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Abstract: In my previous papers ([18], [19]) the entropy of fuzzy partitions had
been defined. The concept of the entropy of a fuzzy partition was used to define
the entropy of a fuzzy dynamical system and to propose an ergodic theory for fuzzy
dynamical systems ([19], [20]). In this paper, using my previous results related to
the entropy of fuzzy partitions, a measure of average mutual information of fuzzy
partitions is defined. Some properties concerning this measure are proved. It is
shown that the entropy of fuzzy partitions can be considered as a special case of
their mutual information. We obtain that subadditivity and additivity of entropy
of fuzzy partitions are simple consequences of these properties. The suggested
measures can be applied whenever it is need to know the amount of information
that we obtain by realization of experiments, the results of which are fuzzy events.
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1. Introduction

When planning experiments it is very important to know the amount of informa-
tion which we obtain from their realization. It is well known that a measure of
information is an entropy. A usual mathematical model of a random experiment
in the classical information theory is a measurable partition of a probability space.
Partitions are standardly defined in the context of classical, crisp sets. It has ap-
peared however, that for a solution of real problems are partitions defined by means
of the concept of fuzzy sets more appropriate. That was a motivation for several
concepts of generalization of the classical set partition to a fuzzy partition ([1]-[5],
[9], [23]-[25], [32]). In our papers [18] and [19], we deal with study of fuzzy par-
titions defined by K. Piasecki in [26]. In [18], the entropy of fuzzy partitions was
defined and its basic properties were proved. In this paper, we define a mutual in-
formation Im(A, B) of experiments A, B , the outcomes of which are fuzzy events.
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In the final section, it is proved the inequality Im(A, B)≥ 0, with the equality if
and only if the experiments A, B are statistically independent. In conclusion, it
is shown that the mentioned property implies subadditivity and additivity of the
entropy of fuzzy partitions.

2. Fuzzy partitions and their entropy

In the classical probability theory, which is based on the Kolmogorov axiomatic
system ([15]), a random event is every element of the σ−algebra S of subsets of a set
X. A probability is a normalized measure defined on the σ−algebra S. The notion
of σ−algebra S of random events and concept of a probability space (X, S, P ) are
a base of the classical concept of probability theory. In doing so, the event in the
classical probability theory is understood as an exactly defined phenomenon and
from a mathematical point of view (as it is mentioned above) it is a classical set.
In real life, however, we often talk about events that carry important information,
but they are less exact. For example, “tomorrow will be nice” “a large number
falls”, “the product operates within a short time” are vaguely defined events, so-
called fuzzy events. Their probability can be studied using the apparatus of fuzzy
set theory. The first attempts to develop a concept of fuzzy events and their
probability come from the founder of the fuzzy set theory L. A. Zadeh (see [34]).
Assuming that the probability space (X, S, P ) is given, Zadeh defines fuzzy event
as any S-measurable function f : X → ⟨0, 1⟩ and the probability p(f) of fuzzy
event f by the formula p(f) =

∫
X

fdP . Axiomatic approaches to the creation of the

probability concept of fuzzy events came up in a short time. There are several (see,
for example [4], [11], [14]). The object of our studies in the articles [17] and [18]
were the fuzzy probability spaces defined by Polish mathematician K. Piasecki.

Definition 2.1 ([26]). A fuzzy probability space is a triplet (X,M,m), where X is
a nonempty set; M is a fuzzy σ−algebra of fuzzy subsets of X (i.e.,
(i) 1X ∈ M ; (1/2)X /∈ M ; (ii) if fn ∈ M, n = 1, 2, ..., then ∨∞

n=1fn ∈ M ;
(iii) if f ∈ M, then f ′ : = 1X − f ∈ M) and the mapping m : M → ⟨0, ∞)
fulfils the following conditions:

(P1) m(f ∨ f ′) = 1 for every f ∈M ;

(P2) if {fn}∞n=1 is a sequence of pairwise W-separated fuzzy subsets from M

(i.e., fi ≤ f ′j for i ̸= j), then m(∨∞
n=1fn) =

∞∑
n=1

m(fn).

