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Abstract: Train-induced vibration prediction in multi-story buildings can effec-
tively provide the effect of vibrations on buildings. With the results of prediction,
the corresponding measures can be used to reduce the influence of the vibrations.
To accurately predict the vibrations induced by train in multi-story buildings, sup-
port vector machine (SVM) is used in this paper. Since the parameters in SVM
are very vital for the prediction accuracy, shuffled frog-leaping algorithm (SFLA)
is used to optimize the parameters for SVM. The proposed model is evaluated with
the data from field experiments. The results show SFLA can effectively provide
better parameter values for SVM and the SVM models outperform a better perfor-
mance than artificial neural network (ANN) for train-induced vibration prediction.
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1. Introduction

With the emergence of railways in urban areas, there have been complaints of vi-
brations caused by the passage of trains. In particular, with the rapid development
of high-speed railway and urban rail transit system, the environmental vibration
induced by running trains has attracted more attentions. As one kind of vibra-
tion caused by train, building vibration from train has attracted the interests of
researches due to the requirements of high-quality living conditions. Therefore, it
is necessary to predict the vibration in multi-story buildings caused by train for
building new railway or making corresponding control measures to the established
rail.

Due to the complexity of civil structures, limitations of data acquisition systems,
the inadequacy of modeling procedures and constraints with parameter estimation,
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the prediction of train-induced vibrations in buildings is very complicated. There
are many literatures on the methods to predict train-induced vibrations. Krylov
(1995, 1998) proposed an analytical prediction model for the ground vibrations
induced by train, in the model, a quasi-static force transmitted by a sleeper was
based on the deflection curve of the track modeled as a beam on an elastic founda-
tion. Lombaert (2009) proposed a ground response prediction measure, in which
the contributions of quasi-static excitation related to the axle loads and dynamic
excitation of random track unevenness to the track and free-field responses can
be acquired by a numerical prediction method. Ferrara (2013) proposed a nu-
merical model to predict train induced vibrations, in which mutual interactions in
vehicle/track coupled system were considered by means of a finite and discrete el-
ements method. El Kacimi et al. (2013) attempted to propose a 3D finite element
(FE) coupled train-track model for calculate the ground induced vibration by a
single high speed train locomotive.

Some predictors considered lots of factors. However, most predictors have their
specific constants. Therefore, these cannot be used in a generalized way. There is
a need of a simple technique and relevant and reliable method with greater degree
of accuracy for the prediction of vibration caused by train on buildings.

Artificial neural networks (ANNs), is a mathematical model or computational
model which is motivated by emulating the intelligent data processing ability of
biological neural networks. A neural network consists of an interconnected group
of artificial neurons, and it processes information using a connectionist approach to
computation. That is, the synaptic weights can be adjusted in a learning process to
reflect the input-output relationship for the analyzed system automatically (Hagan
et al. 1996; Wei and Wu 1997). From training a large amount of data, neural
networks are used to model complex relationships between inputs and outputs.
ANNs appear to be a promising approach to describe complex systems due to its
versatile parallel distributed structures and adaptive learning processes. However,
it has been commonly reported that ANN models require a large amount of training
data to analyze the distribution of input pattern. Moreover, it is difficult for them
to generalize the results due to their overfitting nature.

Support vector machine (SVM) has been proposed as a novel technique in time
series forecasting (Mukherjee et al. 1997; Müller et al., 1999). Like ANNs, SVM
also depends on the similarity between historic and real-time traffic patterns. How-
ever, SVM has provided some breakthroughs and plausible performances, such as
traffic-pattern recognition (Ren et al. 2002), head recognition (Reyna et al., 2001),
travel time prediction (Wu et al. 2004; Yu et al. 2010, 2011), pedestrian detection
(Guo et al., 2012) and tunnel surrounding rock displacement prediction (Yao et
al. 2010). These successful applications motivate us to apply SVM for solving the
incident detection problem.

