
“ALADIN” WEATHER MODEL LOCAL

REVISIONS USING THE DIFFERENTIAL

POLYNOMIAL NEURAL NETWORK

Ladislav Zjavka∗

Abstract: The 48-hour “Aladin” forecast model can predict significant meteoro-
logical quantities in a middle scale area. Neural networks could try to replace some
statistical techniques designed to adapt a global meteorological numerical forecast
model for local conditions, described with real data surface observations. They
succeed commonly a cut above problem solutions with a predefined testing data
set, which provides bearing inputs for a trained model. Time-series predictions
of the very complex and dynamic weather system are sophisticated and not any
time faithful using simple neural network models entered only some few variables
of their own next-time step estimations. Predicted values of a global meteorologi-
cal forecast might instead enter a neural network locally trained model, for refine
it. Differential polynomial neural network is a new neural network type developed
by the author; it constructs and substitutes for an unknown general sum partial
differential equation of a system description, with a total sum of fractional poly-
nomial derivative terms. This type of non-linear regression is based on trained
generalized data relations, decomposed into many partial derivative specifications.
The characteristics of composite differential equation solutions of this indirect type
of a function description can facilitate a much greater variety of model forms than
is allowed using standard soft-computing methods. This adjective derivative model
type is supposed to be able to solve much more complex problems than is usual
using standard neural network techniques.

Key words: Polynomial neural network, differential equation composition, sum
relative derivative term, multi-parametric function approximation

Received: September 13, 2013 DOI: 10.14311/NNW.2014.24.009
Revised and accepted: March 21, 2014

1. Introduction

The short-term numerical “Aladin” forecast model is a limited area version of a
global French model ARPEGE and it needs to be forced by a global model which
has to provide lateral boundary conditions. It refines the ARPEGE model on a

∗Ladislav Zjavka, VŠB-Technical University of Ostrava, IT4innovations Ostrava, Czech Re-
public, E-mail: lzjavka@gmail.com

c⃝CTU FTS 2014 143

Neural Network World 2/14, 143-156

middle-scale target area using a more detailed time and spatial resolution of the in-
terpolation and numerical integration of the system of differential equations, which
describes atmospheric processes on account of global meteorological observations.
Differential equations are generally able to describe most of physical or natural
complex systems, which it is difficult to model by unique explicit functions. The
solutions can apply power [2] or wave series [6], fractional calculus [11] [9] or stan-
dard soft-computing techniques [4] [12]. These make use in common of straight
computational composing methods, which operate only within absolute interval
values of input variables, e.g. genetic programming (GP) or fuzzy models can
compose a searched function using collections of operators and terminals of a de-
fined set to form symbolic tree expressions [7]. A common artificial neural network
(ANN) pattern identification or function approximation is based on learned en-
tire similarity relationships between new presented input patterns and the trained
ones, regarding no straight elementary data relations, which multi-parametric poly-
nomial functions can describe [10]. It is possible to express a general connection
between input and output variables by means of the Volterra functional series, a
discrete analogue of which is the Kolmogorov-Gabor polynomial (1).

y = a0 +
m∑
i=1

aixi +
m∑
i=1

m∑
j=1

aijxixj +
m∑
i=1

m∑
j=1

m∑
k=1

aijkxixjxk + . . . (1)

m – number of variables X(x1,x2,...,xm) A(a1,a2,...,am),...−vectors of parameters

The Group Method of Data Handling (GMDH) was created by a Ukrainian
scientist Aleksey Ivakhnenko in 1968, when the back-propagation technique was not
yet known. It forms a multi-layer polynomial neural network (PNN) in successive
steps, adding one layer a time, which decomposes the complexity of a process into
many simpler relationships, each described by low order polynomials (2) for every
pair of the input values xi, xj [8].

y = a0 + a1xi + a2xj + a3xixj + a4x
2
i + a5x

2
j (2)

