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1. Introduction

In the past years, neural networks (NNs) have been extensively studied due to the
fact that they have found a large amount of successful applications in a variety of
areas including pattern recognition, associative memory, and combinational opti-
mization ([1], [2]). It is well known that these applications heavily depend on NNs’
dynamic behaviors. Among the behaviors, stability is one of the most important
ones that have received considerable research attention. In addition, time delays
are frequently encountered in NNs, which are often the sources of instability and
oscillations. Therefore, a great number of results on stability of delayed NNs have
been reported in the literature (see, e.g., [3]-[7], and the references therein).
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As is well known, NNs could be stabilized or destabilized by certain stochastic
inputs [8]. Many results have been reported on stability analysis for this class of
NNs (see, e.g., [8]-[14], and the references therein). On the other hand, it has been
shown in [15] that the switching between different NNs modes can be governed
by a Markovian chain. NNs with Markovian switching are of great significance
in modeling a class of NNs with finite network modes (see, e.g., [16]-[20], and the
references therein). Recently, many researchers have been focused on the stability
analysis for delayed stochastic NNs with Markovian switching, see [21]-[33].

It should be pointed that the time delays of aforementioned results are indepen-
dent of the system modes. As is well known, mode-dependent time delays are of
practical significance since the signal may switch between different modes and also
propagate in a distributed way during a certain time period with the presence of an
amount of parallel pathways [34]. Up to date, several results have been reported on
stochastic Markovian jump neural networks with mode-dependent time-varying de-
lays. In [35], a new Lyapunov-Krasovskii functional is chosen to handle Markovian
jumping parameters, mixed mode-dependent time- varying delays, uncertainty, and
Brownian motion. Delay-dependent conditions on mean square asymptotic stabil-
ity are obtained in terms of LMIs. The problem of global exponential stability of
neutral high-order stochastic Hopfield neural networks with Markovian switching
and mixed mode-dependent time delays is investigated in [36]. In [37], the global
exponential stabilization problem is investigated for a class of stochastic Cohen-
Grossberg neural networks. A Lyapunov-Krasovskii functional that accounts for
the mode-dependent mixed delays is introduced and stochastic analysis is con-
ducted to derive stability criteria. However, these delay-dependent results assume
the time delay is varying between zero and an upper bound, while in practice, the
lower bound may not be restricted to be zero.

In this paper, we are concerned with the exponential stability conditions for
stochastic neural networks with Markovian switching and mode-dependent inter-
val time-varying delays. To this end, we introduce a new Lyapunov-Krasovskii
functional based on the idea of partitioning the lower bound and then present a
new delay-dependent stability criterion. Numerical examples are provided to illus-
trate the effectiveness and less conservatism of proposed method.

2. Problem formulation

Let {rt, t ≥ 0} is a continuous-time Markov process with a right continuous tra-
jectory taking values in a finite set S = {1, 2, . . . , s} with transition probability
matrix Λ = {πij} given by

P [rt+∆t = j|rt = i] =

{
πij∆+ o (∆) if j ̸= i
1 + πij∆+ o (∆) if j = i

where lim
∆→0

o (∆)/∆ = 0; πij > 0, j ̸= i and πii = −
∑
j ̸=i

πij for each i ∈ S.

Fix a probability space (Ω,F,P) and consider a class of stochastic neural net-
works with Markovian switching and mode-dependent time-varying delays as fol-
lows:
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dx(t) = [−A(rt)x(t) +B(rt)g (x(t)) + C(rt)g (x (t− τ(t, rt))) + J ] dt
+ [D1(rt)x(t) +D2(rt)x (t− τ(t, rt)) +D3(rt)g (x(t))+
+ D4(rt)g (x (t− τ(t, rt)))] dϖ(t)

(1)

x(t) = φ(t), t ∈ [−τ2, 0] (2)

where x(t) ∈ Rn is the state vector; g (x(t)) = [g1 (x1(t)) , g2 (x2(t)) , · · · , gn (xn(t))]
∈ Rn denotes the neuron activation function; φ(t) is the initial condition; ϖ(t) is
a 1-D Brownian motion defined on probability space (Ω,F,P); A(rt) is a positive
diagonal matrix; B(rt), C(rt), D3(rt) and D4(rt) are the connection weight matri-
ces with appropriate dimensions; D1(rt) ∈ Rn×n and D2(rt) ∈ Rn×n are known
real constant matrices.

