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Abstract: In this paper, a multi-layer perceptron (MLP) neural network (NN)
is put forward as an efficient tool for performing two tasks: 1) optimization of
multi-objective problems and 2) solving a non-linear system of equations. In both
cases, mathematical functions which are continuous and partially bounded are in-
volved. Previously, these two tasks were performed by recurrent neural networks
and also strong algorithms like evolutionary ones. In this study, multi-dimensional
structure in the output layer of the MLP-NN, as an innovative method, is utilized
to implicitly optimize the multivariate functions under the network energy opti-
mization mechanism. To this end, the activation functions in the output layer are
replaced with the multivariate functions intended to be optimized. The effective
training parameters in the global search are surveyed. Also, it is demonstrated
that the MLP-NN with proper dynamic learning rate is able to find globally opti-
mal solutions. Finally, the efficiency of the MLP-NN in both aspects of speed and
power is investigated by some well-known experimental examples. In some of these
examples, the proposed method gives explicitly better globally optimal solutions
compared to that of the other references and also shows completely satisfactory
results in other experiments.
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1. Introduction

In the case of large problems with many parameters involved, it is difficult to
introduce an efficient regulatory approach to obtain the optimal solutions of the
problem. Hence, optimization approaches are investigated in order to complete the
design process [1,2]. Some of these approaches consist the use of neural networks
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(NNs) [3-5], evolutionary algorithms [6-8] and other numerical approaches [9]. Most
of the works in NN, which is our main interest in this work, involve recurrent neural
networks (RNNs) [5]. The main idea benefited in RNNs as function optimization
tools [10] is that the problem is transformed into a set of differential equations. This
set of equations is then implemented by the RNN to be solved. So, the structure of
the RNN strongly depends on the considered optimization function. On the other
hand, due to the dynamic structure of the RNN, network stability should be proved
[11]. Examples of the optimization problems solved by the RNNs usually include
convex or non-convex spaces with only one minimum. To the best of authors’
knowledge, a versatile RNN to solve a broad class of optimization problems has
not been reported yet.

Since no comprehensive work has been done to optimize the multi-objective
problems by multi-layer perceptron (MLP) NNs, MLPs can be categorized as a
new tool for optimization [12]. In the following, we summarize the previously
reported notions which have addressed MLP as an optimization framework. In
[13], optimization performed by means of Lagrangian method in two steps, first,
detecting the optimal values of the decision variables and the second, finding appro-
priate Lagrange multipliers. Weight updating only depends on the derivatives of
the function; therefore, their proposed MLP is not able to solve non-convex prob-
lems. In [14] a feed-forward NN (FNN) is utilized to solve the Hamilton-Jacobi
non-linear inequality. The energy function of the FNN is an approximation of the
Hamilton-Jacobi term and inputs of the network indicate the states of the system.
Hence, a feedback path has been constructed between the outputs and the inputs
of the network. Starting with a set of initial inputs, the feedback system eventu-
ally reaches its steady state and the final outputs are considered as the solutions
of the Hamilton-Jacobi equation. Thereby, their proposal is presumably limited to
solve the Hamilton-Jacobi term; no effort has been made to extend the method.
In [12], in order to solve non-linear programming problems, Reifman and Feldman
have used the output of an MLP to provide the decision variables of the objective
function. In this work, the optimization has been defined in the framework of a
parameter free penalty function. The training algorithm used for the NN is the
same as back-propagation (BP) algorithm except for the last layer; in which local
gradient is considered to be equal to the sum of the gradients related to the ob-
jective and the constraint functions. Nevertheless, in their method, obtaining the
global solutions of the problem is not guaranteed.

Our main aim in this paper is to introduce a general method to optimize con-
strained multi-objective problems. The proposed method is completely based on
the regular MLP-NN. This approach does not suffer from the difficulties of the
RNNs, i.e. problem dependency and instability issues. In the proposed method,
traditional activation functions in the last layer of MLP are replaced with the
objective functions. Also, in order to optimize the multivariate functions, multi-
dimensional neurons are utilized. In addition, by applying the dynamic learning
rate, the network is able to globally search the solution space.

Subsequent sections are arranged as follows. In Section 2., the main idea of using
the regular MLP-NN as a tool for solving a univariate function will be introduced.
This idea will be generalized to solve/optimize a set of non-linear equations in
Section 3. Parameters involved in the algorithm performance will be discussed in
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Section 4. Also, in this section, utilized error signals and dynamic learning rate will
be described in details. Several single and multi-objective problems are solved in
Section 5. in order to investigate the efficiency of the proposed method. Finally,
the conclusion will be outlined in Section 6.

2. Basic Concepts: To Solve an Objective
Function Using Unidimensional MLP

The ANN in Fig. 1 depicts the structure of a single-input and single-output MLP.
The input to the activation function of the second layer in the n-th iteration is
obtained by:

v
(2)
1 (n) =

N(1)∑
j=0

w
(2)
1j (n)y

(1)
j (n) = x(n); y

(1)
0 = +1. (1)

In Eq. (1), y
(1)
j (n), for j = 0, 1, . . . , N (1), designates the output of each neuron

in the first layer and comes in the form of:

y
(1)
j (n) = φ

(1)
j

N(0)∑
i=0

w
(1)
ji (n)pi

; j = 1, . . . , N (1);N (0) = 1. (2)

where p1 is the input to the ANN and p0 = +1 determines the bias value in

the first layer. w
(l)
kj (n) denotes the connection weight between the neuron k in

the layer (l) and the neuron j in the layer (l-1). φ
(l)
j is the real value univariate

activation function of the neuron j in the layer (l) (the layers preceding the last
one). Therefore, the output of the ANN is acquired by:

y
(2)
1 (n) = y(n) = f(x(n)). (3)

In online training, the energy function for the network of Fig. 1 is expressed in
its usual form as:

E =
1

2
(y∗ − y)2 =

1

2
e2(x). (4)

During the training procedure, algorithm tries to reduce the energy of the net-
work to its minimum possible value; that is to say, as the algorithm proceeds, y
approaches y∗. This is equivalent to solving the real value function y = f(x) in
order to reach the desired objective, i.e. y∗.