This polynomial can approximate any stationary random sequence of obser-
vations and can be computed by either adaptive methods or system of Gaussian
normal equations. GMDH defines the optimal structure of a complex system model
with identifying non-linear relations between input and output variables. Typical
GMDH network maps an input vector x to a scalar output y, which is an estimate
of the true function f(x)= yt [10]. PNN can compose sum partial differential equa-
tion models describing discrete data observations. Differential polynomial neural
network (D-PNN) is a new neural network type, designed by the author. The
skeleton is formed by the GMDH-PNN; however its operating and constructing
principles differ from those of GMDH, being based on Taylor-series expansions.
This new neural network technique extends the PNN structure to generate sum
series of polynomial relative derivative terms, which together define and substitute
for (solve) a general partial differential equation of a complex function description.
The adjective derivative type of real complex function models seem to be a prefer-
able qualities to simple upright compositing computational techniques, which use
a set of terminals and operators to form a tree-like structural solution. D-PNN can

144

Zjavka L.: “Aladin” weather model local revisions using the differential. . .

combine the PNN functionality with some math techniques of differential equa-
tion (DE) solutions. A complex function, which exact solution is problematic or
impossible to get using a predetermined DE or direct composing techniques, is de-
composed into many partial data relation specifications, defining a sum composed
derivative model [14].

2. General sum differential equation composition

D-PNN forms and resolves a general partial DE (3), which can generally describe
a system model of dependent variables, using summation derivative terms. The
searched function umay be expressed in the form of sum series (4), consisting of
series arising from derivative sum convergent term series (5) in the case of 2 input
variables. The study tries to solve the sum partial DE (3) with substitutions of
multi-parametric polynomial fraction terms (6), defining relative dependent deriva-
tive changes over some input variables combinations.

a+ bu+
n∑

i=1

ci
∂u

∂xi
+

n∑
i=1

n∑
j=1

dij
∂2u

∂xi∂xj
+ · · · = 0 (3)

a,b,c(c1,c2,...,cn),d(d11,dc12,...),···−parameters

u =
∞∑
k=1

uk (4)

n– number of variables

x (x1,x2,...,xn) – vector of input variables u(x) – unknown function of n-variables(∑ ∂uk
∂x1

,
∑ ∂uk

∂x2
,
∑ ∂2uk

∂x21
,
∑ ∂2uk

∂x1∂x2
,
∑ ∂2uk

∂x22

)
(5)

The method of integral analogues, which is a part of the similarity model analysis
applying various formal adaptations of a DE [5], provides an essential principle for
the substitution of the partial polynomial DE (3) terms. It replaces mathematical
operators and symbols in a DE by the ratio of corresponding variables. Derivatives
are replaced by their integral analogues, i.e. derivative operators are removed and
replaced by analogue or proportional signs in equations. Complete input polyno-
mials of a specific order can replace the partial functions uk of derivative terms
(5), while the combination polynomials of denominators represent the alterative
derivative parts (6).

ui =

(
a0 + a1x1 + a2x2 + a3x1x2 + a4x

2
1 + a5x

2
2 + . . .

)m
n

b0 + b1x1 + . . .
=
∂mf(x1, . . . , xn)

∂x1∂x2 . . . ∂xm
n – combination degree of a complete polynomial of n-variables

m – combination degree of a denominator polynomial (6)

The partial DE (3), which describes time-series data observations, might be con-
verted into an ordinary DE with respect to only time-dependent term derivatives

145

Neural Network World 2/14, 143-156

(7). The input variables xt1, xt2, . . ., xtn are observations of the same variable x in
specific time t interval sequences. A DE composition may as well take a form of
the combined DE, which involves partial and ordinary-time derivatives together.

a+ bf +

m∑
i=1

ci
df(t, xi)

dt
+

m∑
i=1

m∑
j=1

dij
d2f(t, xi, xj)

dt2
+ · · · = 0 (7)

f(t,x) – function of time t and independent variables x (x1,x2,...,xm)

Blocks of the D-PNN (Fig. 1) consist of neurons, one for each fractional poly-
nomial derivative combination (8), so each neuron is considered a summation DE
term. Each block contains a single output polynomial (2) without derivative part.
Neurons do not affect the block output but can participate directly in the total
network output sum calculation of a DE composition. Each block has 1 and neu-
ron 2 vectors of adjustable parameters a ,then a, b. The root function of a neuron’s
numerator decreases a combination degree of the input polynomial of a term (6)
with respect to the denominator, in order to get the dimensionless values [5].

 x1 x2

Block output DE

polynomial

…

neurons

1 2

 /

Input
variables

Π

 / /

 CT

Fig. 1 2-variablecombination block ofbasic(/)and compound terms (CT)–neurons.