The operations with fuzzy sets are defined here by Zadeh ([33]), i.e., the union
of fuzzy subsets f, g of X is a fuzzy set f∨g defined by (f∨g)(x) = sup(f(x), g(x))
for all x ∈ X and the intersection of fuzzy subsets f, g of X is a fuzzy set f ∧ g
defined by (f ∧ g)(x) = inf(f(x), g(x)) for all x ∈ X. The complement of fuzzy
subset f of X is a fuzzy set f ′ defined by f ′(x) = 1−f(x) for all x ∈ X. The empty
fuzzy set 0X is defined by 0X(x) = 0 for all x ∈ X. The complement of empty
fuzzy set is a fuzzy set 1X defined by the equality 1X(x) = 1 for all x ∈ X. It is
called universum. Fuzzy subsets f, g of X such that f∧g = 0X are called separated
fuzzy sets. Analogous weak notions (W-notions) were defined by Piasecki in [27]
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as follows: each fuzzy subset f ∈ M such that f ≥ f ′ is called W-universum;
each fuzzy subset f ∈ M such that f ≤ f ′ is called W-empty set. Fuzzy subsets
f, g ∈ M such that f ≤ g′ are called W-separated. It can be proved that a fuzzy
set f ∈M is a W-universum if and only if there exists a fuzzy set g ∈M such that
f = g ∨ g′.

Each mapping m :M → ⟨0, ∞) having the properties (P1) and (P2) is called
in the terminology of Piasecki a fuzzy P -measure. Any fuzzy P -measure has the
following properties, which are analogous to the properties of classical probability
measure:

(P3) m(f ′) = 1−m(f) for every f ∈M.

(P4) m is a nondecreasing function, i.e., if f, g ∈M, f ≤ g, then m(f) ≤ m(g).

(P5) m(f ∨ g) = m(f) +m(g)−m(f ∧ g) for any f, g ∈M.

(P6) Let g ∈ M be given. Then m(f ∧ g) = m(f) for all f ∈ M if and only if
m(g) = 1.

(P7) m is a σ−subadditive function, i.e., m(∨∞
n=1fn) ≤

∞∑
n=1

m(fn) for any sequence

{fn}∞n=1 ⊂M.

(P8) m(∨∞
n=1fn) = lim

n→∞
m(fn) for any sequence {fn}∞n=1 ⊂M such that fn ≤ fn+1

for n = 1, 2, ....

(P9) m(∧∞
n=1fn) = lim

n→∞
m(fn) for any sequence {fn}∞n=1 ⊂M such that fn ≥ fn+1

for n = 1, 2, ....

(P10) If f, g ∈M are W-separated, then m(f ∧ g) = 0.

(P11) If f, g ∈M such that f ≤ g, then m(g) = m(f) +m(f ′ ∧ g).

The proofs of these properties can be found in [26].

The mapping m( · /g) : M → ⟨0, 1⟩ defined for each g ∈ M,m(g) > 0, by the
equality

m( f /g) =
m(f ∧ g)
m(g)

, f ∈M,

is a fuzzy P -measure on M ([26]). It is called a conditional probability.

A probability interpretation of the above notions is as follows:

(i) a set X is a set of elementary events;

(ii) a fuzzy set from the system M is a fuzzy event;

(iii) the value m(f) is a probability of fuzzy event f ;

(iv) a fuzzy event f ′ is an opposite event to fuzzy event f ;

(v) a fuzzy event with zero probability is an impossible event;
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(vi) a fuzzy event with positive probability is a possible event;

(vii) a fuzzy event with probability 1 is a certain event;

(viii) W-separated fuzzy events are interpreted as mutually exclusive events.

By means of properties of fuzzy P -measure we get that a W-universum is a cer-
tain event and a W-empty set is an impossible event. In the following, we give
Piasecki‘s definitions of fuzzy partitions of a fuzzy probability space (X,M,m)
and our definition of their entropy.

