid-Enabled Hierarchical Parallel Genetic Algorithm (GE-
HPGA). Another method of improving the scheduling quality is the hybridization
of the heuristics with Local Search methods for the problem [20]. Particle Swarm
Optimization algorithms have been implemented for grid scheduling [35, 36, 37].
A hybrid version of genetic algorithms and Tabu searching is proposed by Xhafa et
al. [21]. Other approaches to the problem include the use of Fuzzy Particle Swarm
Optimization [22], Artificial Neural Networks [23] and economic-based approaches
[24].

3. Computational Model for Grid Scheduling and
Optimization Criteria

In this part computation model for Grid scheduling is presented. The computa-
tional capacity of the node depends on its:

• Number of CPUs

• Amount of memory

• Basic storage space

• Other specifications

The node has its own processing speed, which can be expressed in the number of
Cycles Per Unit Time (CPUT) [3].

A job is considered as a single set of multiple atomic operations (tasks). The
task is allocated to execute on one single node without pre-emption. The task has
input and output data and processing requirements in order to complete its task.
The task has a processing length expressed in the number of cycles.

A schedule is the mapping of the tasks to specific time intervals of the grid
nodes.

A scheduling problem is specified by:

• A set of machines

• A set of jobs

• Optimality criteria

• Environmental specifications

• Other constraints

One of the most popular optimization criteria is the minimization of the makespan.
Makespan is an indicator of the general productivity of the grid system. Small
values of makespan mean that the scheduler is providing good and efficient planning
of tasks to resources. Makespan indicates the time when the last task finishes.
Flowtime is the sum of finalization times of all the tasks.
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Let Jj (j{1, 2, . . . , n}) be independent user jobs on Gi (i{1, 2, . . . ,m}) heteroge-
neous grid nodes with an objective of minimizing the completion time and utilizing
the nodes effectively.

Number of CPUT expresses speed of every node. The length of each job is
specified by the number of cycles. Each job Jj has its processing requirement that
can be expressed in number of cycles. A node Gi has its calculating speed and it is
expressed in cycles/second. Any job Jj has to be processed in the one of grid nodes
Gi until completion. Since all the nodes at each stage are identical and preemptions
are not allowed, to define a schedule it suffices to specify the completion time for
all tasks comprising each job [1, 3].

To formulate our objective, we define:

• completion time Ci,j(i{1, 2, . . . ,m}, j{1, 2, . . . , n}) that the grid node Gi fi-
nishes the job Jj , represents the time that the grid node Gi finishes all the
jobs scheduled for itself,

• makespan can be expressed as the Cmax = max {C1, C2, . . . , Cn} and it is
the maximum completion time of all jobs Jj ,

• mean flowtime is
∑n

j=1 Cj and it is the sum of completion times of all n jobs.

An optimal schedule will be the one that optimizes the flowtime and makespan.
In our contribution we will minimize Cmax. It guaranties that no job takes too

long. For minimization we choose PSO algorithm.

4. MLP and RBF Neural Networks

Multiple Layer Perceptron (MLP) network [2] is a feed-forward structure composed
of an input layer of neurons, one or more hidden layers and an output layer. Neu-
rons in the nearest layers can be interconnected by weighted connections. Given is
an input vector, the output vector is computed by a forward pass which computes
the activity levels of each layer in turn using the already computed activity levels
in the earlier layers.

A non-linear activation function is one in which the output of a unit is a non-
decreasing and differentiable function of the network total output.

netk =
∑
j

wkjaj . (1)

In relation (1) aj is an output from j-th neuron and weights wkj are weighting
signals between neuron k and neuron j in lower level.

The output from the k-th neuron is ak = f(netk) and f is an activation function.
An error of the p-th pattern is given as:

Ep =
1

2

∑
k

(tpk − apk)
2. (2)

The system first uses the input vector to produce its own output vector and
then compares this with the desired output. If there is no difference, no learning
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takes place. Otherwise, the weights are changed to reduce the difference in the
direction from the output layer to the input layer. This way of learning is called
error back-propagation algorithm. There are several modifications of the learning
algorithms. The known modifications are the gradient descent algorithm, gradient
descent with momentum, conjugate gradients algorithms (e.g. Powell-Beale) or
Levenberg-Marquardt algorithms.