Hornik in [15] demonstrated that a standard ANN with any partially bounded
and non-polynomial activation function is capable of estimating any arbitrary non-
linear function to the desired degree of accuracy. Thereafter, in [16] polynomial,
rational, Fourier series, and logistic functions for two sets of highly non-linear data,
subjected to low and high noises, were evaluated [17-19]. It was demonstrated that
networks with polynomial activation functions of the appropriate order, are able to
estimate the data of a low noise system with an error equivalent to that of an NN
with sigmoid activation functions. Researchers in various studies have corroborated
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Fig. 1 The unidimensional perceptron ANN modified for solving a real value
objective function f .

that the polynomial and spline activation functions have the potential to estimate
the highly non-linear systems [20-23]. Many other works imply that selection of
activation functions is dependent on the application [24,25]. Consequently and as
a new point of view, if we choose the arbitrary function f(x) as the activation
function in the last layer, so that f(x) would meet the just mentioned conditions,
then as the energy of the network approaches its minimum, the output of f(x) will
converge to its desired objective. Correspondingly, the input x to function f(x)
will converge to the optimal solution x∗. In other words, the desired function f(x)
is solved for the desired objective y∗. Since there are a lot of choices for weights to
map a desired MLP input to a desired MLP output, therefore the value of the input
to the MLP is of no concern in obtaining the solution of the problem. However,
according to experiments, it is preferred to choose the number of the ANN inputs
equal to the number of the decision variables, and this relates the network structure
to the complexity of the problem.

The desired function to be solved (which is considered as the activation function
of the last layer) can be of any aforementioned type, provided to be piecewise
continuous and locally bounded. Consequently, Result 1 is deduced for solving a
univariate function.

Result 1: The network in Fig. 1 with any arbitrary input is capable of solving
any arbitrary continuous and partially bounded function f : R → R for the objec-
tive y*∈ R within the bounded domain (xlow, xhigh), assuming that the training

algorithm of the network can globally search the solution space.

It is worth mentioning that the limited function f(x) in the last layer implies
limited error signal e(x) = y∗ − f(x). In MLP network of several hidden layers
and univariate activation functions (unidimensional NN), weights adjustment can
be properly done during the error BP training procedure [26].
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3. Expansion of the Method: To Solve/Optimize
a Set of Non-linear Equations Using
Multi-dimensional MLP

In the previous section, the basics of employing MLP network to solve a function
were brought forward and in this section, it will be expanded for a set of non-linear
equations. Suppose that solving the following system of non-linear equations is
desired:

F(x) : R
m → Rs :


f1(x1, x2, . . . , xm)− y∗1 = 0
f2(x1, x2, . . . , xm)− y∗2 = 0

... for xlow < xi < xhigh.

fs(x1, x2, . . . , xm)− y∗s = 0

(5)

In the previous section, the solution of f(x) was obtained through considering
it as the activation function of a neuron in the last layer. Accordingly, for each
function of the system of Eq. (5) a neuron must be considered in the last layer.
Since each of the equations in the above system has multiple independent variables,
the activation function of the neurons must be of multivariate form. Before realizing
the system of Eq. (5) by an MLP, let us briefly discuss the MLPs with multivariate
activation functions, which recently proposed by Solazzi and Uncini in [20]. In
their literature, it was demonstrated that the proposed multi-dimensional network
can be trained with a modified BP algorithm. In their proposed structure, which
is depicted in Fig. 2, the number of sigma cells devoted to each activation function
is equal to the number of independent variables of that function. In addition, it
should be mentioned that in this structure, inputs to an activation function are
independent of the inputs to the other functions.

In order to calculate the local gradients of each neuron, partial derivatives of
the related activation function with respect to its independent variables should be

considered. Suppose that for the network of Fig. 2, φ
(L)
i (x) = fi(x), v

(L) = x(L),
and y∗i is the objective for the activation function fi, then the energy function can
be defined as:

E =
1

2

s∑
i=1

e2i (x) (6)

where:

ei(x) = y∗i − fi(x). (7)

Network training [20] is described with:

w
(l)
k,ji(n+ 1) = w

(l)
k,ji(n) + ∆w

(l)
k,ji(n). (8)

The output of each sigma cell is obtained by:
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Fig. 2 The MLP network with multi-dimensional neurons.

v
(l)
k,j =

N(l−1)∑
i=0

w
(l)
k,ji(n)y

(l−1)
i (n). (9)

The delta rule based on the utilized energy function yields:

∆w
(l)
k,ji = −η

(l)
k,ji

∂E

∂w
(l)
k,ji

= −η
(l)
k,ji

∂E

∂e
(l)
j

·
∂e

(l)
j

∂y
(l)
j

·
∂y

(l)
j

∂v
(l)
k,j

·
∂v

(l)
k,j

∂w
(l)
k,ji

= η
(l)
k,jiδ

(l)
k,jy

(l−1)
i (10)

η
(l)
k,ji is the learning rate that is defined for each connection, and the local gradient
is:

δ
(l)
k,j(x) = e

(l)
j (x)·

∂φ
(l)
j (x)

∂xk
=

∣∣∣∣∣
(x={x1=v

(l)
1,j ...,xM(l)=v

(l)

M(l),j
})

. (11)

