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Abstract: In this article, we deal with a numerical solution of the issue concerning
one-dimensional longitudinal mechanical wave propagation in linear elastic neural
weakly heterogeneous media. The crucial idea is based on the discretization of the
wave equation with the aid of a combination of the discontinuous Galerkin method
for the space semi-discretization and the Crank-Nicolson scheme for the time dis-
cretization. The linearity of the second-order hyperbolic problem leads to a solution
of a sequence of linear algebraic systems at each time level. The numerical exper-
iments performed for the single traveling wave and Gauss initial impact demon-
strate the high-resolution properties of the presented numerical scheme. Moreover,
a well-known linear stress-strain relationship enables us to analyze a high-frequency
regime for the initial excitation impact with respect to strain-frequency dependency.
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1. Introduction

During its life the human organism is influenced by many different types of forces.
Apart from gravitation there is a considerable amount of various forces, which have
an effect on the interaction of a human body with the surrounding environment.
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As a result, activity of these forces can cause an injury of the human body under
certain conditions. The scientific field which deals with a description of activities
relating to the consequences of mechanical loading on the human organism is called
biomechanics. The special discipline of biomechanics which is concerned with injury
caused by mechanical interaction is denoted as biomechanics of injuries or trauma-
biomechanics [26]. The field of trauma-biomechanics today is mostly focused on
injuries sustained in traffic accidents. If we consider the world statistics, it is
obvious that the highest percentage of fatal injuries falls to traffic accidents.

Among the most serious injuries during traffic accidents belong head injuries.
The head injuries relating to scull and brain damage can result in a death or a per-
manent disability [9]. Nowadays, brain damage means significant issue, not only
for its increasing volume, but mainly for its medical and economical importance. In
regards to these facts, we can see the effort to decrease these serious consequences,
which appear in relation with head injury. Understanding the mechanisms of head
injuries is a very important condition for reducing the number of fatal consequences
during traffic accidents. The knowledge obtained can be used for designing vehicle
restraint systems.

1.1 Brain injury mechanisms

The brain may be the organ most critical to protect from trauma, because anatomic
injuries to its structures are currently non-reversible, and consequences of injury
can be devastating [22]. The wave propagation in the brain may lead to a pressure
gradient with positive pressure at the site of impact and negative pressure on the
opposite side of impact. Described mechanism is connected with creating intercra-
nial compression, which causes focal injuries of the brain tissue. Consequently, the
pressure gradient can give rise to shear strains within the deep structures of the
brain. However, it is not yet fully understood whether the injury is due to negative
pressure (tensile loading) or due to a cavitation phenomenon [4].

To be able to predict complex brain damage with a high accuracy it is important
to know the reaction of brain tissue to all possibilities of mechanical loading. The
development of sophisticated mathematical models of the head makes it possible to
describe the brain tissue reaction during mechanical loading. The main aim of the
computations is to determine the measures of prediction of the head mechanical
response to impact. When combined with results of a detailed investigation of the
response of the human head, such models promise to contribute substantially to
the present understanding of head injury mechanisms and the impact tolerance of
the head.

The subject of our interest is the mathematical model and its numerical study
describing the wave propagation excited by impact at the level of neural cells
together with certain possible resulting consequences to neural tissue. Let us note
that the wave under consideration has a mechanical disposition, its origin is related
to an initial outer energy input and it propagates in neural tissue as a shock wave,
which represents one of the injury mechanisms.
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1.2 Neuron-neuron interface

The neural tissue is composed of one hundred billion neurons on average, which are
the basic structural components. A typical neuron includes a cell body with the
diameter from 3 to 18 micrometers and an axon, which is a special cellular extension
that arises from the cell body. Neurons are connected to each other to form neural
network. The first works by Griffith [16] and [17] devoted to the comprehensive
mathematical modeling of neural tissue can be traced back to the 1960s. In order
to overcome the difficulties of modeling the large numbers of neurons these works
are based on continuum descriptions in which space is continuous. These early
concepts were later improved, we can cite e.g. [21]. At present, neural field theories
have found applications in several areas such as the previously mentioned trauma
and trauma injuries or EEG rhythms, short term memory, motion perception, etc.
For recent studies of the dynamics of neural tissue we refer the reader to [10].