D-PNN processes 2-combination square polynomials of blocks and neurons (DE
terms), the same as those applied by the GMDH algorithm (2). This simple poly-
nomial type has generally proved to yield the best results besides being easy to use.
Each block so include 5 basic neurons with respect to derivatives x1, x2, x1x2, x

2
1

and x22 of the 2nd order partial DE (3), of a searched 2-variable u partial function
description, which might be expressed in the form of (8). This type of DE is prefer-
ably used to describe natural and physical non-linearities of natural and physical
processes; it applies 2 linear (9), 2 square (10) and 1 combination (11) derivative
term.

F

(
x1, x2, u,

∂u

∂x1
,
∂u

∂x2
,
∂2u

∂x21
,

∂2u

∂x1∂x2
,
∂2u

∂x22

)
= 0 (8)

where F(x 1, x2, u, p, q, r, s, t) is a function of 8 variables

y1 =
∂f(x1, x2)

∂x1
= w1

(
a0 + a1x1 + a2x2 + a3x1x2 + a4x

2
1 + a5x

2
2

) 1
2

1.5 · (b0 + b1x1)
(9)

146

Zjavka L.: “Aladin” weather model local revisions using the differential. . .

y3 =
∂2f(x1, x2)

∂x22
= w3

a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2

2.7 · (b0 + b1x2 + b2x22)
(10)

y5 =
∂2f(x1, x2)

∂x1∂x2
= w5

a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2

2.3 · (b0 + b1x11 + b2x12 + b3x11x12)
(11)

3. Multi-layer backward differential polynomial
neural network

Multi-layer PNN forms composite polynomial functions (Fig. 2); the previous lay-
ers form internal functions (12), which substitute for the next hidden layer input
variables of neuron and block polynomials to define external functions (13). Com-
pound DE terms, i.e. composite function derivatives with respect to the variables
of previous layers, are calculated according to the partial function derivation rules
(14)(15).

yi = φi(X) = φi(x1, x2, . . . , xn) i = 1, . . .,m (12)

F (x1, x2, . . ., xn) = f(y1, y2, . . ., ym) = f(ϕ1(X), gϕ2(X), . . . , ϕm(X)) (13)

∂F
∂x1

= ∂f
∂y1

· ∂φ1

∂x1
+ ∂f

∂y2
· ∂φ2

∂x1
+ . . .+ ∂f

∂ym
· ∂φm

∂x1
∂F
∂x2

= ∂f
∂y1

· ∂φ1

∂x2
+ ∂f

∂y2
· ∂φ2

∂x2
+ . . .+ ∂f

∂ym
· ∂φm

∂x2

.
∂F
∂xn

= ∂f
∂y1

· ∂φ1

∂xn
+ ∂f

∂y2
· ∂φ2

∂xn
+ . . .+ ∂f

∂ym
· ∂φm

∂xn

 (14)

∂F
∂xk

=
m∑
i=1

∂f(y1,y2,...,ym)
∂yi

· ∂ϕi(X)
∂xk

k =1, . . . , n c (15)

The blocks of the 2nd and following hidden layers (Fig. 2) are additionally ex-
tended with compound terms (neurons), which form composite function derivatives
with respect to the output and input variables of the back connected previous layer
blocks. For example the 1st block of the last (3rd) hidden layer forms linear com-
pound neurons (16, 17). The amount of neurons of blocks, which involve composite
functions, doubles in each previous back-connected layer. As the couples of input
variables of the internal functions ϕ1(x1, x2) and ϕ2(x3, x4) (15) can differ from
each other, the partial derivations are calculated separately with respect to each
block variables. This way the sums (14, 15) consist of only 1 derivative term, which
represents a single neuron [14].