For notational simplicity, in the sequel, for each possible rt ∈ i, i ∈ S, a matrix
M(rt) will be denoted by Mi; for example, A (rt) is denoted by Ai, B(rt) is denoted
by Bi, and so on.

The mode-dependent time-varying delays satisfy the following condition:

0 < τ1i ≤ τi(t) ≤ τ2i < ∞, τ̇i(t) ≤ µi (3)

where τ1i, τ2i and µi are constant for each i ∈ S. Set τ1 = min {τi, i ∈ S}, τ2 =
max {τi, i ∈ S}, and µ = max {µi, i ∈ S}.

The following assumption is made on the neuron activation function.

Assumption 1 The neuron activation functiong(x)is continuous and bounded
and it satisfies the following condition:

0 ≤ gj(s1)− gj(s2)

s1 − s2
≤ lj , j = 1, 2, . . . , n (4)

for all s1, s2 ∈ R, s1 ̸= s2.
It should be pointed that Assumption 1 guarantees there is an equilibrium point

for NN (1) by using Bouwer’s fixed point problem. Let x∗ = [x∗
1, x

∗
2, . . . , x

∗
n] be the

equilibrium point. For the purpose of simplicity, we make the following transfor-
mation by the change of variables y(t) = x(t)−x∗. Under this transformation, NN
(1) becomes:

dy(t) = [−A(rt)y(t) +B(rt)f (y(t)) + C(rt)f (y (t− τ(t, rt)))] dt
+ [D1(rt)y(t) +D2(rt)y (t− τ(t, rt)) +D3(rt)f (y(t))+
+D4(rt)f (y (t− τ(t, rt)))] dϖ(t)

(5)

where fj (yj(t)) = gj
(
xj(t) + x∗

j

)
−gj(x

∗
j ). It follows from (4) that the transformed

neuron activation function f(x) satisfy the following condition:

0 ≤ fj(yj)

yj
≤ lj , fj(0) = 0 ∀yj ̸= 0, j = 1, 2, . . . , n (6)

The following lemma will be used in the derivation of the main results.
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Lemma 1 [38]
For any vectors x, y ∈ Rn; matrices P > 0 with appropriate dimensions, then

2xT y ≤ xTP−1x+ yTPy (7)

3. Main results

In this section, a new delay-dependent exponential stability criterion will be derived
for NN (2).

Theorem 1 Given an integer m ≥ 1, for time-varying delay τi(t) satisfying (3),
the system (5) is globally mean-square exponentially stable , if there exist matrices
Pi > 0, Q1i > 0, Q2i > 0, Q3i > 0, Q1 > 0, Q2 > 0, R1 > 0, R1 > 0, R3 > 0,
R4 > 0, X > 0, Y > 0, U = diag {u1, u2, . . . , un} > 0, V = diag {v1, v2, . . . , vn} >
0, such that the following LMIs hold for each i ∈ S

Ωi =


Ξi1 X Y τ1X τ12Y
∗ −R3 0 0 0
∗ ∗ −R4 0 0
∗ ∗ ∗ −mτ1R1 0
∗ ∗ ∗ ∗ −mτ12R2

 < 0 (8)

s∑
j=1

πijQ1j ≤ Q1 (9)

s∑
j=1

πijQ2j +
s∑

j=1,j ̸=i

πijQ3j ≤ Q2 (10)