The error in each layer is given by:

e
(l)
j (x) =


y∗j − y

(l)
j l = L

M(l)∑
k=1

(
N(l+1)∑
n=1

δ
(l+1)
k,n w

(l+1)
k,nj

)
l = L− 1, . . . , 1

(12)

with 1 ≤ j ≤ N (l), 0 ≤ i ≤ N (l−1) and 1 ≤ k ≤ M(l). In the system of Eq. (5),
all of the equations have common independent variables. Therefore, for the imple-
mentation of the system of Eq. (5) the network of Fig. 2 must be altered to that of
Fig. 3, so that a sigma cell will be provided for each of the independent variables
of the activation functions. In other words, since the independent variables are the
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same for all the functions in the system of Eq. (5), the inputs of the multivariate
functions are equivalent in the last layer of Fig. 3. Hence, only one common sigma
block, consisting of sigma cells, must be applied for all the activation functions. As
it is shown in Fig. 3, parallel connections between any sigma cell in the layer (l)
and the output of any neuron in the layer (l-1) will be generated. The number of
these parallel connections is equal to the number of activation functions in the layer
(l). Therefore, in the layer (l) an activation function along with all sigma cells or
equivalently the sigma block are considered as a single multi-dimensional neuron,
as shown by dashed line. For each of these connections, local gradient would be
computed as the product of the error signal and partial derivatives of each of the
activation functions in the layer (l) with respect to its independent variables. By
considering this, Eqs. (6) to (11), relevant to the BP algorithm, are not changed
and are used identically for the training of the network of Fig. 3.

Fig. 3 The MLP network with multi-dimensional neurons proposed for solving
system of non-linear equations in Eq. (5).

For the goals of this paper, only the last layer contains multivariate activation
functions and the preceding layers include univariate activation functions. As men-
tioned in the previous section, the value of the input to the ANN is of no concern
in obtaining the solution of a problem.

Generally, optimization of an objective function f and related constraints g and
h is defined as [27]:

Minimizef(x), subject to g(x) ≥ 0;h(x) = 0. (13)

In the optimization of the multi-objective problems including constraints, a
neuron will also be considered in the last layer for each of the constraint functions;
in this case, by means of the proposed method, only the definition of the error signal
has to be modified. If the constraint is violated, its error is proportional to the
distance from its boundary. It is noted that the proposed approach is not a penalty
method. Because in the proposed method the error and the partial derivatives of
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the functions, with respect to independent variables, are independently involved in
the weight adjustment of the links connected to the corresponding neurons.

In order to explore the design space globally, parameters of the training algo-
rithm should be adjusted properly. In the following section, these parameters are
discussed in details.

4. Modification of the Error Signal and
Adjustment of the Algorithm Parameters

Depending on the kind of algorithm selected for the training of the network, it is
necessary to adjust the effective parameters involved with the training procedure.
For the BP algorithm used in the proposed method, several factors are of vital
importance; some of these factors are the learning rate, type of the activation
functions in hidden layers, error signal of the last layer, energy function, stopping
criteria of the algorithm, etc. For instance, if the learning rate is not selected
properly, then the algorithm may be trapped in the local minima [28] or may
become unstable [29]. Types of the error signals and energy functions are also
selected with respect to the type of the data distribution [30-33]. In the following
subsections, modifications of the error signal for solving/optimizing a set of non-
linear equations and the criteria involved in the proper selection of the parameters
are explained in details.

4.1 Modifications on the MLP error signal to solve/optimize
a set of non-linear equations

In the proposed method, error signal for the objective functions and the constraints
are defined distinctively. For the partially continuous and bounded range functions,
error signal will also be bounded. For the unbounded functions, like polynomials
that are naturally divergent, it will be required to limit the magnitude of the
error signal to a desired interval [34]. Unbounded error signal can be mapped to a
bounded space through another function. This mapping function, u(.), non-linearly
relates the primary and the secondary space, which is limited in the interval of (a, b).
The mapping function u(.) must have the following properties: 1) If e1 < e2 then
u(e1) < u(e2) for ei ∈ R and 2) a < u(.) < b. In fact, to map a ordered set E ⊂ R
to another ordered set U ⊂ R, while preserving the order of the members, mapping
must be strictly increasing. Real value function α . tanh(x), with x ∈ R and the
scale parameter α ∈ R, is one of the most popular squashing functions that limits
the range of any unbounded function to the interval (−α, α). As a consequence,
we have benefited this function to map unbounded error signals of the objective
and constraint functions to bounded ranges.

4.1.1 Error signal for the system of non-linear equations “F(x) = 0”
and the constraints “H(x) = 0”

Considering the functions with bounded range, customarily, error signal in the
output layer for the i-th neuron is defined as:
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ei(x) = y∗i − fi(x) and i = 1, . . . , s (14)

in which, y∗i represents the i-th desired objective value. As previously mentioned,
for the unbounded functions, a squashing error signal can be used. Hence, for
solving the system of non-linear equations F(x) = (f1(x), . . . , fs(x)) = 0 or for
satisfying the constraints of the form H(x) = (h1(x), . . . , hs(x)) = 0 with the
unbounded range, error signal is redefined as:

ei(x) = αi . tanh

(
y∗i − fi(x)

σi

)
. (15)

As x approaches x∗, the function fi(x) and the error signal ei(x) converge to
yi∗ and zero, respectively. Smoothness of the function ei(x) alters by adjusting
the parameter σi. The smaller the parameter σi, the more will be the variations of
ei(x) around the origin and therefore, it will be more sensitive to the variations of
fi(x) in the origin. As a rule of thumb, the value of σi is selected to be equal to
the one third of the maximum predictable value for fi(x).