y2 =
∂f(x21, x22)

∂x11
= w2

(a0 + a1x21 + a2x22 + a3x21x22 + a4x
2
21 + a5x

2
22)

1
2

1.6 · x22
·

· (x21)
1
2

1.5 · (b0 + b1x11)
(16)

y3 =
∂f(x21, x22)

∂x1
= w3

(a0 + a1x21 + a2x22 + a3x21x22 + a4x
2
21 + a5x

2
22)

1
2

1.6 · x22
·

· (x21)
1
2

1.6 · x12
· (x11)

1
2

1.5 · (b0 + b1x1)
(17)

147

Neural Network World 2/14, 143-156

 x1 x2 x3

x31

Y

x22 x21

x13
x12 x11

Σ
N = basic neurons (terms)
CT = compound terms

P = output polynomial

N N N N N

p

N N N N N

p

p

N N N N N

CT

p

N N N N N

CT

N N N N N

p

N N N N N

CT

N N N N N

CT

N N N N N

CT

N N N N N

CT

p

Fig. 2 3-variable multi-layer D-PNN with 2-variable combination blocks. Backward
connections of the 3rd layer 1st block (dashed lines).

Square and combination compound derivative terms are also calculated accord-
ing to the composite function derivation rules (18, 19, 20). The back-calculation
of the composite function derivatives is well done by a recursive algorithm in the
tree-like network structure.

F (x1, x2) = f(u, v) = f [φ(x1, x2), ψ(x1, x2)] (18)

∂2F

∂x21
=
∂2f

∂u2

(
∂φ

∂x1

)2

+2
∂2f

∂u∂v

∂φ

∂x1
· ∂ψ
∂x1

+
∂2f

∂v2

(
∂ψ

∂x1

)2

+
∂f

∂u
· ∂

2φ

∂x21
+
∂f

∂v
· ∂

2ψ

∂x21
(19)

∂2F

∂x1∂x2
=

∂2f

∂u2
· ∂φ
∂x1

· ∂φ
∂x2

+
∂2f

∂u∂v

(
∂ψ

∂x1

∂φ

∂x2
+

∂φ

∂x1

∂ψ

∂x2

)
+
∂2f

∂v2
· ∂ψ
∂x1

· ∂ψ
∂x2

+

+
∂f

∂u
· ∂2φ

∂x1∂x2
+
∂f

∂v
· ∂2ψ

∂x1∂x2
(20)

148

Zjavka L.: “Aladin” weather model local revisions using the differential. . .

The number of hidden layers in the network should coincide with the total num-
ber of input variables, to enable the D-PNN to form all the possible combination
derivative terms of a sum DE solution. Only some of all the potential derivative
terms (neurons) may participate in the DE composition, even though they have
an adjustable term weight wi. A proper neuron combination, which can substi-
tute for a DE solution, is not able to accept a disturbing effect of the rest of the
neurons (which may compose other solutions) on the parameter optimization. The
total output Y of the D-PNN is the arithmetical mean of all the active neuron
output values (21) so as to prevent a changeable number of active neurons (of a
combination) from influencing the total network output value.

Y =

k∑
i=1

yi

k
k = actual number of active neurons (DE terms) (21)

The selection of a fit neuron combination is the principal part of a DE compo-
sition and it may apply the simulated annealing (SA) method [3] combined with a
standard genetic algorithm [1] in the initial composing phase. The root mean square
error (RMSE) method (22) was applied for the polynomial parameter optimization
and neuron combination selection process. The model results were evaluated using
normalized RMSER to the range of observed data (23) and normalized RMSEM

to the mean of observed data (24). D-PNN is trained with only a small set of
input-output data samples in a similar way to the GMDH algorithm [10].