where
τ12 = τ2 − τ1

Ξi1 = WT
1

 s∑
j=1

πijPj + τ12Q2

W1 +WT
2

(
Q1i +

τ1
m

Q1

)
W2 −

− WT
3 Q1iW3 − 2WT

4 UW4 − 2WT
5 VW5 +

+ WT
6 (Q2i +Q3i)W6 − (1− ui)W

T
7 Q2iW7 −WT

8 Q3iW8 +

+ sym
(
WT

1 PiW9 +XW10 + YW11 +WT
1 ULW4 +WT

7 V LW5

)
+

+
τ1
m

WT
9 R1W9 + τ12W

T
9 R2W9 +

+
τ1
m

WT
12R3W12 + τ12W

T
12R4W12 +WT

12PiW12,

W1 =
[
In 0n,(m+4)n

]
, W2 =

[
Imn 0mn,5n

]
,

W3 =
[
0mn,n Imn 0mn,4n

]
, W4 =

[
0n,(m+3)n In 0n,n

]
,

W5 =
[
0n,(m+4)n In

]
, W6 =

[
0n,mn In 0n,4n

]
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W7 =
[
0n,(m+1)n In 0n,3n

]
, W8 =

[
0n,(m+2)n In 0n,2n

]
,

W9 =
[
−Ai 0n,(m+2)n Bi Ci

]
, W10 =

[
In −In 0n,(m+3)n

]
,

W11 =
[
0n,mn In 0n,n −In 0n,2n

]
,

W12 =
[
D1i 0n,mn D2i 0n,n D3i D4i

]
.

Proof For convenience, set

m(t) = −A(rt)y(t) +B(rt)f (y(t)) + C(rt)f (y (t− τ(t, rt)))

n(t) = D1(rt)y(t)+D2(rt)y (t− τ(t, rt))+D3(rt)f (y(t))+D4(rt)f (y (t− τ(t, rt)))

Thus, system (5) can be represented as follows:

dy(t) = m(t)dt+ n(t)dϖ(t) (11)

Define a new process {(yt, rt), t ≥ 0} by yt(s) = y(t + s), −2τ2 ≤ s ≤ 0, then
{(yt, rt), t ≥ 0} is a Markov process with initial state (φ(·), r0). Now take the
stochastic Lyapunov–Krasovskii functional candidate as

V (yt, rt, t) = yT (t)P (rt)y(t) +

∫ t

t− τ1
m

ΥT (α)Q1(rt)Υ(α)dα

+

∫ t−τ1

t−τi(t)

yT (α)Q2(rt)y(α)dα+

∫ t−τ1

t−τ2

yT (α)Q3(rt)y(α)dα

+

∫ 0

− τ1
m

∫ t

t+β

mT (α)R1m(α)dαdβ+

∫ −τ1

−τ2

∫ t

t+β

mT (α)R2m(α)dαdβ

+

∫ 0

− τ1
m

∫ t

t+β

nT (α)R3n(α)dαdβ +

∫ −τ1

−τ2

∫ t

t+β

nT (α)R4n(α)dαdβ

+

∫ 0

− τ1
m

∫ t

t+β

ΥT (α)Q1Υ(α)dαdβ +

∫ −τ1

−τ2

∫ t

t+β

yT (α)Q2y(α)dαdβ

(12)

where

Υ(t) =
[
yT (t) yT (t− 1

mτ1) yT (t− 2
mτ1) · · · yT (t− m−1

m τ1)
]T

.

By Itô’s Lemma, we have

dV (yt, rt, t) = LV (yt, rt, t)dt+ 2yT (t)P (rt)n(t)dϖ(t),
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where

LV (yt, rt, t) = 2yT (t)Pim(t) + yT (t)
s∑

j=1

πijPjy(t) + nT (t)Pin(t)

+ ΥT (t)Q1iΥ(t)−ΥT (t− τ1
m )Q1iΥ(t− τ1

m )

+
∫ t

t− τ1
m

ΥT (α)

(
s∑

j=1

πijQ1j

)
Υ(α)dα+ yT (t− τ1)Q2iy(t− τ1)