4.1.2 Error signal for the set of objective functions in the problem of
“min F(x)”

For the set of objective functions F(x) = (f1(x), . . . , fs(x)), error signal can be
defined as:

ei(x) = yi,min − fi(x) and i = 1, . . . , s (16)

where yi,min is the minimum value of the i-th objective reached by the algorithm
up to the present stage of training process, i.e. n, and is stated as:

yi,min = min1≤j≤n y(j). (17)

Eq. (16) implies that the output of the network always tracks the lowest value. By
applying the error signal of Eq. (16) in the algorithm, two problems may occur.
First, the execution of the algorithm may be stopped easily in the regions where
the function fi(x) is flat or it may be trapped in the local minima. For example,
suppose that fi(x) had the value of 2 in the previous iteration and the value of
yi,min = 1 has been reached up to that iteration. Therefore, according to Eq. (16),
the error in the previous iteration is equal to −1. If in the present iteration a value
between 1 and 2 is reached for fi(x), then the value of its error signal is smaller
than the previous one. Since, the objective is to minimize the absolute value of
the error, based on the energy function defined in Eq. (7), the weight variations
become smaller as the iterations proceed. As a result, iterations may continue
around yi,min = 1 and ultimately the algorithm will stop; whereas, it is probable
that the global minimum may be in a value smaller than 1. The second problem
arises when a value very smaller than yi,min is achieved, thereby, the weights may
vary drastically. For example, if the objective function has a global minimum
that lies in a deep narrow valley, then falling into this minimum, the error value
may encounter severe instantaneous variations. Therefore, because of the intense
fluctuations of weights the minimum may be lost.
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As an approach to overcome the two problems stated, it is proposed to utilize
the squashing mapping function:

ei(x) = αi .

(
tanh

(
εi(x)

σi
+ θi

)
+ 1

)
(18)

εi(x) = fi(x)− yi,min and i = 1, . . . , s (19)

Eq. (18) is displayed in Fig. 4 for αi = 0.5. In this function, αi is the maximum
value of the range, σi indicates the smoothness and the error in fi(x) = yi,min

determines the value of θi. If λi represents the error value at the point fi(x) =
yi,min, then the constant θi is obtained by:

θi = arctanh

(
λi

αi
− 1

)
. (20)

As long as fi(x) is greater than yi,min, the error ei(x) is greater than λi. In
the vicinity of the local minimum, if fi(x) decreases, then the value of the error
will be always less than λi, otherwise whenever fi(x) increases, the value of the
error will be greater than λi. Parameter λi should not be selected very small,
otherwise, the variations of weights in the vicinity of yi,min will be very small and
accordingly, the progress of the algorithm will be very slow. Indeed the value
of λi is equivalent to the maximum acceptable error in local minima. σi and λi

are somehow crucial parameters for that they determine the effectiveness of the
functions in weight adjustment. For instance, the function fi(x) considered with a
large λi or a small parameter σi, will be more effective in the weight adjustment;
this correspondingly means that the minimization of this objective function is of
more importance in comparison with others. Hence, the values of λi and σi have
to be selected according to the importance of each objective function fi(x).

Fig. 4 ei(x) = 0.5 (tanh(εi(x)/σi + θi) + 1) as a squashing function of the error
signal (εi(x)) utilized in the optimization algorithm.
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4.1.3 Error signal for the inequality constraints “G(x) ≥ 0”

As explained before, in the inequality constraints (including the boundary con-
straints) G(x) = (g1(x), . . . , gt(x)) if the constraint is violated, the corresponding
error would be proportional to the distance between its current value and the
boundary. In the proposed method, the objective is to reach the boundary of the
constraints and the internal points where the constraints hold. If a constraint is
potentially divergent, then it must be bounded using a squashing function. In this
case, the origin of the coordinate corresponds to the boundary of the constraint,
i.e. g∗ = (g∗1 , . . . , g

∗
t ) = 0. Consequently, g∗ −G(x) = −G(x) and:

ej(x) =


αj .

(
tanh

(
−gj(x)

σj
+ θj

)
+ 1

)
for gj(x) < 0

and j = 1, . . . , t.

0 for gj(x) ≥ 0
(21)

Parameters in this equation are all described before. It is essential to satisfy
the constraints prior to the minimization of the objective function fi(x). Hence,
the parameters αj , σj and θj for the jth constraint has to be selected so that its
error would have more influence in weight adjustment. It should be mentioned

that, in the case where we use the error signal of the general form e
(L)
j (x) =

αj . (tanh (εj(x)/σj + θj) + ξ) for the objective functions or the constraints, Eq.
(11) should be altered as follows. Assuming that εj(x) = y∗j − fj(x):

δ
(L)
k,j (x) =

αj

σj

1−

(
e
(L)
j (x)

αj
− ξ

)2
 .e

(L)
j (x) . d

(L)
j (x) (22)

and with regard to εj(x) = fj(x)− yj,min:

δ
(L)
k,j (x) =

−αj

σj

1−

(
e
(L)
j (x)

αj
− ξ

)2
 .e

(L)
j (x) . d

(L)
j (x) (23)

where in both cases:

d
(L)
j (x) =

∂φ
(L)
j (x)

∂xk

∣∣∣∣∣
(x={x1=v

(L)
1,j ,...,xm=v

(L)
m,j})

(24)

In the above equation, φ
(L)
j (x) resembles one of the functions fj(x), gj(x), or

hj(x). Error signals utilized for optimization/problem solving and constraints are
summarized in Tab. I. Ultimately, based on the new concepts brought up in this
subsection the following result is concluded.