RMSE =

√√√√√ M∑
i=1

(
ydi − yi

)2
M

→ min (22)

y
d
i = desired output yi = estimated output for i

th
training vector

NRMSER = NR =
RMSE

ydmax − ydmin

(23)

NRMSEM = NM =
RMSE

ydmean

(24)

4. “Aladin” forecast model revisions

The Czech hydro-meteorological institute (CHMI) provides the free 48-hour “Al-
adin” chart numerical forecast model, which involve temperature, wind speed/direc-
tion, relative humidity/precipitations, static pressure and 3-level cloudiness prog-
noses at a selected locality [17]. Global forecast models based upon the differential
equations for atmospheric dynamics do not perfectly determine weather condi-
tions near the ground. Statistical corrections were developed to attempt to resolve
this problem, based upon the 3-dimensional fields produced by numerical weather
models, surface observations, and the climatological conditions for specific loca-
tions. These statistical models are collectively referred to as model output statistics
(MOS), which neural network models referred to other predicted variables could
try to replace. The local model is trained with real data time-series observations

149

Neural Network World 2/14, 143-156

in the past few days to define a true multi-parametric function relation, exactly
actual for this time interval and in part also (more or less) valid for the same vari-
ables of the prediction model. After it can form new 24-hour corrections of some
prognosis (e.g. relative humidity), applying the real model trained with several
previous day time-series and input variables of the “Aladin” forecast. In the case
of an overnight dramatic change in the weather from the training to the forecast-
ing day(s), the short-term correction model is not true, as it holds for wrong past
weather conditions, however this trend is not very frequent. The quality of new
estimations also depends on prediction accuracies of other numerical model out-
comes that are applied, which are not entirely valid and enter the input vector.
These input variables, quite independent from the neural network locally trained
model, are outputs of a different exact numerical model type, which benefits the
new revised estimations.

The presented network (Fig. 2) relative humidity models were trained only
with 3 current state vector variables: wind speed, temperature and sea level pres-
sure, measured at one station locality (Ostrava-Mošnov) [18]. The models can
roughly estimate the time and amount of precipitations and also indicate a cloudi-
ness progress (Fig. 3–Fig. 6). The relative humidity values increase at night hours
(along with temperature decrease), upswing or steep daily grows can indicate pre-
cipitation (Fig. 5); easy or slight slope curve courses can imply a changeable cloudi-
ness (Fig. 4). The D-PNN models are quite sensitive to the rain-fall so a modeled
precipitous quantity growth might spuriously intensify the testing errors in some
cases. For example the revised model predicted exactly on time a big storm, which
“Aladin” referred a few before, not giving it the real strong intensity (Fig. 5). The
D-PNN local revisions of the relative humidity numerical forecast models may suc-
ceed significantly in some days (Fig. 4) of the settled weather however in the case of
an overnight weather change they fail or are less successful (Fig. 6) as the trained
model still holds for wrong past weather conditions.

Fig. 3 8. 6. 2013: Aladin (NR = 0.228, NM = 0.133), D-PNN (NR = 0.162,
NM = 0.095).

150

Zjavka L.: “Aladin” weather model local revisions using the differential. . .

Fig. 4 9. 6. 2013: Aladin (NR = 0.285, NM = 0.192), D-PNN (NR = 0.121,
NM = 0.081).

Fig. 5 10. 6. 2013: Aladin (NR = 0.374, NM = 0.220), D-PNN (NR = 0.206,
NM = 0.121).

Fig. 6 11. 6. 2013: Aladin (NR = 0.263, NM = 0.067), D-PNN (NR = 0.368,
NM = 0.094).

151

Neural Network World 2/14, 143-156

The neural network local revisions of the “Aladin” wind speed forecast models
(Fig. 7–Fig. 10) apply 3 time-series of 3 input state parameters: temperature,
relative humidity and sea level pressure, i.e. 9 input vector variables in total.
Thus a combination of 1-parametric functions of time-series with further multi-
parametric data relations is allowed, which seems to yield optimal solutions. D-
PNN applies only to a network structure with 3 hidden layers of blocks, i.e. 3 inter-
connected presented networks (Fig. 2) in principle, which does not allow all possible
combination DE terms (a complete DE solution) to be formed [13]. An overnight
weather change from 11. 6. 2013 (Fig. 10) corresponds to the failed revision of the
relative humidity model (Fig. 6), however the “Aladin” wind speed prognosis was

Fig. 7 8. 6. 2013: Aladin (NR = 0.287, NM = 0.598), D-PNN (NR = 0.161,
NM = 0.337).