Because of conversion, the numerical problem of wave propagation is presented
on the basic one-dimensional model which includes one neuron-neuron interface,
as illustrated in Fig. 1 (top). For simplicity, the translation properties of neuron-
neuron interface are modeled by a simple non-constant positive function c(x) rep-
resenting the so-called speed of wave propagation in the given medium, see Fig. 1
(bottom).

M−  M+

propagation direction

M−  M+

c(x)

neuron neuroninterface

Fig. 1 The simplified profile of propagated wave (top) and translation properties of
a simplified neural medium (bottom).

The presented numerical model considers only the mechanical concept of wave
propagation in a simplified neural medium and does not describe the neuronal
impulsing definitely. More precisely, our numerical study does not take into account
an autonomous activity of the neural system together with an evaluation of its
functional changes in the case of a damage.
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2. Numerical study

The numerical schemes for solutions of the whole class of wave equations have been
analyzed by many authors and several numerical studies have been introduced in
the literature: from finite difference methods [15], over collocation methods [20] to
finite element (FE) approaches based on Galerkin methods, e.g., [3], [14] and [19].

In this paper, we present a semi-implicit scheme for the numerical solution of the
one-dimensional wave equation based on an alternative approach to the commonly
used methods. The solutions of such problems usually contain subdomains, where
the steep gradients or discontinuities are presented (e.g., shock waves or contact
discontinuities). To solve these problems in a sufficiently robust, efficient and accu-
rate way, we will focus on the discontinuous Galerkin (DG) methods, especially on
the space-discontinuous variant of DG method, which combines the advantages of
the FE method together with a discontinuous approach, for survey see [1], [8], [13]
and [25]. This method is based on piecewise polynomial, generally discontinuous,
approximations. From this point of view, DG methods seem to be very promising
tool for the numerical simulation and provide robust and high-order accurate ap-
proximations of the solutions resulting from hyperbolic equations. Moreover, the
DG concept can be easily extended by time and hp-adaption techniques, which
enable better resolving of special situations occurred (e.g. an interaction of waves)
with respect to computational meshes as well as polynomial approximation degrees,
see e.g., [2] and [27].

The numerical study in the reminder of this paper focuses on high-order schemes
for longitudinal one-dimensional mechanical wave propagation of pulses and har-
monic waves in linear biological media represented by cerebral neural tissue.

2.1 Wave propagation in linear elastic media

Let us consider a one-dimensional problem of wave propagation through a linear
medium. For small strain deformation, the equation of motion can be written as
(see [23])

1

ρ

∂σ

∂x
=
∂2u

∂t2
in QT , (1)

where u(x, t) is the displacement in the x-direction, ρ is the mass density, and σ(x, t)
is the normal stress in the x-direction. The symbol QT stands for the space-time
domain I × (0, T ) with medium I = (a, b) and final time T . For the small strain
deformation considered here, the normal strain in the x-direction, ϵ(x, t), is defined
as ϵ = ∂u

∂x and the linear constitutive relationship of the medium is described by
the linear elastic Hooke law: σ = Eϵ, where E is the elastic Young modulus.

Substitution of σ = E ∂u
∂x into (1) yields

∂2u

∂t2
− c2

∂2u

∂x2
= 0 in QT , (2)

where c =
√
E/ρ plays a role of the speed of wave propagation in a medium I; it is

usually called the phase velocity. In order to model the behaviour of propagation
of wave pulse through the single interface in the medium, e.g. a membrane between
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two neurons, the phase velocity is considered as a varying function c(x) : I → IR,
see an admissible shape in Fig. 1 (bottom).

The hyperbolic equation of second order (2) has to be closed with the appro-
priate set of prescribed initial and boundary conditions. The initial amplitude and
time velocity is given by

u(x, 0) = φ(x) and
∂u

∂t
(x, 0) = ψ(x), x ∈ I, (3)

where φ and ψ are sufficiently smooth functions.
The correctness of the whole initial-boundary problem is guaranteed by the

suitable choice of the boundary conditions prescribed at both endpoints of the
domain I. One option here could be the natural boundary conditions given by the
homogeneous Neumann boundary conditions, i.e.