The values of parameters in SVM have a great influence on the performance of
SVM, which need to be set by users. Therefore, there are many literatures on the
parameters optimization for SVM. Lin et al. (2006) attempted to use a structural
risk minimization principle to optimize appropriate parameters for SVM predic-
tion model. Hou and Li (2009) presented evolution strategy with covariance matrix
adaptation to determine the values for parameters in SVM. Due to the effectiveness
of heuristic algorithm (Yao et al., 2013, 2014), for example, ant colony optimization
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(Yu et al. 2009, 2011, 2012), heuristic algorithm is the first choice to optimize the
parameters for SVM. Lorena et al. (2008) proposed a set of parameter values for
tuning the parameters in SVM by using genetic algorithms. Lin et al. (2008) intro-
duced a particle swarm optimization to optimize the parameters in SVM. Zhang
et al. (2010) developed ant colony optimization to select the optimal parameters
for SVM. The shuffled frog-leaping algorithm (SFLA) is a meta-heuristic optimi-
sation method proposed by Eusuff and Lansey (2003), which is inspired from the
memetic evolution of frogs seeking food in a pond. The algorithm combines the
advantages of the genetic-based mimetic algorithm and the social behaviour-based
particle swarm optimization. It has been successfully applied in solving some clas-
sic compounding optimization problems (Eusuff and Lansey, 2003; Luo et al. 2009;
Alireza 2007). Thus, SFLA is also used to optimize the parameters for SVM in
this paper.

This paper presents a prediction model based on SVM for train-induced vibra-
tion prediction in multi-story buildings and shuffled frog-leaping algorithm (SFLA)
is used for parameters optimization for SVM. The remainder of the paper is orga-
nized as follows. In Section 2 we provide a brief introduction about a prediction
model on SVM, parameters optimization on SFLA and SVM for train-induced
vibration prediction in multi-story buildings is presented. In section 3, some com-
putational results are discussed and lastly, the conclusions are provided in section 4.

2. SVM for Train-Induced Vibration prediction
in Multi-Story Buildings

2.1 The support vector machine (SVM) basic principle

SVM is a machine learning method based on statistical learning theory which was
proposed by Vapnik (1999, 2000). By applying a set of high dimensional linear
functions, it is shown that SVM has a strong learning ability and can get a smaller
error on the independent testing set.

Given the training data set {xk, yk}, k = 1, 2, . . . , s, xk ∈ Rm, yk ∈ Rn, k
is the number of training samples. These points are randomly and independently
generated from an unknown function. SVM estimates the function by the following
function:

f(x) = ⟨w, x⟩+ b, w, x ∈ Rm, b ∈ Rn (1)

here, ⟨w, x⟩ is the feature of the inputs. The coefficients w and b are estimated
by the so-called regularized risk functional:

MinJ =
1

2
∥w∥2 + C ·Remp[f ] (2)

The first term 1
2∥w∥

2 is called the regularized term which is used as a measure-
ment of function flatness. The second term Remp[f ] is the so-called loss function
to measuring the empirical error. C is regularization constant to determine the
trade-off between the training error and the generalization performance. Here, we
use the ε-insensitive loss function to measure empirical error:
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|y − f(x)|ε = max{0, |y − f(x)| − ε} (3)

The loss is zero if the predicted value is within the tube ε. If the predicted point
is outside the tube, the loss is the magnitude of the difference between the predicted
value and the radius ε of the tube (Yao et al., 2012; Vapnik, 1999; Cao et al.,2003).
Both C and ε are user-determined parameters. Two positive slack variables ξ, ξ∗

are used to cope with infeasible constraints of the optimization problem. To get
the estimation of w and b, the Eq.(2) can be transformed to a primal objective
function(4).

MinJ =
1

2
∥w∥2 + C

s∑
i=1

(ξ∗i + ξi) (4)

s.t.

 yi − ⟨w, xi⟩ − b ≤ ε+ ξ∗i
⟨w, xi⟩+ b− yi ≤ ε+ ξi

ξ∗i , ξi ≥ 0

This constrained optimization problem is solved using the following primal La-
grangian form:

L =
1

2
∥w∥2 + C

s∑
i=1

(ξ∗i + ξi)−
s∑

i=1

(ηiξi + η∗i ξ
∗
i )−

−
s∑

i=1

αi(ε+ ξi − yi + ⟨w, xi⟩+ b)−
s∑

i=1

α∗
i (ε+ ξ∗ − yi + ⟨w, xi⟩+ b) (5)

Here, L is the Lagrangian and ηi, η
∗
i , αi, α

∗
i are Lagrange multipliers. Hence the

dual variables in (5) have to satisfy the positive constraints.