Result 2: Network in Fig. 3 with any arbitrary input can solve (optimize) the
system of non-linear equations in Eq. (5) for the optimal values of x∗ ∈ R, which
yields to the desired y∗ ∈ R (extreme values F(x∗)), supposing that network
training algorithm would be capable to search the solution space globally.
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Optimization Function Error Signal

Solving system of non-linear
equations:
“F(x) = (f1(x), . . . , fs(x)) = 0”

ei(x) = αi . tanh

(
y∗
i − fi(x)

σi

)

Optimization of functions:
“Min F(x) = (f1(x), . . . , fs(x))”

ei(x) = αi .

(
tanh

(
fi(x)− yi,min

σi
+ θi

)
+ 1

)
Equality Constraints:
“H(x)=(h1(x), . . . , hr(x))=0”

ej(x) = αj . tanh

(
h∗
j − hj(x)

σj

)

Inequality Constraints:
“G(x) = (g1(x), . . . , gt(x)) ≥ 0”

ej(x)=

{
αj .

(
tanh

(
−gj(x)

σj
+ θj

)
+1

)
for gj(x) < 0

0 for gj(x) ≥ 0

Tab. I Summarizing of the error signals related to optimization/problem solving
in the proposed method.

4.2 Modified dynamic learning rate

The learning rate is one of the most important parameters for the algorithm to
search the solution space effectively. It has been proved that the dynamic learning
rate would improve the performance of the NN in both aspects of the algorithm
speed and global search. In most cases, it is desirable to alter the learning rate in a
decreasing manner, as the algorithm proceeds [28]. Learning rates dependent on the
error or the derivative of the output function, both have been already exploited [29]
and adapted for the goal of global search. Here, we benefit the dynamic learning
rate proposed in [28]. It was claimed that with this learning rate the global search
of the space is guaranteed. The learning rate introduced in [28] is based upon the
step size rule and in the n-th iteration is defined as:

ηn = βn .
E(w(n))− Elev

n

C2
(25)

where C is a positive real constant and βn is a positive random constant. If E∗ is

the smallest attainable value of the network energy, then Elev
n is an estimation of

E∗ and it is modified in each iteration based on the observed value for E(w(n)).

Elev
n is defined as:

Elev
n = Emin − κn (26)

in which:

Emin = min1≤i≤n E(w(i)). (27)

κn is an adjustable parameter and have to satisfy the following condition:

κn → 0 as n → ∞ and
∞∑

n=0

κ2
n = ∞. (28)

In this work, it is selected as:
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κn = ρ/ γ
√
n (29)

in which ρ and γ are positive real constants and γ > 2. With this learning rate,
the factor κn changes in a diminishing manner as the iterations proceed and the
energy value gradually approaches the estimated energy. This implies that the
initial global search will be gradually converted to a local search. Note that the
dynamic learning rate is applied only for the connections in the last layer so that
there is a dynamic learning rate corresponding to each of the activation functions.
For the rest of the layers a constant learning rate is considered. The convergence
of the network with the learning rate of Eq. (25), has been fully proved in [28].
Despite the high ability mentioned in [28], in some cases algorithm may be trapped
in the local minima. For example in the case of function:

f(x) = − exp(−x2)− 3 exp(−100(x− 1.5)2) + 2.5 (30)

which is revealed in Fig. 5, there exist a local minimum with a wide basin of
attraction in x = 0 beside a global minimum that lies in a deep and narrow valley
in x = 1.5. Applying the learning rate in Eq. (25), algorithm is often trapped in
x = 0. In order to improve the network performance, when trapping into a local
minimum, it is essential to create a situation so that the algorithm can leave the
minimum and resume searching the solution space. If this process iterates for q
times, then with high probability the discovered minimum is the global minimum.
Employing this idea, the probability of finding the global minimum is increased to
a higher degree. The results show that for the mentioned function, the algorithm
will be able to easily find the global minimum of the function in Eq. (30).

Fig. 5 The function presented in Eq. (30).

In the modified learning rate, the essential condition to leave the local minimum
is to be informed of the last maximum value. Therefore, as a rule, if n is the
number of iterations then it can be expressed that, for an output y, if y(n − 1)
is the maximum value of the bounded sequence {y(n − 2), y(n − 1), y(n)}, then
y(n − 1) is a local maximum. During the algorithm execution, the values for
the network outputs in the current and the two previous iterations are stored. The
discovered maximum corresponds to the last maximum value of the network energy,
i.e. Ehigh. Even if the exact value of the maximum may not be found because
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of the tunneling phenomenon, it may suffice to satisfy the goals of the proposed
optimization method.

Based on the previous notations, the steps to implement the improved learning
rate can be stated as follows. Let κn = ρ/ γ

√
n− n′, in which the initial value for

n′ is equal to zero:

• Step 1 If the variations of the output value in q subsequent iterations is less
than the value of ∆ymin, then the discovered solution in the current iteration
n, is a local minimum. Let Elow = E(n) and n′ = n− 1;

• Step 2 Let the value of Emin in Eq. (26) be equal to the difference of the
maximum energy, i.e. Ehigh, found with the help of the recently mentioned

rule and the current minimum energy value attained, i.e. Elow. Hence, we
have Emin = Ehigh − Elow;

• Step 3 Calculate κn = ρ/ γ
√
n− n′;

• Step 4 Calculate Elev in Eq. (26);

• Step 5 Calculate η in Eq. (25).

In the above procedure with the detection of local minimum and previously ob-
tained local maximum, it will be possible to obtain the magnitude of the variations

in Elev needed to leave the local minimum, which is equal to the difference of these
two energies. Along with this, we update the number of iteration in κn so that
it starts from one. Hence, with this procedure there will be some conditions, so
that the algorithm may resume searching some regions in the vicinity of the last
found local minimum. Setting the number of iterations to one and updating the

energy Elev, we have again enlarged the steps of the variations for the learning
rate in order to continue the search globally. Therefore, we have tried to save the
computational overhead up to this stage of the work and make it useful for the
rest.