− (1− µi)y
T (t− τi(t))Q2iy (t− τi(t)) +

s∑
j=1

πij

∫ t−τ1
t−τj(t)

yT (α)Q2jy(α)dα

+ yT (t− τ1)Q3iy(t− τ1)− yT (t− τ2)Q3iy(t− τ2)

+
∫ t−τ1
t−τ2

yT (α)

(
s∑

j=1

πijQ3j

)
y(α)dα+ τ1

mmT (t)R1m(t)

−
∫ t

t− τ1
m

mT (α)R1m(α)dα+ τ12m
T (t)R2m(t)−

∫ t−τ1
t−τ2

mT (α)R2m(α)dα

+ τ1
mnT (t)R3n(t)−

∫ t

t− τ1
m

nT (α)R3n(α)dα+ τ12n
T (t)R4n(t)

−
∫ t−τ1
t−τ2

nT (α)R4n(α)dα+ τ1
mΥT (t)Q1Υ(t)−

∫ t

t− τ1
m

ΥT (α)Q1Υ(α)dα

+ τ12y
T (t)Q2y(t)−

∫ t−τ1
t−τ2

yT (α)Q2y(α)dα

(13)

From (11), for any appropriately dimensioned matrices X and Y , we have

2ζT (t)X

[
y(t)− y(t− τ1

m
)−

∫ t

t− τ1
m

m(α)dα−
∫ t

t− τ1
m

n(α)dϖ(α)

]
= 0

2ζT (t)Y

[
y(t− τ1)− y(t− τ2)−

∫ t−τ1

t−τ2

m(α)dα−
∫ t−τ1

t−τ2

n(α)dϖ(α)

]
= 0 (14)

where

ζ(t) =
[
ΥT (t) yT (t− τ1) yT (t− τi(t)) yT (t− τ2) fT (y(t)) fT (y (t− τi(t)))

]T
From Lemma 1, we have

−2ζT (t)X

∫ t

t− τ1
m

n(α)dϖ(α) ≤ ζT (t)XR−2
3 XT ζ(t) +

+

(∫ t

t− τ1
m

n(α)dϖ(α)

)T

R3

(∫ t

t− τ1
m

n(α)dϖ(α)

)

−2ζT (t)Y

∫ t−τ1

t−τ2

n(α)dϖ(α) ≤ ζT (t)Y R−2
4 Y T ζ(t) +

+

(∫ t−τ1

t−τ2

n(α)dϖ(α)

)T

R4

(∫ t−τ1

t−τ2

n(α)dϖ(α)

)
(15)

Noting (6), let U = diag {u1, u2, . . . , un} and V = diag {v1, v2, . . . , vn}. Then, we
get

2
[
yT (t)ULf (y(t))− fT (y(t))Uf (y(t))

]
≥ 0,
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2
[
yT (t− τi(t))V Lf (y (t− τi(t)))− fT (y (t− τi(t)))V f (y (t− τi(t)))

]
≥ 0.

(16)
Then, it follows from (13-16) that

LV (yt, rt, t) = 2yT (t)Pim(t) + yT (t)
s∑

j=1

πijPjy(t) + nT (t)Pin(t) + ΥT (t)Q1iΥ(t)

−ΥT (t− τ1
m )Q1iΥ(t− τ1

m ) +
∫ t

t− τ1
m

ΥT (α)

(
s∑

j=1

πijQ1j

)
Υ(α)dα

+ yT (t− τ1)Q2iy(t− τ1)− (1− µi)y
T (t− τi(t))Q2iy (t− τi(t))

+
s∑

j=1

πij

∫ t−τ1
t−τj(t)

yT (α)Q2jy(α)dα+ yT (t− τ1)Q3iy(t− τ1)

− yT (t− τ2)Q3iy(t− τ2) +
∫ t−τ1
t−τ2

yT (α)