ηi, η
∗
i , αi, α

∗
i ≥ 0 (6)

The above problem can be converted into a dual problem where the task is
to optimize the Lagrangian multipliers αi, and α∗

i . The dual problem contains a
quadratic objective function of αi and α∗

i with one linear constraint:

MaxJ = −1

2

s∑
i,j=1

(α∗
i − αi)(α

∗
j − αj)⟨xi, xj⟩+

s∑
i=1

α∗
i (yi − ε)−

s∑
i=1

αi(yi + ε) (7)

s.t.


s∑

i=1

αi =
s∑

i=1

α∗
i

0 ≤ αi ≤ C
0 ≤ α∗

i ≤ C

Let w =
s∑

i=1

(αi − α∗
i )xi (8)
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Thus, f(x) =

s∑
i=1

(αi − α∗
i )⟨xi, xj⟩+ b (9)

By introducing kernel function K(xi, xj) the Eq. (8) can be rewritten as follows:

f(x) =

s∑
i=1

(αi − α∗
i )K(xi, xj) + b (10)

where K(xi, xj) is the so-called kernel function which is proven to simplify the
use of a mapping. The value of K(xi, xj) is equal to the inner product of two
vectors. xi and xj in the feature space ϕ(xi) and ϕ(xj), that is, K(xi, xj) =
ϕ(xi) · ϕ(xj).

Therefore, most of the non-linear problems in original space can be transformed
into a linear separable problem after space conversion, as is shown in Fig. 1.

Fig. 1 The mapping from the original space to the feature space.

However, the difficulty of transforming the nonlinear problem into a high dimen-
sional space is that the non-linear mapping in this process may be very complex.
In order to avoid complex calculations in such high-dimensional space, the kernel
functionK(xi, xj) is used to performed all necessary computations directly in input
space, without having to compute the map ϕ(x). Some common kernel functions
can be seen in Tab I.

Different kernel functions can produce different support vector machines. In
general, the RBF kernel, as a nonlinearly kernel function, is a reasonable first
choice (Dong et al., 2005). Therefore, RBF kernel was also selected in this study.

linear kernel K(xi, xj) = xi • xj

polynomial kernel K(xi, xj) = (xi • xj + 1)d d

RBF kernel K(xi, xj) = exp(−γ ∥xi − xj∥2) γ >0
sigmoid kernel K(xi, xj) = tanh(b(xi • xj) + c) b, c

Tab. I Common kernel functions.
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2.2 SFLA for parameter optimization

The performance of SVM mainly referred to the ability of classifying unknown
data samples correctly (That is the generalization ability). The kernel function is
the core of SVM, which provide a simple bridge from linearity to non-linearity for
SVM. In the RBF kernel, there are three parameters C, ε and σ, which are the key
elements of the RBF kernel. And the three parameters directly exert a considerable
influence on the generalization ability of SVM. So the parameter optimization is
an important factor for improving the prediction accuracy of SVM. In this paper,
SFLA is applied to optimize the parameters in SVM.

2.2.1 Encoding scheme

SFLA is firstly represented by an initial population that is composed of “frogs”.
Each location of each frog is a solution which is thought as Fi = (fi1, fi2, . . ., fiD).
For parameter optimizations in SVM, since the parameters C, ε and σ are continuous-
valued, the real encoding is adopted. To represent the parameters in SVM, the
coordinate of each frog Fi is denoted as Fi = (Ci, εi, σi). The algorithm first ran-
domly generated n frogs as the initial population, noted them in descending order
according to the fitness of each frog. Then the entire population is divided into m
subgroups, and each subgroup contains n frogs. From the initial population, the
first frog is selected in the first subgroup; the second frog is selected in the second
group, until the first m frog is selected in the mth subgroup. Then, the (m+ 1)th

frog is selected in the first subgroup. Repeat the process, until all frogs are dis-
tributed. In each subgroup, the frog with the best fitness and the worst fitness are
denoted as Fb and Fw respectively. While in the total population the frog with the
best fitness is denoted as Fg. The main work of SFLA is to update the position of
the worst-performing frog through iterative operation in each sub-memeplex. Its
position is improved by learning from the best frog of the sub-memeplex or its own
population and position. In each sub-memeplex, the new position of the worst frog
is updated according to the following equation.

di = rand()× (Fb − Fw) (11)

F ′
w = Fw + di(−dmax ≤ di ≤ dmax) (12)