The number of the times that the algorithm has been trapped in a local mini-
mum, the MSE error, and the number of iterations are some of the stopping criteria
of the algorithm. The flowchart of the algorithm execution in the proposed multi-
objective optimization method is given in Fig. 6.

It is worth mentioning that in the gradient descent rule utilized in the BP algo-
rithm, as the derivative of the error approaches zero in the local minima or maxima,
the error will not affect the weight adjustment anymore and as a consequence the
algorithm will stop. Due to this reason, in the non-convex problems the algorithm
may not leave the local extremes easily. To address this problem, we have revised
Eq. (24) as:

d
(L)
j (x) =


∂φ

(L)
j (x)

∂xk

∣∣∣∣
(x={x1=v

(L)
1,j ,...,xM(L)=v

(L)

M(L),j
})
+ v if d

(L)
j (in Eq. (24)) ≥ 0

∂φ
(L)
j (x)

∂xk

∣∣∣∣
(x={x1=v

(L)
1,j ,...,xM(L)=v

(L)

M(L),j
})
− v if d

(L)
j (in Eq. (24)) < 0

(31)
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Fig. 6 Block diagram of the proposed method for the multi-objective optimiza-
tion/solving non-linear system of non-linear equations using multi-dimensional

MLP network.

In Eq. (31), ν is a small real constant greater than zero and in this work, it is
selected to be one. In the next section, the experimental results will be evaluated.
It will be illustrated that, using the proposed method and the modified dynamic
learning rate, the minimum in comparison with the literatures, which are referred,
are globally discovered.

5. Experimental Results

In this section, in order to examine the efficiency of the proposed method, some
examples of several optimization problems are presented and the performance of
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the network in each case is evaluated. The given examples were all previously
investigated in other literatures. The comparison is made in terms of different
aspects such as, the speed of convergence to a feasible solution, the ability to reach
the optimal solutions in the complicated experimental spaces, and etc. The rate
of convergence to the optimal solutions, in the problems that appeared as real
time applications and implemented in the hardware form, is of great significance.
These problems usually have a convex space or they would be confined to a convex
space by some constraints. On the other hand, in incomprehensible problems with
unknown spaces, the efficiency of global searching among the various suggested
methods is of more concern; these problems usually appear in the fields such as
economic and social sciences as well as multi-dimensional problems declared in
applied sciences. To perform the calculations a Pentium 4 system of 2.6 GHz CPU
and a 4 GB RAM was utilized. The activation function of the neurons in the hidden
layers are selected to be logistic φ(x) = 1/(1 + exp (−ax)).

Example 1: Convex non-linear programming [35]; the problem is expressed as:

min f(x) = x2
1 + 2x1x2 + x2

2 + (x1 − 1)4 + (x2 − 3)4

subject to


g1(x) = −x2

1 − x2
2 + 64 ≥ 0

g2(x) = −(x1 + 3)2 − (x2 + 4)2 + 36 ≥ 0
g3(x) = −(x1 − 3)2 − (x2 + 4)2 + 36 ≥ 0
xi ≥ 0, i = 1, 2.

(32)

The error signals for the function f(x) and the constraints that are all of the
inequality form, are given in Eq. (18) and Eq. (21), respectively. The algorithm
parameters are tabulated in Tab. II. The network structure is [2,3,4,6], in which 2
indicates the number of the network inputs, 3 and 4 are the size of the first and
second hidden layers, and 6 stands for the functions to be optimized, including one
objective function and 5 constraints. In the rest of the examples, this method is
utilized to present the network structure. The algorithm initiates from the point
x0 = (−4,−9) and the parameters are γ = 5, ρ = 36, and C = 4.9, which C
is defined in Eq. (25). Fig. 7 depicts the path through which the algorithm has
reached the optimal solution, i.e. x∗ = (0.0, 1.2), with respect to time and the
number of iterations. For all of the constraints, the parameters are α = 0.5,
σ = 7.44, and λ = 0.03.

Net. No. α σ λ x∗ Constraints f(x∗)
Ex. 1 0.5 17.2 0.02 (0,1.20) (62.6,0.00,0.00) 12.94
[35] - - - (0,1.96) (60.2,-8.52,-8.52)† 6.01

†Constraints are not satisfied!

Tab. II The algorithm parameters for the objective function in Ex. 1 and the
results in comparison to [35].

Example 2: Multi-objective convex non-linear programming [36]; the problem was
solved by an extended method of TOPSIS for the convex non-linear multi-objective
problems:
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Fig. 7 Transient performance of the decision variables declared in Example 1.

max f1(x) = x2
1 + x2

2 + x2
3

max f2(x) = (x1 − 1)2 + x2
2 + (x3 − 2)2

min f3(x) = 2x1 + x2
2 + x3

subject to


g1(x) = −x1 + 3x2 − 4x3 + 6 ≥ 0
g2(x) = −2x2

1 − 3x2 − x3 + 10 ≥ 0
x ∈ R3

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 2.

(33)

The corresponding error signals were given in Tab. I. Since the problem is
multi-objective, therefore, the user has to determine the significance of each of the
optimization functions. Doing so, the value of each of the parameters, i.e. α, σ,
and λ, can be appropriately determined. In order to observe the effect of these
three parameters, four cases of the optimization results are listed in Tab. III. Fig. 8
illustrates one of the optimal solutions, i.e. x∗ = (0.00, 0.05, 0.99), with respect to
the algorithm parameters in the first row of Tab. III. The selected structure for the
network is [3,3,4,11], in which 11 is related to 3 objectives plus 8 constrains. The
initial point for all of the decision variables in Tab. III is x0 = (5, 5, 5), and γ, ρ
and C are 2, 1, and 5, respectively. For the constraints the parameters are selected
as: α = 0.5, σ = 3, and λ = 0.1.