Radial-basis-function RBF network is a feed-forward structure composed of
an input layer, a hidden layer with RBF neurons and a linear output layer [15].
Adjustable weights among the neurons are only between hidden and output layer.
The inputs are directly connected to the neurons in the hidden layer via unity
weights. A neuron I in RBF network in the first (hidden) layer [16] has the following
transfer function:

z(x) = r(∥x− p∥)/σi. (3)

The element z(x) is i-th output of the neuron in the hidden layer. The argument
x is the input vector x = [x1, x2, . . . xq]

T , r(.) is a radial basis function and pi, σi

are the center and the width for the i-th RBF neuron. Output yi of the i-th linear
neuron in the output layer assuming the number of RBF neurons n is

yi =
n∑

j=1

wijz(x). (4)

Equation (4) represents linear operation.
Typical radial-basis-function is Gaussian function, in this case the transfer fun-

ction is

zi(x) = e
∥x−pi∥2

σ2 . (5)

Elements pi, σi are the center and the standard deviation in relation (5). Parameter
σi is also called the spread parameter.

Probabilistic neural network is a special kind of RBF network. In the probabilis-
tic neural networks the linear layer is replaced by a competitive layer. Competitive
learning rule consists of three basic elements:

• A set of neurons that are all the same except for some randomly distributed
synaptic weights, and which, therefore, respond differently to a given set of
input patterns.

• A limit imposed on the “strength” of each neuron.

• A mechanism that permits the neurons to compete for the right to respond
to a given subset of inputs, such that only one output neuron, or only one
neuron per group, is active at the time. The neuron that wins the competition
is called winner-takes-all.

According to the standard competitive learning rule, the change wij can be defined
by [15]:

∆wij =

{
η(xi − wji), if neuron j wins the competition
0, if neuron j loses the competition

(6)

where η is learning rate parameter.
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5. Neural Tree

A neural tree is a decision tree with a simple perceptron for each intermediate or
non-terminal node [16]. Two main phases can be distinguished:

• Training

• Classification

The training phase
The role of this phase is to construct the neural tree. The tree is generated recur-
sively by partitioning a training set consisting of feature vectors and their corre-
sponding class labels. There are two kinds of nodes in the tree (intermediate nodes
and leaf nodes). The procedure of constructing the tree involves three steps:

• Computing internal nodes

• Determining leaf nodes

• Labeling leaf nodes

An intermediate node classifies the input patterns into different classes. The
leaf node gives input patterns into a single class which is used as the label for the
leaf node. The neural tree arranges recursively partition of the training set such
that each generated path ends with a leaf node. The training algorithm, along
with the computation of the tree structure, calculates the connection’s weights for
each node. Each connection’s weight is adjusted by minimizing a cost function as
mean square error or another error function. These weights are used during the
classification phase to classify unseen patterns.

The neural tree training algorithm consists of particular steps:

• First node (root) is created.

• The patterns of the training set are presented to the root node. The node
is trained to divide the training set into subsets. The process stops after
reaching some condition, for example mean square error of net.

• When a subset is homogeneous, a leaf node is associated and labeled as the
corresponding class (Fig. 1).

• When some of subsets is not homogeneous, a new node is added to the neural
tree at the next level. We can continue by second step. The training process
is progressing and all subsets gradually become homogenous (Fig. 2).

• Training process is finished when all nodes become the leaf nodes (Fig. 3).

The classification phase
In the phase of classification, unknown patterns are presented to the root node.
The class is obtained by going through the tree from root to the leaf nodes. The
activation values f are computed for each node, on the base of each connection’s
weight. The activation values of the current node determine the next node to
consider until a leaf node is reached. In every node the winner takes-all rule (6) is
applied.
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Fig. 1 Partition of the training set by the root node.

Fig. 2 Partition by the internal node.

Fig. 3 Final neural tree.

229



Neural Network World 3/13, 223-241

6. The Model of Particle Swarm Optimizer
Algorithm for Discrete Variables

The PSO algorithm was invented by Kennedy, Eberhart and Shi [4]. It is a
population-based algorithm with fewer parameters to implement. The PSO al-
gorithm was first applied to the optimization problems with continuous variables.
Recently, it has been used to solve optimization problems with discrete variables
[5, 7]. The optimization problem with discrete variables is a combination optimiza-
tion problem which obtains its best solution from all possible variable combina-
tions. The scalar S includes all permissive discrete variables arranged in ascending
sequence. Each element of the scalar S is given a sequence number to represent
the value of the discrete variable correspondingly. It can be expressed as follows
Sd = {X1, X2, . . . Xj , . . . Xp} , 1 ≤ j ≤ p.

A mapping function h(j) is selected to index the sequence numbers of the ele-
ments in set S and represents the value Xj of the discrete variables correspondingly
h(i) = Xj .