(
s∑

j=1

πijQ3j

)
y(α)dα

+ τ1
mmT (t)R1m(t)−

∫ t

t− τ1
m

mT (α)R1m(α)dα+ τ12m
T (t)R2m(t)

−
∫ t−τ1
t−τ2

mT (α)R2m(α)dα+ τ1
mnT (t)R3n(t)−

∫ t

t− τ1
m

nT (α)R3n(α)dα

+ τ12n
T (t)R4n(t)−

∫ t−τ1
t−τ2

nT (α)R4n(α)dα+ τ1
mΥT (t)Q1Υ(t)

−
∫ t

t− τ1
m

ΥT (α)Q1Υ(α)dα+ τ12y
T (t)Q2y(t)−

∫ t−τ1
t−τ2

yT (α)Q2y(α)dα

+ 2ζT (t)X
[
y(t)− y(t− τ1

m )
]
− 2ζT (t)X

∫ t

t− τ1
m

m(α)dα+ ζT (t)XR−1
3 XT ζ(t)

+
(∫ t

t− τ1
m

n(α)dϖ(α)
)T

R3

(∫ t

t− τ1
m

n(α)dϖ(α)
)
+ 2ζT (t)Y [y(t− τ1)− y(t− τ2)]

− 2ζT (t)Y
∫ t−τ1
t−τ2

m(α)dα+ ζT (t)Y R−1
4 Y T ζ(t)

+
(∫ t−τ1

t−τ2
n(α)dϖ(α)

)T
R4

(∫ t−τ1
t−τ2

n(α)dϖ(α)
)
+ 2yT (t)ULf (y(t))

− 2fT (y(t))Uf (y(t)) + 2yT (t− τi(t))V Lf (y (t− τi(t)))
− 2fT (y (t− τi(t)))V f (y (t− τi(t))) +

τ1
m ζT (t)XR−1

1 XT ζ(t)

−
∫ t

t− τ1
m

ζT (t)XR−1
1 XT ζ(t)dα

+ τ12ζ
T (t)Y R−1

2 Y T ζ(t)−
∫ t−τ1
t−τ1

ζT (t)Y R−1
2 Y T ζ(t)dα

≤ Θi −
∫ t

t− τ1
m

nT (α)R3n(α)dα−
∫ t−τ1
t−τ2

nT (α)R4n(α)dα

−
∫ t

t− τ1
m

[
ζT (t)X +mT (α)R1

]
R−1

1

[
XT ζ(t) +R1m(α)

]
dα

−
∫ t−τ1
t−τ2

[
ζT (t)Y +mT (α)R2

]
R−1

2

[
Y T ζ(t) +R2m(α)

]
dα

+
(∫ t

t− τ1
m

n(α)dϖ(α)
)T

R3

(∫ t

t− τ1
m

n(α)dϖ(α)
)

+
(∫ t−τ1

t−τ2
n(α)dϖ(α)

)T
R4

(∫ t−τ1
t−τ2

n(α)dϖ(α)
)

+
∫ t

t− τ1
m

ΥT (α)

(
s∑

j=1

πijQ1j

)
Υ(α)dα−

∫ t

t− τ1
m

ΥT (α)Q1Υ(α)dα

+
s∑

j=1

πij

∫ t−τ1
t−τj(t)

yT (α)Q2jy(α)dα+
∫ t−τ1
t−τ2

yT (α)

(
s∑

j=1

πijQ3j

)
y(α)dα

−
∫ t−τ1
t−τ2

yT (α)Q2y(α)dα

(17)

where
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Θi = 2yT (t)Pim(t) + yT (t)
s∑

j=1

πijPjy(t) + nT (t)Pin(t) + ΥT (t)Q1iΥ(t)

−ΥT (t− τ1
m

)Q1iΥ(t− τ1
m

) + yT (t− τ1)Q2iy(t− τ1)

−(1− µi)y
T (t− τi(t))Q2iy (t− τi(t)) + yT (t− τ1)Q3iy(t− τ1)