Fig. 8 9. 6. 2013: Aladin (NR = 0.255, NM = 0.692), D-PNN (NR = 0.192,
NM = 0.522).

152

Zjavka L.: “Aladin” weather model local revisions using the differential. . .

Fig. 9 10. 6. 2013: Aladin (NR = 0.351, NM = 0.754), D-PNN (NR = 0.318,
NM = 0.684).

Fig. 10 11. 6. 2013: Aladin (NR = 0.390, NM = 0.608), D-PNN (NR = 0.354,
NM = 0.552).

less successful in this day. The current wind speed quantity mainly induces a wind
charger power output, much less affected by other weather conditions, e.g. unstable
wind direction or temperature [16].

The cloudiness can comprise several layers: low, middle and high cloud amount
levels and also their thickness; the study considers the global mean measure. Fol-
lowing day (24-hour) accurate forecasts are necessary just like wind speed pre-
dictions to estimate a photovoltaic power plant output. Cloud amount processes
mainly affect the solar radiance intensity, less influenced by visibility conditions
and relative humidity [15]. The cloudiness local correction models were trained
and tested analogously to the wind speed local revisions (Fig. 11–Fig. 13). The D-

153

Neural Network World 2/14, 143-156

Fig. 11 14. 6. 2013: 48-hour prognoses – Aladin (NR = 0.466, NM = 0.765),
D-PNN (NR = 0.349, NM = 0.573).

Fig. 12 15. 6. 2013: Aladin (NR = 0.334, NM = 0.511), D-PNN (NR = 0.206,
NM = 0.314).

Fig. 13 16. 6. 2013: Aladin (NR = 0.390, NM = 0.712), D-PNN (NR = 0.288,
NM = 0.526).

154

Zjavka L.: “Aladin” weather model local revisions using the differential. . .

PNN model of Fig. 11 was formed with respect to the 48-hour “Aladin” prognosis,
i.e. it applied 24-hour forecast variables of the 2nd day. The training data samples
were measured at one station locality of Ostrava-Mošnov airport [19]. Each of the
3 presented D-PNN correction models were trained with hourly data series for the
period of 1 to 3 days previously (24-62 hours, i.e. data samples).

5. Conclusions

D-PNN is a new neural network type, which non-linear regression is based on a
derivative generalization of polynomial data relations. It forms and resolves an
unknown DE of a searched function description from data observations. A general
DE is substituted, producing sum series of selected fractional polynomial deriva-
tive terms (neurons). In contrast with the ANN functionality, each neuron can
take part directly in the total network output calculation, generated by the sum
of all active neuron output values. Its relative data processing is different from
the common soft-computing method approach (e.g. ANN, GP, fuzzy), applications
which are subjected to a fixed interval of absolute values. The D-PNN’s operat-
ing principle differs by far from other common neural network techniques. PNN
model complexity in general increases proportionally along with raising amount of
input variables, which is contrary to the application of an artificial neural network
common flat 1 or 2-layer structure.

Neural networks trained with past hourly local data observations, entered only
a few variables of current 24 or 48-hour prognoses can improve a numerical me-
teorological forecast model in the majority of cases and thus replace the role of
standard MOS techniques. Time-series observations of some local weather con-
ditions over several days can describe data relations of a neural network trained
model, for a certain time interval exactly. After that D-PNN can revise 24 (or 48)
hour prognosis of a specific variable, applying several previous days trained real
model of the general DE solution and input variables of the “Aladin” forecast. The
predicted values, which enter the input vector, are only partly valid and the cor-
rection model, trained with real historical data, is also more or less correct. In the
case of an unexpected overnight change in the weather from one day to another the
trained model is not equally accurate and able to improve the original numerical
model. The neural network local revisions of the numerical meteorological forecast
models could probably be further improved using several surrounding localities of
observations and an increased number of meteorological quantities.