Thus, the sequence numbers of the elements will substitute the discrete values
in the scalar S. This method is used to search for an optimum solution, and makes
the variables to be searched for in a continuous space.

The PSO algorithm includes a number of particles. The particles are initial-
ized randomly in the search space. The position of the i-th particle in the space
can be described by a vector xj , xi =

(
x1i , x2i , . . . , xdi , . . . , xDi

)
, 1 ≤ d ≤ D,

i = 1, . . . , n, where D is the dimension of the particle, and n is the number of di-
mensions. The scalar xdi = {1, 2, . . . , j, . . . , p} corresponds to the discrete variable
set {X1, X2, . . . , Xj , . . . , Xp} by the mapped function h(j). Therefore, the particle
flies through the continuous space, but only stays at the integer space. In other
words, all the components of the vector xi are integer numbers. The positions of
the particles are updated based on each particle’s personal best position as well as
the best position found by the swarm in all iterations. The objective function is
evaluated for each particle, and the fitness value is used to determine which posi-
tion in the search space is the best of the others. The swarm is updated by the
relations (7) and (8)

V k+1
i = ωV

(k)
i + c1r1

(
P

(k)
i − x

(k)
i

)
+ c2r2

(
P (k)
g − x

(k)
i

)
. (7)

x
(k+1)
i = INT

(
x
(k )
i + V

(k+1)
i

)
, (8)

where 1 ≤ I ≤ n, represent the current position and the velocity of each particle

at the k-th iteration, respectively, P
(k)
i and P

(k)
g the best global position among

all the particles in the swarm (called gbest), r1 and r2 are two uniform random
sequences generated from (0, 1), and ω the inertia weight used to discount the
previous velocity of the particle persevered [8, 9, 10].

7. Data Description and Simulation Tools

In this paper, we use the data based on the parameters of the real grid system
Nordugrid. See http://www.nordugrid.org/monitor/loadmon.php. There are
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about 70 computing resources with a different number of CPUs (from 2 to 9856).
Grid equipment involves a wide range of hardware. Available are multiprocessors
SMP with shared memory based on architecture MIPS and multicomputer clusters
using 32-bit and 64-bit processors. Internal connections among nodes are realized
using special networks Myrinet (2.5Gb/s) and Infiniband (20Gb/s) for some se-
lected nodes, and Gigabit Ethernet (1Gb/s) otherwise. Clusters use mostly 1Gb/s
Ethernet or Infiniband for their internal communication. They can have different
capacity of data storages, operating systems, compilers and application software.
We can widely classify resources into 3 categories on the base of numbers of CPUs:

• S – small (1 – 100 CPUs)

• M – middle (100 – 1000 CPUs)

• L – large (1000 – 10000 CPUs)

User tasks include more required parameters of resources. For that reason the
final characteristic of computing resources can be classified by different kinds of
parameters:

• Numbers of CPUs are from the range 1 – 10000 and we classify it (1 – 3)

• Capacity of data storage is from 1 – 40000 and it corresponds to (1 – 3)

• Bandwidth between CPUs and data storages is classified (1 – 3)

• Type of operating system (1 – 5)

• Type of compiler (0 – 4)

• Type software for applications (0 – 9)

Every computing resource is denoted by a unique number and 6 previous parame-
ters (three from the hardware and three from the software point of view). Every
pattern is characterized by vector of 7 parameters. This is the way of coding each
computing element.

On the other hand, we need to code a task and its characteristics. These
attributes are considered the most important for our analysis:

• Length – length of the calculation in millions instructions or another unit
which can relatively measure task size (1 – 100000).

• Input file size – size of the input file, before the task execution starts (1 – 3)

• Output file size – size of the output file, after the task execution ends (1 – 3)

• Type of operating system (1 – 5)

• Type of compiler (0 – 4)

• Type software for applications (0 – 9)
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We have designed a model of scheduling system which consists of two basic parts.
The first part is created by the neural tree. The goal of the neural tree is to match
the users’ tasks to an appropriate class of resources. We modeled this resource
broker as a neural tree created in Matlab software tools.

The second part of our scheduling system is modeled using GridSim toolkit –
grid simulation tool for modelling resources and scheduling applications for parallel
and distributed systems. The aim of this part is to design a model that finds optimal
schedule (or schedule very close to optimal) for running tasks on group of resources.
As an optimization criterion we use makespan Cmax. For minimization makespan
we choose and implement PSO algorithm.

The GridSim toolkit allows modeling and simulation of entities in parallel and
distributed computing systems-users, applications, resources, and schedulers for
design and evaluation of scheduling algorithms. This level of scheduling system
uses algorithms for mapping jobs to resources to optimize system or user objectives
depending on their goals. GridSim toolkit is written in Java and is available on-line
[11].