∂u

∂x
(a, t) =

∂u

∂x
(b, t) = 0, t ∈ (0, T ), (4)

which represent the free endpoints (i.e. zero strain). The boundary conditions (4)
belong to the kind of reflective boundary conditions, which in fact affect the solu-
tion u in the entire domain I.

To avoid the aforementioned requirement it is possible to use a sufficiently large
space domain or to introduce the concept of non-reflective boundary conditions.
The form of these conditions arises from the mathematical background of the equa-
tion (2), for more details see [12], and reads as

∂u

∂t
− c(x)

∂u

∂x

∣∣∣∣
x=a

= 0, t ∈ (0, T ), (5)

∂u

∂t
+ c(x)

∂u

∂x

∣∣∣∣
x=b

= 0, t ∈ (0, T ). (6)

An important feature of the continuous wave equation (2) is the conservation
of the total energy

E(t) :=
1

2

∫ ∞

−∞

(
1

c2(x)

(
∂u

∂t

)2

+

(
∂u

∂x

)2
)
dx = E(0) ∀ t ∈ (0, T ), (7)

which directly follows from (2) by dividing by squared phase velocity c, multiplying
by ∂u

∂t and integrating with respect to x over the real line. Then the first obtained
integral is a full derivative in time and integration by parts in the second term
leads to a full spatial derivative as well. Here we assume that the initial data
vanish outside the domain I, and thus the integral in (7) is convergent due to the
finite phase velocity. This energy conservation property (7) plays an important
role in the formulation of the discrete problem. The proposed numerical scheme
should preserve the energy invariant, see Section 2.4.2.

2.2 Scaled model

Now we scale the basic wave problem given by (2), (3) and (5)–(6). The charac-
teristic quantities are length L∗, time T∗ and phase velocity C∗. The characteristic
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speed of wave propagation is given by C∗ =
√
Eref/ρref , where Eref and ρref

are reference values of Young’s modulus and density inside the cell of neuron, re-
spectively. Common sense suggests choosing L∗ proportional to the cell size. We
introduce the non-dimensional variables

x̂ =
x

L∗
, t̂ =

t

T∗
, Ê =

E

Eref
, ρ̂ =

ρ

ρref
, ĉ =

c

C∗
, (8)

which imply,

û(x̂, t̂) =
u(x, t)

L∗
, φ̂(x̂) =

φ(x)

L∗
, ψ̂(x̂) =

T∗ψ(x)

L∗
, (9)

and from the chain rule we get

∂u

∂x
=
∂û

∂x̂
,

∂u

∂t
=
L∗

T∗

∂û

∂t̂
. (10)

Let us note that the value of ĉ measures the rate of heterogeneity of the medium,
where ĉ = 1 represents the homogeneous medium.

Substituting the dimensionless variables into the wave equation (2) with char-
acteristic time T∗ = L∗/C∗ gives

∂2û

∂t̂2
− ĉ2(x̂)

∂2û

∂x̂2
= 0 in QT̂ , (11)

and initial and boundary conditions become

û(x̂, 0) = φ̂(x̂) and
∂û

∂t̂
(x̂, 0) = ψ̂(x̂), x̂ ∈ Î = (a/L∗, b/L∗), (12)

∂û

∂t̂
− ĉ(x̂)

∂û

∂x̂

∣∣∣∣
x̂=a/L∗

=
∂û

∂t̂
+ ĉ(x̂)

∂û

∂x̂

∣∣∣∣
x̂=b/L∗

= 0, t̂ ∈ (0, T̂ ). (13)

In what follows we shall consider the dimensionless initial-boundary value prob-
lem given by (11)–(13) and if there is no misunderstanding the symbol ·̂ will be
omitted.

2.3 Transformation into conservation form

Next we rewrite the wave equation (11) as a first-order system, which is more
suitable for numerical treatment. There are several algorithms to obtain a hyper-
bolic first-order system. However, we employ an algorithm that also guarantees
the symmetry of the system, cf. [18]. Indeed, by setting the state vector

w(x, t) =

 w1(x, t)
w2(x, t)
w3(x, t)

 =

 u(x, t)
∂u
∂t (x, t)

−c(x)∂u∂x (x, t)

 (14)

we arrive at the system

∂w

∂t
+A(x)

∂w

∂x
+B(x)w = 0 in QT , (15)
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where the matrices A and B are given in the following way:

A(x) =

 0 0 0
0 0 c(x)
0 c(x) 0

 , B(x) =

 0 −1 0
0 0 −c′(x)
0 0 0

 . (16)

Let us note that the second equation in the above system (15) is just the original
wave equation (11) written in new variables, the third one represents the symmetry
of mixed derivatives, and the last one the transformation of variables. Additionally,
the definition of the third component w3 with negative sign in (14) is only for more
suitable writing the equation (15) and matrix A, respectively.