Example 3: Non-convex non-linear programming [37]; considering the problem:

min f(x) = |x1| − x2
2

subject to

 g1(x) = −|x1|+ 5 ≥ 0
g2(x) = −2x2 − x2

2 + 5 ≥ 0
h(x) = x1 + x2 − 1 = 0

(34)

and the initial point x0 = (6,−2), the proposed algorithm converges to the critical
point x∗ = (4.44,−3.44), as illustrated in Fig. 9. The network structure is [2,3,4,4]
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Net. No. α σ λ x∗ F(x∗)
Ours 1 (0.5,0.5,0.5) (5,20,5) (0.09,0.0002,0.07) (0.00,0.05,0.99) (0.98,2.02,0.99)
Ours 2 (0.5,0.5,0.1) (5,20,5) (0.09,0.0002,0.07) (0.00,0.78,0.75) (1.16,3.17,1.36)
Ours 3 (0.5,0.5,0.5) (5, 5,5) (0.09,0.0002,0.07) (0.52,0.88,0.00) (1.04,5.03,1.80)
Ours 4 (0.5,0.5,0.5) (5,20,5) (0.01,0.0002,0.07) (0.54,0.21,0.00) (0.33,4.26,1.12)
[36] - - - (0.00,0.00,1.17) (1.37,1.69,1.17)

Tab. III The algorithm parameters for the objective functions in Ex. 2 and the
results in comparison to [36].

Fig. 8 Transient response of the independent variables presented in Example 2.

and the parameters of the proposed algorithm are selected as: C = 1, γ = 10,
and ρ = 10; and for the constraints the parameters are: α = (0.5, 0.5, 0.5, 1),
σ = (7, 7, 3, 7), and λ = (0.05, 0.05, 0.07). In Tab. IV algorithm parameters for the
objective function are listed and the result is given for comparison. Small ripples
observed in the flat part of the curve in Fig. 9 take place at the times that the
algorithm tries to leave the boundaries of the constraints in order to minimize the
objective function. Thereby, due to the violation of the constraints, the algorithm
may imply changes to the weights in a way that the constraints will be again
satisfied. We recall that whenever the constraint’s value exceeds its boundary,
variations corresponding to λ value are observed in the error signal.

Net. No. α σ λ x* F (x∗)
Ex. 3 0.5 17.2 0.02 (4.44,−3.44) −7.42
[37] – – – (−0.45, 1.45) −1.65

Tab. IV The algorithm parameters for the objective function in Ex. 3 and the
results in comparison to [37].
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Fig. 9 Transient behavior of the independent variables presented in Example 3.

Example 4: Non-convex non-linear programming [38]; the multi-dimensional Ras-
trigin problem:

min f(x) = A .n+
∑n

i=1

[
x2
i −A . cos(w . xi

]
subject to

{
A = 10;n = 1 : 10;w = 2π
−10 < xi < 10, i = 1, . . . , n

(35)

is one of the test functions with a lot of local minima. Thereupon, the probability
of trapping in the local minima is high, so that it may become difficult to find the
global minimum. The two-dimensional Rastrigin function in the closed interval
[−5, 5] is depicted in Fig. 10.

In this example, as well as the previous ones, the proposed algorithm has ex-
plored the solution space and found the optimal value of the problem correctly. For
all of the decision variables the start point is 10. Fig. 11 confirms the convergence
of the solution to the optimal value of zero in the case of ten-dimensional Rastri-
gin. For the n-dimensional Rastrigin function, [n, 3, 4, 1 + 2n] is the structure of
the network, and in all of the cases the parameters for the objective function are
selected as: α = 0.5, σ = 10, λ = 0.05, ρ = 1, γ = 2, and C = 3.

Example 5: Multi-objective non-convex non-linear programming [39]; the two-
dimensional problem is declared as:

max


f1(x) = 3(1− x1)

2 exp(−x2
1 − (x2 + 1)2)− 10

(
x1

5 − x3
1 − x5

2

)
exp(−x2

1 − x2
2)− 3 exp(−(x1 + 2)2 − x2

2) +
1
2 (2x1 + x2)

f2(x) = 3(1 + x2)
2 exp(−x2

2 − (1− x1)
2)− 10

(
−x2

5 + x3
2 + x5

1

)
exp(−x2

2 − x2
1)− 3 exp(−(2− x2)

2 − x2
1)

subject to −3 ≤ xi ≤ 3, i = 1, 2.

(36)
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Fig. 10 The two-dimensional Rastrigin function of the Example 4.

Fig. 11 Transient behavior of the independent variables presented in Example 4.

The Pareto front is exhibited in Fig. 12. With the initial point x0 = (1, 1),
the solution reached by the proposed algorithm is x∗ = (0.984, 0.548), as pointed
out in Fig. 13, which is one of the non-dominated solutions discovered by Kim and
De Weck [39]. The algorithm parameters with the structure of [2, 3, 4, 6] for the
objective functions are given as α = 0.5, σ = 8, λ = 0.05, ρ = 10, γ = 2, and
C = 1. For the constraints we choose: α = 0.5, σ = 2, and λ = 0.07.