Definition 2.2 ([26]). Let a fuzzy probability space (X,M,m) be given. Each fi-
nite or infinite sequence {fi}i ⊂M of pairwise W-separated fuzzy subsets such that
∨ifi is a W-universum is called a complete fuzzy partition of the space (X,M,m).

Definition 2.3 ([26]). Let a fuzzy probability space (X,M,m) be given. A finite
or infinite sequence A = {fi}i of pairwise W-separated fuzzy subsets from Msuch
that m(∨ifi) = 1 is called a stochastic fuzzy partition of the space (X,M,m).

It is evident that each complete fuzzy partition is a stochastic fuzzy partition.
In accordance with the classical theory we will in the following consider only finite
fuzzy partitions. Let us denote by the symbol P the system of all finite stochastic
fuzzy partitions. Each partition A ={f1, f2, ..., fn} from the system P represents
in the sense of the classical probability theory a random experiment with finite
number of outcomes fi, i = 1, 2, ..., n, (which are fuzzy events) with probabi-
lity distribution pi = m(fi), i = 1, 2, ..., n, since pi ≥ 0 for i = 1, 2, ..., n and
n∑

i=1

pi =
n∑

i=1

m(fi) = m(∨n
i=1fi) = 1. Therefore the entropy of any experiment

A ={f1, f2, ..., fn} from the system P had been defined in [19] by Shannon’s
formula:

Hm(A) =H(m(f1),m(f2), ...,m(fn)) = −
n∑

i=1

F (m(fi)),

where

F : ⟨0, ∞) → R, F (x) =

{
x log x, if x > 0;
0, if x = 0.

The notion of entropy of a stochastic fuzzy partition is a generalization of Sha-
nnon‘s entropy of a measurable partition (see [19]). In [19], properties of the su-
ggested measure were studied, too. It has been shown that it satisfies all properties
analogous to the properties of Shannon’s entropy in the crisp case. The entropy
of a stochastic fuzzy partition can be considered as a measure of uncertainty of
experiment, the outcomes of which are fuzzy events.

Let B ={ g1, g2, ..., gm} be a random experiment of a fuzzy probability space
(X,M,m). Let us suppose that some circumstances do not allow us to realize the
experiment B , but we know a result of some other experiment A ={ f1, f2, ..., fn}
of the same fuzzy probability space (X,M,m). Let us assume that a fuzzy event
fi with nonzero probability is a result of the experiment A. Then the fuzzy events
g1, g2, ..., gm happen with probabilities m(g1/fi), m(g2/fi), ..., m(gm/fi), where

m(gj/fi) : =
m(gj∧fi)
m(fi)

is a conditional probability of the fuzzy event gj provided
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that the fuzzy event fi occurred. The uncertainty of the experiment B will change
from the value Hm(B) = H(m(g1),m(g2), . . . ,m(gm)) to the value
H(m(g1/fi), m(g2/fi), . . . ,m(gm/fi)), which we will denote by the symbol Hm(B
/ fi). This is a motivation for the following definition of conditional entropy of
experiment B given the fuzzy event fi and definition of conditional entropy of
experiment B assuming a realization of experiment A.

Definition 2.4 Let A, B∈P , A ={ f1, f2, ..., fn} , B ={ g1, g2, ..., gm}. A condi-
tional entropy of B given a fuzzy event fi ∈ A is defined by

Hm(B / fi) = −
m∑
j=1

F (ṁ(gj/fi)),

where

ṁ(gj/fi) =

{
m(gj/fi), if m(fi) > 0;
0, if m(fi) = 0.

A conditional entropy of the experiment B∈P assuming a realization of the expe-
riment A∈P is defined by the formula

Hm(B / A) = −
n∑

i=1

m(fi) ·Hm(B / fi) = −
n∑

i=1

m∑
j=1

m(fi) · F (ṁ(gj/fi)).