For convenience in the discretization of the problem, it is advantageous to repre-
sent the hyperbolic system of partial differential equations (15) in the conservation
form, i.e.

∂w

∂t
+
∂f(w)

∂x
+ g(w) = 0 in QT , (17)

where

f(w) = A(x)w =

 0
c(x)w3

c(x)w2

 , (18)

g(w) =

(
B(x)− ∂

∂x
A(x)

)
w =

 0 −1 0
0 0 −2c′(x)
0 −c′(x) 0


︸ ︷︷ ︸

:=R(x)

w (19)

are convection and reaction fluxes, respectively. Moreover, A(x) is in fact the
Jacobi matrix of vector-valued function f .

The new system (17) has to be equipped with the set of the initial and the
boundary conditions corresponding with (12) and (13), respectively. Therefore, we
close the system with the initial condition w(x, 0) = w0(x), x ∈ I, component-
wisely written as

w1(x, 0) = φ(x), w2(x, 0) = ψ(x), w3(x, 0) = −c(x) · φ′(x), x ∈ I, (20)

and non-reflective boundary conditions

w2(a, t) + w3(a, t) = 0, w2(b, t)− w3(b, t) = 0, t ∈ (0, T ). (21)

Finally, we append the relations between physical and dimensionless compo-
nents of the state vector. Using (8)–(10) one obtains

w1 = L∗ŵ1, w2 = C∗ŵ2, w3 = C∗ŵ3. (22)

2.4 Discretization

Let Th (h > 0) be a family of the partitions of the closure I = [a, b] of the
domain I into N closed mutually disjoint subintervals Ik = [xk−1, xk] with length
hk = xk − xk−1 and let the symbol J stand for an index set {1, . . . , N}. Then we
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call Th = {Ik, k ∈ J } a partition with spatial step h = maxk∈J (hk) and interval
Ik an element. By Eh we denote the smallest possible set of all endpoints of all
subintervals Ik, i.e. Eh = {x0 = a, x1, . . . , xN−1, xN = b}. Further, we label the set
of all inner nodes by EI

h. Obviously, Eh = EI
h ∪ {a, b}.

We additionally assume that the following conditions are satisfied:

∃Cq ≥ 1 : hk ≤ Cqhk′ ∀ Ik, Ik′ ∈ Th sharing a node (23)

∃ k1, k2 ∈ IN such that xk1
=M− and xk2

=M+ (24)

The condition (23) in fact allows to control a level of the mesh refinement if adapted
meshes are used and the relation (24) guarantees the membrane consistency, see
Fig. 1 (top).

DG method allows us to work with different polynomial degrees over the ele-
ments. Therefore, we assign a positive integer pk as a local polynomial degree to
each Ik ∈ Th. Then we set the vector p = {pk, Ik ∈ Th}. Over the triangulation
Th, we define the finite-dimensional space of discontinuous piecewise polynomial
functions

Shp ≡ Shp(I, Th) = {v; v|Ik ∈ Ppk
(Ik) ∀ k ∈ J }, (25)

where Ppk
(Ik) denotes the space of all polynomials of degree ≤ pk on Ik, Ik ∈ Th.

Consequently, the approximate solution of the problem given by (17) and (20)–(21)
is sougth in the space of vector-valued functions Shp = [Shp]

3.
Let us denote v(x+k ) = limε→0+ v(xk+ε) and v(x

−
k ) = limε→0+ v(xk−ε). Then

we can define the jump and average of v at inner points xk ∈ EI
h of domain I by

[v(xk)] = v(x−k )− v(x+k ), ⟨v(xk)⟩ =
1

2

(
v(x−k ) + v(x+k )

)
. (26)

By convention, we also extend the definition of jump and mean value for end-
points of I, i.e. [v(x0)] = −v(x+0 ), ⟨v(x0)⟩ = v(x+0 ), [v(xN )] = v(x−N ) and
⟨v(xN )⟩ = v(x−N ). In case that xk ∈ Eh are arguments of v(x−k ) or v(x+k ), we
usually omit these arguments x−k , x

+
k and write simply v− and v+, respectively.