−yT (t− τ2)Q3iy(t− τ2) +
τ1
m

mT (t)R1m(t) + τ12m
T (t)R2m(t)

+
τ1
m

nT (t)R3n(t) + τ12n
T (t)R4n(t) +

τ1
m

ΥT (t)Q1Υ(t) + τ12y
T (t)Q2y(t)

+2ζT (t)X
[
y(t)− y(t− τ1

m
)
]
+ ζT (t)XR−1

3 XT ζ(t)

+2ζT (t)Y [y(t− τ1)− y(t− τ2)] + ζT (t)Y R−1
4 Y T ζ(t) + 2yT (t)ULf (y(t))

−2fT (y(t))Uf (y(t)) + 2yT (t− τi(t))V Lf (y (t− τi(t)))

−2fT (y (t− τi(t)))V f (y (t− τi(t))) +
τ1
m

ζT (t)XR−1
1 XT ζ(t)

+τ12ζ
T (t)Y R−1

2 Y T ζ(t)

= ζT (t) [Ξi1 + Ξi2] ζ(t)

Ξi2 = XR−1
3 XT + Y R−1

4 Y T +
τ1
m

XR−1
1 XT + τ12Y R−1

2 Y T .

Noting πij > 0 forj ̸= i and πii < 0, then we have

s∑
j=1

πij

∫ t−τ1

t−τj(t)

xT (α)Q2jx(α)dα ≤
∫ t−τ1

t−τ2

xT (α)

 s∑
j=1,j ̸=i

πijQ2j

x(α)dα (18)

Since

E

{∫ t

t− τ1
m

nT (α)R3(α)dα

}
= E

{[∫ t

t− τ1
m

nT (α)dϖ(α)

]
R3

[∫ t

t− τ1
m

n(α)dϖ(α)

]}

E

{∫ t−τ1

t−τ2

nT (α)R4(α)dα

}
= E

{[∫ t−τ1

t−τ2

nT (α)dϖ(α)

]
R4

[∫ t−τ1

t−τ2

n(α)dϖ(α)

]}
(19)

Based on (9), (10), (17), (18), (19), we have

ELV (yt, rt, t) ≤ E
{
ζT (t) [Ξi1 + Ξi2] ζ(t)

}
(20)

From (8) and using Schur complement lemma, it is easy to see that there exists a
scalar ε = λmin (−Ωi) > 0 such that

ELV (yt, rt, t) ≤ −εE
{
|y(t)|2

}
(21)

Following the similar method of [26], we can prove the system (5) is mean-square
exponential stability. This completes the proof.
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Remark 1 Based on the idea of partitioning the lower bound, a new stabil-
ity criterion for stochastic NNs with mode-dependent interval time-varying delays
and Markovian switching is proposed. The criterion is formulated in terms of LMI,
which can be easily solved by standard software. The reduced conservatism benefits
from the construction of the new Lyapunov-Krasovskii functional. The parameter
m refers to the number of delay partitioning, and it has relation to the conser-
vatism. It is worth mentioning that the conservatism reduction increases as the
delay fractioning becomes thinner.

Remark 2 From the derivation of Theorem 1, we can see that the matricesQ1i,
Q2i, Q3i are selected to be mode dependent and the free matrices X and Y are
used, which can deduce some conservatism in some sense. In addition, for simplicity
only, we do not consider uncertainties in our models. The proposed method can
also be easily extended to systems with multiple and distributed delays.

For convenience in comparison, we set τ1i = 0, i ∈ S. Then the time delay τi(t)
satisfies

0 < τi(t) ≤ τ2i < ∞, τ̇i(t) ≤ µi (22)

By the way of partitioning the upper bound τ2, we have the following corollary.