Remark 2.5 Put α = { i; m(fi) > 0 } , β = { (i, j); m(fi ∧ gj) > 0 } . Then it
holds

Hm(B / A) = −
n∑

i=1

m∑
j=1

m(fi) · F (ṁ(gj/fi)) = −
∑
i∈α

m∑
j=1

m(fi) · F (m(gj/fi) =

= −
∑

(i,j)∈β

m(fi) ·
m(fi ∧ gj)
m(fi)

· log m(fi ∧ gj)
m(fi)

= −
∑

(i,j)∈β

m(fi ∧ gj) · log
m(fi ∧ gj)
m(fi)

.

We define in the set P of all finite stochastic fuzzy partitions of a fuzzy pro-
bability space (X,M,m) the relation ≤ in the following way: for every A, B ∈ P ,
A ≤ B iff for every g ∈B there exists f ∈ A such that g ≤ f. In this case we shall
say that the partition B is a refinement of the partition A.

Let A and B be two stochastic fuzzy partitions of a fuzzy probability space
(X,M,m). Then the system A ∨ B : ={f ∧ g; f ∈ A, g ∈ B} is a stochastic fuzzy
partition of the space (X,M,m), too. The partition A ∨ B represents a joint
experiment of experiments A, B . It easy to see that A ≤ A ∨ B and B ≤ A ∨ B .
The entropy and the conditional entropy of stochastic fuzzy partitions satisfy all
properties analogous to properties of Shannon’s entropy of measurable partitions
in the classical case. We review some basic properties of the considered entropy:

(2.1) Hm(A) ≥ 0 for each A ∈ P .

(2.2) If A, B ∈ P , A ≤ B , then Hm(A) ≤ Hm(B).

(2.3) Let A, B ∈ P , A ≤ B . Then

Hm(A / C ) ≤ Hm(B / C ) for every C ∈ P .
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(2.4) For every A, B , C ∈ P it holds

Hm(B ∨ C / A) ≤ Hm(B / A) +Hm(C / A).

(2.5) Hm(B∨C / A) = Hm(C / A∨B) + Hm(B / A) for each A, B , C ∈ P .

The proofs of the above properties may be found in [19].
The presented concept of entropy of a fuzzy partition was used to define the

entropy of a fuzzy dynamical system (X,M,m,U) (the mapping U : M → M is
an m-preserving σ−homomorphism). In the paper [19], an ergodic theory for fuzzy
dynamical systems has been proposed. We have therein defined the generators of a
fuzzy dynamical system and using this notion a fuzzy version of Kolmogorov-Sinai
theorem on generators was given. In the paper [20], it has proven that the entropy
of a fuzzy dynamical system is an isomorphism invariant. Another approaches to
a fuzzy generalization of notions of entropy and conditional entropy can be found
in articles [1], [4], [5], [8], [10]-[13], [16], [21], [22], [29] and [30].

3. Mutual information of experiments in the fuzzy
case

Mutual information measures the amount of information that can be obtained
about one experiment by realization of another. At first, we will prove the assertion
of the following theorem that will be useful in further considerations.

Theorem 3.1 For every A, B ∈ P it holds

Hm(A ∨B) = Hm(A) +Hm(B / A). (1)

Proof. Put A ={ f1, f2, ..., fn} , E ={1X} (E is an experiment, the result of
which is a certain event.). Since

Hm(A / E) = −
n∑

i=1

m(1X) · F (m(fi/1X)) = −
n∑

i=1

F (m(fi)) =Hm(A),

by means of property (2.5) we get

Hm(A ∨B) = Hm(A ∨B/E) = Hm(B/E∨A)+ Hm(A/E) = Hm(A)+Hm(B/A).

Corollary 3.2 Hm(A ∨ B) ≥ max (Hm(A); Hm(B)) for every A, B ∈ P .

Proof. This result follows from the previous theorem and from the fact that
entropy is nonnegative.

Remark 3.3 From the equality (1) it follows that the value of the entropy Hm(A)
of experiment A is larger, the conditional entropy Hm(B / A) is less for it. Ana-
logously as in the classical theory ([7]), based on the equality (1), we can interpret
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the value Hm(B / A) as a residual entropy of a joint experiment A ∨ B after
a realization of experiment A and consider it as an average value of additional
information that can be derived from the experiment B after a realization of the
experiment A. The difference Hm(B) - Hm(B / A) can then be regarded as the
average amount of information about an experiment B contained in an experiment
A. This is a motivation for the following definition.