Formula (11) is used to calculate the updating step di. Rand () is the ran-
dom number between 0 and 1; Formula (12) updates the position of Fw. dmax is
the maximum step size. If a better solution is attained, the better solution will
replace the worst individual. Otherwise, Fg will instead of Fb. Then recalculate
Formula (11). If you still cannot get better solution, new explanation generated
randomly will replace the worst individual. Repeat until a predetermined number
of iterations. And complete the round local search of various subgroups. Then all
subgroups of the frogs are re-ranked in mixed sort, and divided into sub-group to
the next round of local search.
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2.2.2 Fitness Function

Fitness function, determines possible solutions to the problem, is used to estimate
the quality of the represented solution. For parameter optimizations in SVM, the
best solution is able to minimize the error of prediction. Generally, the frog with
minimum quality of food will tend to jump toward a position with more food.
SFLA is a heuristic algorithm to find the maximum fitness of the individual frog.
Thus, negative root mean squared error (RMSE) which is used in the literature
(Yao et al. 2010) is also adopted in this paper.

RMSE =

[∑n
i=1 (Vi − V̂i)

n− p

]1/2
(13)

where V̂ is the prediction value by the model; V is the observed value; n is the
number of observations and p is the number of model parameters.

2.2.3 Extremal Optimisation

To further increase the stability of the modified SFLA to find the global optimum
for high-dimensional continuous function optimization, extremal optimisation is
adopted which is an optimisation heuristic inspired by the field of statistical physics.
In this algorithm, each component fi1 in the current individual Fi is considered as a
species and assigned a fitness value ki. There is only mutation operator in extremal
optimisation which will operate the worst species by the following equation:

F ′
k = Fk + δk (14)

Where Fk is the worst species, F ′
k is the mutation result of Fk. δk denotes the

Cauchy random variable with the scale parameter equal to one and is generated
anew for the k-th decision variable. In this way, the individual can be updated and
evolve toward the optimal solution.

2.2.4 Termination

In this paper, the search continues until RMSEn−RMSEn−1 < 0.0001 or the num-
ber of generation reaches the maximum number of generations Tmax.

The flowchart of the proposed SFLA used to optimize the parameter optimiza-
tion for support vector machine can be shown in Fig. 2.

2.3 Applying SVM for Train-Induced Vibration Prediction
in Multi-Story Buildings

Since the earliest days of railways in urban areas, there have been complaints of
building vibration caused by the passage of trains. In this paper we would like to
predict the level of the vibration caused by trains on building. Since annoyance
from the vibration induced by train is an indoor phenomenon. the effects of the
building structure on the vibration must be considered. For example, wood frame
buildings are more easily excited by ground vibration induced by train than heavier
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Fig. 2 The flowchart of the proposed SFLA.

buildings. And depending on the vibration measurements it has been concluded
that the ground vibration induced by train affected by many factors (Suhairy,
2000). These factors can be summarized as:

• Ground quality(which is the most important factor)

• Train type

• Railway track and the embankment design

• Train speed

• Distance from the rail way track to the building(receiver)

• Building type and the foundation design.

To simply this problem, the factors are assumed to be frequency independent and
directly related to the time weighting for the maximum velocity values. According
to the previous studies and our experience, the vertical on the ground (Z direction)
is the most dominating direction comparing with the others directions (X and Y).
Therefore, the vertical vibrations are selected to be predicted.
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3. Case study

The proposed SVM has been trained and tested on the data by the measurements
carried out for more than 160 trains from different types, speeds and directions.
To determine the reasonable point for testing, the height of building has been
considered. Fig. 3 shows that the train-induced vibrations at each floor in 6-story
building, 12-story building, 18-story building and 24-story building, respectively.
In Fig. 3, there is the train speed with 89km/h, the distance from the rail way track
to the building is 20m, the height of each floor is 3m and the building is made of
frame structure. By analyzing the data of vibrations with different building height
under the same conditions and it can be found that the building heights have little
relation with the train-induced vibrations. In this paper, the seven story building
is selected for the examine point in this paper. Thus, there are lots of data acquired
by measurements. However, not all of the data is effective in processing, the outliers
among the samples are removed by data preprocessing.

Fig. 3 The vibrations of building with different floors by train under various storey
heights.