Corollary 1 Given an integer m ≥ 1, for time-varying delay τi(t) satisfying (22),
the system (5) is globally mean-square exponentially stable , if there exist matrices
Pi > 0, Q1i > 0, Q2i > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0,X > 0, U =
diag {u1, u2, . . . , un} > 0, V = diag {v1, v2, . . . , vn} > 0, such that the following
LMIs hold for each i ∈ S

Ωi =

 Ξi1 X τ2X
∗ −R2 0
∗ ∗ −mτ2R1

 < 0 (23)

s∑
j=1

πijQ1j ≤ Q1 (24)

s∑
j=1,j ̸=i

πijQ2j ≤ Q2 (25)

where

Ξi1 = WT
1

(
s∑

j=1

πijPj +Q2i + τ2Q2

)
W1 +WT

2

(
Q1i +

τ2
mQ1

)
W2 −WT

3 Q1iW3

− 2WT
4 UW4 − 2WT

5 VW5

− (1− ui)W
T
6 Q2iW6 + sym

(
WT

1 PiW7 +XW8 +WT
1 ULW4 +WT

6 V LW5

)
+ τ2

mWT
7 R1W7 +

τ2
mWT

9 R2W9 +WT
9 PiW9

W1 =
[
In 0n,(m+3)n

]
, W2 =

[
Imn 0mn,4n

]
,

W3 =
[
0mn,n Imn 0mn,3n

]
, W4 =

[
0n,(m+2)n In 0n,n

]
,

W5 =
[
0n,(m+3)n In

]
, W6 =

[
0n,(m+1)n In 0n,2n

]
,
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W7 =
[
−Ai 0n,(m+1)n Bi Ci

]
, W8 =

[
In −In 0n,(m+2)n

]
,

W9 =
[
D1i 0n,mn D2i D3i D4i

]
.

Proof Choose a Lyapunov-Krasovskii functional candidate as follows:

V (yt, rt, t) = yT (t)P (rt)y(t) +
∫ t

t− τ2
m

Υ̂T (α)Q1(rt)Υ̂(α)dα

+
∫ t

t−τi(t)
yT (α)Q2(rt)y(α)dα+

∫ 0

− τ2
m

∫ t

t+β
mT (α)R1m(α)dαdβ

+
∫ 0

− τ2
m

∫ t

t+β
nT (α)R2n(α)dαdβ +

∫ 0

− τ2
m

∫ t

t+β
Υ̂T (α)Q1Υ̂(α)dαdβ

+
∫ 0

−τ2

∫ t

t+β
yT (α)Q2y(α)dαdβ

(26)

where

Υ̂(t) =
[
yT (t) yT (t− 1

mτ2) yT (t− 2
mτ2) · · · yT (t− m−1

m τ2)
]T

.

With the same method presented in proving Theorem 1, we can get the result in
Corollary 1.

Remark 3 It should be pointed out that even with the case m = 1, our method
still outperforms the recent results [30], [35], which will be illustrated via examples
in the next section. The reduced conservatism of Corollary 1 benefits from the
matricesQ1i,Q2i, which are selected to be mode-dependent in our paper.

4. Numerical examples

Example 1 Consider a stochastic neural network with Markovian switching and
time-varying delay with two modes, that is, S = {1, 2}. Associated with modes 1
and 2, the system matrices are given by

A1 =

[
2.0 0.0
0.0 3.0

]
, A2 =

[
1.0 0.0
0.0 2.0

]
,

B1 =

[
0.4 −0.1
0.5 0.3

]
, B2 =

[
0.2 −0.3
0.4 0.6

]
,

C1 =

[
−0.2 0.4
0.1 −0.3

]
, C2 =

[
−1.5 0.9
1.1 −0.8

]
,

D11 =

[
0.2 0.4
0.5 0.2

]
, D12 =

[
0.1 0.2
0.3 0.4

]
,

D21 =

[
−0.1 0.3
0.3 0.5

]
, D22 =

[
−0.2 0.4
0.3 0.5

]
,

D31 =

[
0.2 0.4
−0.8 0.1

]
, D32 =

[
0.1 0.2
−0.4 0.3

]
,

D41 =

[
0.1 0.5
1.1 0.3

]
, D42 =

[
0.3 0.2
1.1 0.7

]
.
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The switching matrix

Π =

[
−0.8 0.8
0.9 −0.9

]
.