Definition 3.4 Let A, B ∈ P . The average amount of information Im(A, B)
about an experiment B in an experiment A is given by

Im(A, B) = Hm(B)−Hm(B / A). (2)

Theorem 3.5 For every A, B ∈ P it holds

Im(A, B) = Hm(A) +Hm(B)−Hm(A ∨B). (3)

Proof. The equality (3) is a simple consequence of Theorem 3.1.

Corollary 3.6 Im(A, B) ≤ min (Hm(A); Hm(B)) for every A, B ∈ P .

Proof. The result follows immediately from Theorem 3.5 and the property (2.2).

From the preceding theorem it follows that the measure Im is symmetric, i.e., for
every A, B ∈ P , it holds Im(A, B) = Im(B , A). This means that information
about an experiment B in an experiment A is equal to information about an
experiment A in an experiment B . Hence the value Im(A, B) is called also mutual
information of experiments A, B . It is easy to see that Hm(A / A) = 0, hence
from (2) we obtain Im(A, A) = Hm(A) – Hm(A / A) = Hm(A). So that we see
that the entropy of fuzzy partitions can be considered as a special case of their
mutual information.

Theorem 3.7 Let A, B∈P , A ={ f1, f2, ..., fn} , B ={ g1, g2, ..., gm}. Then

Im(A, B) =
∑

(i,j)∈β

m(fi ∧ gj) · log
m(fi ∧ gj)
m(fi) ·m(gj)

, (4)

where β = { (i, j); m(fi ∧ gj) > 0 } .

Proof. Let gj ∈ B . Since for k ̸= l we have

fk ∧ gj ≤ fk ≤ f ′l ≤ f ′l ∨ g′j = (fl ∧ gj)′,

the system { f1 ∧ gj , f2 ∧ gj , ..., fn ∧ gj} is a system of pairwise W-separated fuzzy
subsets from M . Due to the assumption m(∨n

i=1fi) = 1, the property (P6)
and additivity of fuzzy P -measure we get

m(gj) = m((∨n
i=1fi) ∧ gj) = m(∨n

i=1(fi ∧ gj)) =
n∑

i=1

m(fi ∧ gj).

Put next α = { j; m(gj) > 0 } . Then, based on the remark from the preceding
section, we obtain
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Im(A, B) = Hm(B)−Hm(B / A) =

= −
∑
j∈α

m(gj) · logm(gj) +
∑

(i,j)∈β

m(fi ∧ gj) · log
m(fi ∧ gj)
m(fi)

=

= −
∑
j∈α

n∑
i=1

m(fi ∧ gj) · logm(gj) +
∑

(i,j)∈β

m(fi ∧ gj) · log
m(fi ∧ gj)
m(fi)

=

= −
∑

(i,j)∈β

m(fi ∧ gj) · logm(gj) +
∑

(i,j)∈β

m(fi ∧ gj) · log
m(fi ∧ gj)
m(fi)

=

=
∑

(i,j)∈β

m(fi ∧ gj) · [ log
m(fi ∧ gj)
m(fi)

− logm(gj) ] =

=
∑

(i,j)∈β

m(fi ∧ gj) · log
m(fi ∧ gj)
m(fi) ·m(gj)

.

Theorem 3.8 Let A,B∈ P . Then Im(A, B)≥ 0 with the equality if and only if
the experiments A, B are statistically independent.

Proof. Let A, B∈ P , A ={ f1, f2, ..., fn} , B ={ g1, g2, ..., gm}. Suppose that
(i, j) ∈ β, where β = { (i, j); m(fi ∧ gj) > 0 } . Then using the inequality
lnx ≤ x− 1, which is valid for all x > 0, with the equality if and only if x = 1, we
get

m(fi ∧ gj) · log
m(fi) ·m(gj)

m(fi ∧ gj)
= m(fi ∧ gj) · ln 2 · ln

m(fi) ·m(gj)

m(fi ∧ gj)
≤

≤ m(fi ∧ gj) · ln 2 ·
[
m(fi) ·m(gj)

m(fi ∧ gj)
− 1

]
= ln 2 · [m(fi) ·m(gj)−m(fi ∧ gj)] .