One computing task is represented by a Gridlet class which contains several
attributes defining character of the task (length, input file size and output file
size).

We assume that we know task complexity, and we can express it in the same
units as computer efficiency.

Grid resources are presented by a GridResource class which describes characte-
ristics of the resource. It also contains ResourceCharacteristic object which contains
a list of all computers in the cluster, number of their processors and their efficiency.
The GridSim works only with the part of resources that was chosen by neural tree.
To be able to compare the efficiency of all CPUs, we chose to use a simple measure
unit which presents the number of floating point operations per second. Evalu-
ation of every processor used is based on data taken from website of Geekbench
benchmark [12]. We created web application tool on the base of GridSim for cre-
ating models of grid scheduling algorithm and evaluating these models in process
of simulation. There are implemented PSO algorithms, too [33, 34, 35, 36, 37].

8. Simulations and Experimental Results

We have designed a neural tree on the base of probabilistic neural network and
known structure of data. Structure of data is described in the previous part of this
paper.

The training process of neural tree
Patterns were prepared from the data sets. Every pattern has 7 elements. The
training set was presented to the root node and subsequently its parts to other
created nodes. The tree was trained to divide the training set into three subsets that
include some portion of numbers of CPUs, capacity of data storage and bandwidth.
We used elements 2, 3 and 4 from every pattern (Fig. 4). These categories represent
grid performance from the hardware point of view. We measured sum square error
(Fig. 6) and mean square error of net as the stop criterion. After that we gained
corresponding class 1, 2 or 3 of grid resources.
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Fig. 4 Part of input pattern.

In a similar way, we trained a new neural tree for every class (1 – 3) of grid
hardware resources with the goal to divide every class into new 3 classes from the
software point of view. In such a way we reached nine classes of the grid resources.
In the training phase of the second tree we used patterns elements that correspond
with the operating system, compilers and application software. We used elements
5, 6 and 7 from every pattern. Output yi of i-th linear neuron was computed
by relation 4, and weights were updated by relation 6. These weights represent
dividing planes between separated input subsets. One of the weight sets can be
seen in Fig. 5. Colors of weights are changed according to their size.

The classification phase

Similarly as in training, in the phase of classification, unknown patterns were pre-
sented to the root node. Every pattern has 7 elements. The elements of patterns
that were considered by passing over the tree again correspond with hardware cha-
racteristics (numbers of CPUs, capacity of data storage and bandwidth). We used
elements 2, 3 and 4 from every pattern. The one of three classes was obtained by
going through the tree from root to the leaf nodes. A second tree was used for
classification patterns based on the software criteria (operating system, compilers
and application software). We used elements 5, 6 and 7 from every pattern.

We repeated these processes 6 times for 500, 450, 400, 350, 300 and 250 input
patterns in the training process.

There is relation between the numbers of patterns in the training process and
accuracy of classification in Fig. 7, and additional information about the tree is in
Tab. I.
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Fig. 5 Evolution of weight in the process of training.

Fig. 6 Performance of sum square error in the process of training tree.
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Fig. 7 Relation between numbers of patterns in the training process and accuracy
of classification.

Number of Percentage average Depth of Total
patterns accuracy of classification tree nodes

500 95.25 8 143
450 93.76 8 135
400 87.51 7 124
350 85.27 7 108
300 75.73 5 92
250 62.14 4 35

Tab. I Measured data after classification phase of the first neural tree.

After using neural trees, we have separated grid resources into nine classes.
The patterns that correspond with the nine classes have been implemented to
the GridSim toolkit in GridResource class which describes characteristics of the
resource and contains ResourceCharacteristic.

We executed a total of 6 series of experiments with different tasks (see Tab. II).
The first and second series of tasks were aimed at scheduling a very large number
of tasks. The first simulation input has 1001 – 5000 tasks with a large size of
their length. The second batch consists of small tasks. Series 3 and 4 use 101 –
1000 tasks and series 5 and 6 are designed for 1 – 100 tasks. We assume a small
diversity of length of tasks, which means that all task lengths can be distributed into
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an input interval. All tasks were generated randomly providing only minimum and
maximum values of length, and file size. Other hardware or software parameters of
tasks are associated to every series. On the base of all the values and parameters
tasks are mapped only on the one class of grid resources we have gained from the
neural trees.