Example 6: Multi-objective non-convex non-linear programming [34,40]; the
problem contains polynomials of the order 5 with 28 constraints, which embody 10
independent variables:

50



Rafei M., Sorkhabi S. E., Mosavi M. R.: Multi-objective optimization by means. . .

min



f1(x) = 7x2
1 − x2

2 + x1x2 − 14x1 − 16x2 + 8(x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 11)2 + x2
10 + 45

f2(x) = (x1 − 5)2 + 5(x2 − 12)2 + 0.5x4
3 + 3(x4 − 11)2

+0.2x5
5 + 7x2

6 + 0.1x4
7 − 4x6x7 − 10x6 − 8x7

+x2
8 + 3(x9 − 5)2 + (x10 − 5)2

f3(x) = x3
1 + (x2 − 5)2 + 3(x3 − 9)2 − 12x3 + 2x3

4

+4x2
5 + (x6 − 5)2 + 6x2

7 + 3(x7 − 2)x2
8 − x9x10

+4x3
9 + 5x1 − 8x1x7

(37)

subject to



g1(x) = −3(x1 − 2)2 − 4(x2 − 3)2 − 2x2
3 + 7x4 − 2x5x6x8 + 120 ≥ 0

g2(x) = −5x2
1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0

g3(x) = −x2
1 − 2(x2 − 2)2 + 2x1x2 − 14x5 − 6x5x6 ≥ 0

g4(x) = −0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2
5 + x5x8 + 30 ≥ 0

g5(x) = 3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0
g6(x) = −4x1 − 5x2 + 3x7 − 9x8 + 105 ≥ 0
g7(x) = −10x1 + 8x2 + 17x7 − 2x8 ≥ 0
g8(x) = +8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0
−5 ≤ xi ≤ 15, i = 1, . . . , 10.

Since the problem contains polynomials of high orders, it is prone to instability on
account of its inherent divergence feature. Thus, it is crucial to select small initial
weights. All the initial weights and decision variables are selected to be 0.01 and 10,
respectively. The algorithm parameters are listed in Tab. V to gain insight into the
parameters selection criteria for this kind of problems. Fig. 14 demonstrates the
convergence of the independent variables to x∗ = (0.4482, 4.1492, 4.6255, 4.1468,
−0.1506, 4.0587,−0.6307, 8.9685, 5.6214, 13.0957).

Fig. 12 The Pareto front of the Example 5 offered in [39], where the exploration
paths for the two functions to reach the front, i.e. non-dominated solutions, are
depicted for the aim of comparison. The distinguished cross sign is the last point

that the proposed algorithm has converged to.
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Fig. 13 Convergence of the proposed algorithm to the optimal solution of the
Example 5.

Fig. 14 Transient response of the independent variables presented in Example 6.

Net. No. α σ λ x∗ F(x∗)
(0.5, (500, (0.01, (0.4482, 4.1492, 4.6255, 4.1468,

Ex. 6 0.5, 500, 0.01, -0.1506, 4.0587, -0.6307, (481,936,155)
0.5) 500) 0.01) 8.9685, 5.6214, 13.0957)

(1.9421, 2.8821, 5.3164, 5.6807,
[34] - - - 0.2245, 1.2515, 1.1823, (461,941,1146)

6.1321, 6.1178, 7.7145)
[40] - - - - (536,611,582)

Tab. V The algorithm parameters for the objective functions in Ex. 6 and the
results in comparison to [34] and [40].
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The NN structure of [10, 10, 10, 31] and the algorithm parameters ρ = 80, γ =
1000, and C = 4 are selected. For the constraints the parameters are set as α = 0.5,
σ = 100, and λ = (0.01, 0.03, 0.03, 0.01, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
0.02, 0.02).

Example 7: Multi-objective non-convex non-linear programming [41]; One of the
problems frequently expressed in the multi-objective optimization is the Kursawe’s
study (KUR), which is a non-convex problem stated as:

min


f1(x) =

n−1∑
i=1

(−10 exp(−0.2
√
x2
i + x2

i+1))

f2(x) =
n∑

i=1

(|xi|0.8 + 5 sinx3
i )

subject to n = 3,−5 ≤ xi ≤ 5, i = 1, 2, 3.

(38)

This problem has two objectives between which there always exists a trade-
off. Fig. 15 shows the Pareto front for this problem [41]. The spectral line on
Fig. 15 points out the explored path by the proposed algorithm. As it is ob-
served in Fig. 16, starting from the initial point x0 = (10, 10, 10), the algorithm
will eventually converge to the point specified with the cross sign in the location
(f1(x

∗), f2(x
∗)) = (−17.96,−3.87) corresponding to x∗ = (−1.14, 0.0, 0.0). With

the network structure of [3, 5, 5, 8], the parameters adjusted for the objective func-
tions are α = (0.5, 0.5), σ = (10, 10), and λ = (0.05, 0.05), and for the constraints
are α = 0.5, σ = 3, and λ = 0.07. Algorithm parameters are set to be ρ = 1, γ = 2,
and C = 1.

Fig. 15 The Pareto front of Example 7 used in [41], where the exploration path for
the two functions to reach the front is shown for the aim of comparison. The speci-

fied cross sign is the last point to which the proposed algorithm converges.
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Fig. 16 Transient performance of the decision variables declared in Example 7.

6. Conclusion

A new method based on considering the objective function as the activation func-
tion of a neuron in the output layer of a multi-dimensional MLP neural network was
introduced and expanded for the multi-objective non-linear programming. During
the training process, by minimizing the error of each objective function and conse-
quently the network energy, algorithm reaches the optimal value of the functions.
Network training algorithm and the effective parameters in the training procedure
all directly affect the speed and the potentiality of the global search. Hence, a
modified dynamic learning rate was utilized to avoid the local minima. Regarding
an appropriate definition for the error signal, the proposed method can be imple-
mented in order to optimize objective functions or to solve them with respect to
predefined objectives. The constraints treated in the same manner as the objective
functions in the sense that a proper error signal would be defined for them. Various
examples in the field of multi-objective non-convex non-linear programming were
evaluated. In view of the results, the high speed and the capability of the proposed
method in global searching of the solution space were verified. In addition, it can
be deduced that, there is no need for fundamental changes in the structure of the
network for different problems of concern.
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