The equality holds if and only if
m(fi)·m(gj)
m(fi∧gj)

= 1, i.e., when the fuzzy events fi, gj
are independent.

In view of the preceding theorem and by means of the proven inequality we get

−Im(A, B) =
∑

(i,j)∈β

m(fi ∧ gj) · log
m(fi) ·m(gj)

m(fi ∧ gj)
≤

≤ ln 2
∑

(i,j)∈β

(m(fi) ·m(gj)−m(fi ∧ gj)) =

= ln 2

 ∑
(i,j)∈β

m(fi) ·m(gj)−
∑

(i,j)∈β

m(fi ∧ gj)

 =
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= ln 2

 n∑
i=1

m∑
j=1

m(fi) ·m(gj)−
n∑

i=1

m∑
j=1

m(fi ∧ gj)

 =

= ln 2

 n∑
i=1

m(fi)
m∑
j=1

m(gj)−
n∑

i=1

m(∨m
j=1(fi ∧ gj))

 =

= ln 2

[
n∑

i=1

m(fi) ·m(∨m
j=1gj)−

n∑
i=1

m(fi)

]
= 0.

Evidently the equality holds if and only if m(fi ∧ gj) = m(fi) · m(gj) for
i = 1, 2, ..., n and j = 1, 2, ...,m, i.e., when fuzzy events fi, gj are independent
for i = 1, 2, ..., n and j = 1, 2, ...,m.

Theorem 3.9 For every A, B ∈ P it holds Hm(A / B) ≤ Hm(A) with the
equality if and only if the experiments A, B are statistically independent.

Proof. The assertion of theorem it follows from Definition 3.4, according to which
Im(A, B) = Hm(A) - Hm(A / B) and from the inequality Im(A, B)≥ 0, in which
the equality holds if and only if the experimentsA, B are statistically independent.

Theorem 3.10 For every A, B ∈ P it holds Hm(A ∨ B) ≤ Hm(A) +Hm(B)
with the equality if and only if the experiments A, B are statistically independent.

Proof. The assertion of theorem it follows from Theorem 3.5, according to which
for every A, B ∈ P it holds Im(A, B) = Hm(A) + Hm(B) - Hm(A ∨ B) and
from the inequality Im(A, B)≥ 0, in which the equality holds if and only if the
experiments A, B are statistically independent.

Note that in the previous theorem it is proved subadditivity and additivity of
entropy of fuzzy partitions.

4. Conclusion

The object of study in this paper are the fuzzy partitions defined by K. Piasecki.
These structures can serve as a mathematical model of random experiments, the
results of which are fuzzy events. The average mutual information of fuzzy parti-
tions has been defined using our previous results related to the entropy of fuzzy
partitions. We have proved basic properties concerning this measure.

References

[1] Benvenuti P., Vivona D., Divari M.: Fuzzy partitions and entropy. In: Proc. of the III Linz
Seminar on Fuzzy Set Theory: Uncertainty Measures, (Ed. P. Klement, S. Weber ), 1991,
pp. 14-18.

[2] De Baets B., Mesiar R.: T-Partitions. Fuzzy Sets and Systems, 97, 1998, pp. 211-223.

[3] Dumitrescu D.: Fuzzy partitions with the connectives T∞, S∞. Fuzzy Sets and Systems, 47,
1992, pp. 193-195.

347



Neural Network World 4/13, 339-349

[4] Dumitrescu D.: Fuzzy measures and entropy of fuzzy partitions. J. Math. An. and Appl.,
176, 1993, pp. 359-373.

[5] Dumitrescu D.: Measure-preservig transformation and the entropy of a fuzzy partition. In:
Proc. of the 13th Linz seminar on fuzzy set theory (Linz, 1991), 1991, pp. 25-27.
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