Acknowledgement

The article has been elaborated in the framework of the IT4Innovations Centre of
Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 funded by Structural Funds of
the European Union and state budget of the Czech Republic and in the framework
of the project Opportunity for young researchers, reg. no. CZ.1.07/2.3.00/30.0016,
supported by Operational Programme Education for Competitiveness and co-financed
by the European Social Fund and the state budget of the Czech Republic.

155

Neural Network World 2/14, 143-156

References

[1] Affenzeller M., Winkler S., Wagner S., Beham A.: Genetic Algorithms and Genetic Pro-
gramming: Modern Concepts and Practical Applications. Chapman & Hall/CRC, 2009.

[2] Balser W.: Summability of formal power-series solutions of partial differential equations with
constant coefficients. Journal of Mathematical Sciences, 124, December 2004, pp. 5085–5097.

[3] Bertsimas D., Tsitsiklis J.: Simulated annealing. Statistical science, 8(1), 1993, pp. 10–15.

[4] Cao H., Kang L., Chen Y., Yu J.: Evolutionary modeling of systems of ordinary differential
equations with genetic programming. Genetic Programming and Evolvable Machines, 1,
October 2000, pp. 309–337.

[5] Chan K. L., Chau W. Y.: Mathematical theory of reduction of physical parameters and
similarity analysis. International Journal of Theoretical Physics, 18, November 1979, pp.
835–844.

[6] Chaquet J. M., Carmona E. J.: Solving differential equations with fourier series and evolution
strategies. Applied Soft Computing, 12, September 2012, pp. 3051–3062.

[7] Cornforth T. W., Lipson H.: Inference of hidden variables in systems of differential equations
with genetic programming. In: Genetic Programming and Evolvable Machines. Springer,
2012.

[8] Ivakhnenko A. G.: Polynomial theory of complex systems. IEEE Transactions on systems,
1(4), 1971.

[9] Kilbas A. A., Srivastava H. M., Trujillo J. J.: Theory and applications of fractional differential
equations. Mathematics Studies. Elsevier, North-Holland, 2006.

[10] Nikolaev N. Y., Iba H.: Polynomial harmonic GMDH learning networks for time series
modeling. Neural Networks, 16, 2003, pp. 1527–1540.

[11] I. Podlubny. Fractional Differential Equations. Academic, New York, 1999.

[12] Tsoulos I., Gavrilis D., Glavas E.: Solving differential equations with constructed neural
networks. Neurocomputing, 72, 2009, pp. 2385–2391.

[13] Zjavka L.: Combined differential polynomial neural network. Journal of Electrical and Con-
trol Engineering, 2, 2012, pp. 15–19.

[14] Zjavka L.: Recognition of generalized patterns by a differential polynomial neural network.
Engineering, Technology & Applied Science Research, 2(1), 2012, pp. 167–172.

[15] Zjavka L.: Forecast models of partial differential equations using polynomial networks. In
Advances in Intelligent Systems and Computing, Berlin, Springer-Verlag, volume 238, 2013,
pp. 1–11.

[16] Zjavka L., Snášel V.: Power output models of ordinary differential equations by polynomial
and recurrent neural networks. In Advances in Intelligent Systems and Computing, Berlin,
Springer-Verlag, volume 237, pp. 1–11, 2013.

[17] Czech hydro-meteorological institute (CHMI) “Aladin” forecast
http://www.chmi.cz/files/portal/docs/meteo/ov/aladin/results/public/meteogramy/meteo
gram page portal/m.html (in Czech language only)

[18] CHMI actual data observations http://vvv.chmi.cz/pocasi-na-stanici ostrava.html (in Czech
language only)

[19] CHMI actual data charts http://portal.chmi.cz/files/portal/docs/poboc/OS/KW/Captor/
tmp/DMULTI-O1MOSN01.gif (in Czech language only)

156