We assume µ1 = µ1 = µ, the comparison results of maximum time delay τ2 via
different µ are given in Tab. I. It is clearly seen that our results outperform those
in [30], [35] even with the case m = 1. For example, when µ = 0.2, the maximum
upper delay bounds in [30] and [35] are 0.4298 and 0.4502 respectively, while the
result in Corollary 1 is 1.8945 with the case m = 1, which is bigger than the result
in [30] and [35]. The reduced conservatism of Corollary 1 benefits from the matrices
Q1i,Q2i in (26), which are selected to be mode-dependent in our paper.In addition,
from Tab. I, it is easy to see that when the delay partitioning number m becomes
larger, the conservatism of the results is further reduced.

u 0.2 0.5 0.8
[30] 0.4298 0.1849 infeasible
[35] 0.4502 0.2718 infeasible

Corollary 1, m=1 1.8945 0.9262 0.6821
Corollary 1, m=2 2.3842 1.3817 0.9153
Corollary 1, m=3 2.4873 1.4873 1.0372
Corollary 1, m=4 2.5017 1.5103 1.0826

Tab. I Maximum delay bound τ2 via different methods.

Example 2 Consider a stochastic neural network with Markovian switching and
mode-dependent interval time-varying delay with two modes and the following
parameters:

A1 =

[
1.0 0.0
0.0 1.0

]
, A2 =

[
1.0 0.0
0.0 2.0

]
,

B1 =

[
0.3 0.1
0.2 0.4

]
, B2 =

[
0.1 0.2
0.7 0.4

]
,

C1 =

[
−0.4 0.7
0.3 −0.5

]
, C2 =

[
−0.9 0.7
0.4 −1.8

]
,

D11 =

[
0.1 0.4
0.6 0.2

]
, D12 =

[
0.4 0.2
0.3 0.1

]
,

D21 =

[
0.1 0.3
−0.2 0.4

]
, D22 =

[
0.2 0.6
−0.5 0.5

]
,

D31 =

[
0.2 0.4
−0.2 0.6

]
, D32 =

[
0.3 0.2
−0.1 0.3

]
,

D41 =

[
0.4 0.7
1.2 0.5

]
, D42 =

[
0.2 0.2
1.3 −0.7

]
,
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The switching matrix

Π =

[
−1.8 1.8
1.5 −1.5

]
.

For given u1 = 0.4, u2 = 0.5, the maximum τ2 via different lower bound τ1 are given
in Tab. II. From Tab. II, it is clear to see that when the delay partitioning number
m becomes larger, the conservatism of results is further reduced. For example, with
the case τ1 = 0.5, the maximum upper delay bounds are 2.7491 (m = 1), 3.2893
(m = 2), 3.3718 (m = 3), and 3.4162 (m = 4) respectively. It should be pointed
out that when the delay partitioning number m becomes larger, the computational
cost increases. This is reasonable since m is related to the decision variables. Thus,
the larger m indicates that the solution can be searched in a wider space and a
longer maximum allowable delay bound τ2 can be obtained.

τ1 0.1 0.5 0.8
Theorem 1, m=1 1.9372 2.7491 3.8761
Theorem 1, m=2 2.1740 3.2893 4.1762
Theorem 1, m=3 2.2103 3.3718 4.3291
Theorem 1, m=4 2.2971 3.4162 4.3370

Tab. II Maximum delay bound τ2 via different τ1.

5. Conclusions

In this paper, the problem of exponential stability for stochastic neural networks
with Markovian switching and mode-dependent interval time-varying delays has
been investigated. With the idea of time delay partitioning, a new Lyapunov-
Krasovskii functional has been proposed. Based on the new functional and free-
weighting matrix method, a less conservative stability criterion has been derived.
Numerical examples have been given to show the effectiveness and advantages of
proposed method.
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