Number of Size of Type of Type of
Series tasks task input files output files

size size
Series 1 1001 – 5000 10 001 – 100 000 1 – 3 1 – 3
Series 2 1001 – 5000 1 – 10 000 1 – 3 1 – 3
Series 3 101 – 1000 10 001 – 100 000 1 – 3 1 – 3
Series 4 101 – 1000 1 – 10 000 1 – 3 1 – 3
Series 5 1 – 100 10 001 – 100 000 1 – 3 1 – 3
Series 6 1 – 100 1 – 10 000 1 – 3 1 – 3

Tab. II Main characteristics of tasks series.

First, we applied the PSO scheduling algorithm 10 times in all series (see Tab. II)
of experiments without using neural tree classification. All schedules were success-
fully created. Subsequently, we used PSO scheduling algorithm again 10 times in
all series of experiments while using neural tree classification of grid resources. All
schedules were successfully created again.

Experimental results of average time of creating schedule (ms) and average
time of makespan of schedules (s) with and without neural network tree are in the
table (see Tab. III). There is a comparison of three algorithms (PSO, Hill climbing
and Round Robin) in Figs. 8 and 9. There are values of schedules makespan (s)
in these figures. For this paper we take into account only simulation time of PSO
optimization of scheduling. The best experimental case of schedule creating without
using neural tree for series 1 is in the figure (see Fig. 8). The worst experimental
case of schedule creating when using neural tree for series 1 is in figure (see Fig. 9).

We have used three different variants of this algorithm that differ in algorithm
parameters. PSO-1 variant uses 10 particles and 300 iterations for series 5 and
6. Variant PSO-2 uses 20 particles and 300 iterations for series 3 and 4. Variant
PSO-3 uses 30 particles and 500 iterations for series 1 and 2.

There is a comparison of average time of schedule creation without and with
neural tree in figure (see Fig. 10). We can see comparison of time of makespan of
schedules without and with using neural tree in the figure (see Fig. 11). There are
vertical axes in logarithmic scale to base 10 in the figures (see Fig. 10 and Fig. 11).
We have assumed improvement in scheduling in systems with large portions of tasks
for high performance computing. This assumption was confirmed. The experiments
show that there are also improvements in cases of middle and relatively small
portions of tasks (up to 100).

The average improvement of the makespan criterion for schedules by using
NNT with a large number of tasks, large task length (series 1) was 7.7 times, and
improvement for a large number of relatively small tasks (series 2) was 3.33 times.
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Fig. 8 The best case of experimental results of makespan of schedules without using
classification by NNT (s) from series 1.

Average Average
Average Average time of time of Average Average

Series number of size of creation creation makespan makespan
tasks task schedule schedule (s) with using

(ms) with using NNT (s)
NNT (ms)

Series 1 3582 50024 25015 4438 2287429 297228
Series 2 3380 5200 11828 2562 101720 30520
Series 3 426 48320 1579 683 92367 21178
Series 4 683 5782 781 831 9662 1042
Series 5 62 62040 159 104 9005 3156
Series 6 49 3560 94 77 1041 251

Tab. III Experimental results.

Improvements for series 3 and 4 that use 101 – 1000 tasks were 4.26 and 9.27 times,
respectively, and for series 5 and 6 that are designed for 1 – 100 tasks were 2.85
and 4.15 times, respectively.
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Fig. 9 The worst case of experimental results of makespan of schedules with using
classification by NNT (s) from series 1.

Fig. 10 Comparison of average time of schedule creation without and with NNT.
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Fig. 11 Comparison of time of makespan of schedules without and with NNT.

9. Conclusion

Job scheduling is computationally hard. It has been shown that the problem of
finding optimal scheduling in heterogeneous systems is in general NP-hard.

This paper proposes a model of neural tree architecture with probabilistic neu-
rons. These trees are used for classification of a large amount of computer grid re-
sources to classes. The first tree is used for classification hardware part of dataset.
The second tree classifies patterns of software identifiers. The trees are imple-
mented to successfully separate inputs into nine classes of resources. We proposed
Particle Swarm Optimization algorithm for tasks scheduling in computer grid. We
compared time of creation of schedule and time of makespan for each of six series of
experiments without and with NNT. In the experiments using NNT we gained the
subset of suitable computational resources. The aim was effective mapping of large
tasks into particular resources. On the base of our experiments we can say that
improvements have been made even for middle and small batch of tasks. Average
improvement for each used structure batch of tasks is 5.28 when using NNT for
classification of resources against the experiments without neural tree.

In future works we plan to apply wave probabilities [27, 28], Heisenberg’s un-
certainty limit [29] or information circuits [30] in our neural net models to speed
up classification or to eliminate indefinites.
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