Since it is necessary for data collection and preprocessing before the application
of SVM, a data filtering algorithm (Dion and Rakha, 2006; Tam and Lam, 2008)
was then applied to the observations collected from the surveys in order to filter
out the outliers. In the filtering algorithm, there are two kinds of data: one is the
real-time train-induced vibrations by measurements and the other is the off-line
train-induced vibrations by estimation. A weighting factor wi is used to weight the
effect of the measured data and the estimated data.

vi = (1− wi)vi + wiv
′
i (15)

where vi is the off-line average train-induced vibration at point i. v′i is mean train-
induced vibration at point i. wi is at pointiis calculated by the following equation
(16).

wi =

{
1− (1− φ)ni if ni > 0

wi − 1 if ni = 0
(16)
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where ni is the number of valid data by measurements at point i and φ is a
predetermined parameter to be calibrated by the empirical data. Based on the
above data processing, the real-time vibration data after data preprocessing can
be acquired. Thus, there are 780 samples in total from these experiments. The data
is divided into three sub-sets, which represent training samples, testing samples and
inspection samples respectively. There are about 70% samples for training, 10%
samples for testing and the remaining samples for inspection.

The parameters setting of SFLA are performed as the literature (Elbeltagi et
al. 2005), the population of n is 200, the number m of memeplexs is 20, and the
generation number for the sub-memeplex is equal to 10. These values are found
suitable to produce good solutions in terms of the processing time and the quality
of the solution in accordance with our observation in experiments. There are 20
memplexes, each containing 10 frogs. Based on the triangular probability rule,
eight out of the ten frogs are chosen to form the individual submemeplex. The
local exploration in each submemeplex is executed for 10 iterations.

In this paper, SFLA continues running 10 times under the same condition.
Fig. 4 shows the convergence of the ten calculations. It can be observed from
Fig. 4 that the prediction error decreases fast before the 360th generation, and
then it changes smoothly. The least prediction error appears at about the 400th
generation, and it almost remains unchanged after the 400th generation. Further
analysis found the differences between the results of the ten calculations changes
little. This means SFLA has a good converge and the three parameters were
optimized as (4.0623, 0.0064, and 1.0267) for the train-induced vibration prediction
model.

Fig. 4 Fitness of each calculation by SFLA.

To evaluate the performance of our SVM, a standard artificial neural network
(ANN) model with three-layer is also introduced in this paper. To get a good
comparison, the same input and output variables for ANN are equal to the ones for
SVM. Fig. 5 depicts the prediction performance of the two models. It is obvious
that the errors from SVM models generally are smaller than that of ANN. This can

98



Yao J. et al.: Train-induced vibration prediction in multi-story buildings using. . .

be explained that SVM uses the structural risk minimization principle to minimize
the generalization error, while ANN uses the empirical risk minimization principle
to minimize the training error. Thus, SVM easily seeks to find the global solution
while ANN may tend to fall into a local optimal solution. Therefore, it is feasible
to solve the train-induced vibration prediction with our model.

Fig. 5 The comparison between the proposed SVM and ANN.

4. Conclusions

The train-induced vibration in multi-story buildings is one of the major complaints
of vibrations caused by passage of trains. In this paper, an effective prediction
measure is proposed to provide the level of vibrations on building induced by train.
The train-induced vibration in multi-story buildings is one of the major complaints
of vibrations caused by passage of trains. In this paper, an effective prediction
measure is proposed to provide the level of vibrations on building induced by train.
Thus, it is very important to perceive the potential danger in timely and provide
corresponding measures to decrease the effect of vibrations. This paper attempted
to use support vector machines for train-induced vibration prediction in multi-
story buildings. To improve the prediction performance of SVM, a SALF is used
to optimize the parameters of SVM. The prediction model was tested on the data
from field experiments. The results show that SALF has a good convergence and
relative stable performance. Furthermore, to evaluate the prediction performance
of the proposed SVM, ANN is used to predict the vibrations by the same data of
SVM. The comparison results with the proposed SVM and ANN suggest that the
SVM attains the lower prediction error. This indicates that the proposed SVM is
to be a powerful tool for train-induced vibration prediction in multi-story building.

Thus, the main contributions of this paper to the literature can be summarized
as follow: Firstly, it attempts to develop the models to predict rain-induced vi-
bration in multi-story buildings using real-world data. It is expected to help to
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efficiently make reasonable and effective measures to reduce the harm of vibra-
tion. Secondly, in order to improving the prediction accuracy, shuffled frog-leaping
algorithm is used to optimize the parameters for support vector machine. The per-
formance of the proposed model can provide some valuable insight for researchers
as well as practitioners.
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