2.4.1 Space semi-discretization

In this section, we recall the space semi-discrete DG scheme presented in [25]. First,
we multiply (17) by a test function vh ∈ Shp, integrate over an element Ik ∈ Th
and use integration by parts in the convection term ∂

∂xf(w) of (17). Consequently,
we employ a concept of a numerical flux IH for the discretization of the convection
flux and end up with the following DG formulation for the semi-discrete solution
wh(t), introduced in [11] as a system of ordinary differential equations, namely

d

dt
(wh(t),vh)+bh(wh(t),vh)+rh(wh(t),vh) = 0 ∀vh ∈ Shp, ∀ t ∈ (0, T ), (27)

where (·, ·) denotes the L2-scalar product and the forms bh(·, ·) and rh(·, ·) stand
for the semi-discrete variants of convection and reaction fluxes (18) and (19), i.e.

bh(w(t),v) = −
∑
k∈J

∫
Ik

f(w) · v′ dx+
∑
x∈Eh

IH
(
w−(t), w+(t), n

)
· [v], (28)

rh(w(t),v) =
∑
k∈J

∫
Ik

g(w) · v dx. (29)
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Further, the differential system (27) is equipped with the corresponding initial
condition, prescribed in spirit of (20) as

wh(0) = w0
h, where

(
w0

h −w0,v
)

∀v ∈ Shp. (30)

Byw0
h we denote an Shp-approximation of the initial conditionw0, which is defined

as L2-projection on space Shp.
The essential item of the DG formulation of the model problem is the treat-

ment of the convection part with the aid of a numerical flux. The numerical flux
IH(w−,w+, n) approximates the flux of the quantity w in the direction of n, where
n stands for the outer unit normal, i.e., n = −1 (negative x-direction) or n = 1
(positive x-direction) in the one-dimensional case.

Let us note that the choice of a suitable numerical flux plays an important role,
particularly in DG schemes. We can mention, e.g., the well-known Steger-Warming,
Van Leer, Roe, Vijayasundaram numerical fluxes or the numerical fluxes based on
the direct Riemann solver, [13]. In order to preserve the linearity of the semi-
discrete problem with respect to the state vector, we utilize the Steger-Warming
or Vijayasundaram numerical fluxes, which are equivalent to each other in case of
a linear convection flux.

In order to determine the value of chosen numerical flux, we define the matrix

P (n) = A(x) · n for |n| = 1, (31)

with eigenvalues

λ1(n) = 0, λ2(n) = −c · n, λ3(n) = c · n. (32)

The matrix P (n) is diagonalizable with the aid of the matrices T = T (n) and
T−1 = T−1(n) as

P (n) = TΛT−1 for Λ = diag(λ1, λ2, λ3). (33)

Easy computation leads to

T (1) = T (−1) =

 1 0 0
0 1 1
0 −1 1

 , T−1(1) = T−1(−1) =

 1 0 0
0 1

2 −1
2

0 1
2

1
2

 . (34)

Taking into account that matrix P (n) is diagonalizable, we define the positive and
negative part of P by

P (n)± = TΛ±T−1 for Λ± = diag(λ±1 , λ
±
2 , λ

±
3 ), (35)

where λ+ = max(λ, 0) and λ− = min(λ, 0).
Then the numerical flux reads

H
(
w−,w+, n

)
=

{
P+(n)w− + P−(n)w+, if n = 1,

P+(n)w+ + P−(n)w−, if n = −1.
(36)

In addition, it is necessary to specify the meaning of w+ at x = b and w− at
x = a with respect to fulfillment of the considered boundary conditions. One
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can easily observe that non-reflective boundary conditions (21) are equivalent to
the well-known ‘do-nothing’ boundary condition, since w2(x

−
0 ) = −w3(x

−
0 ) and

w2(x
+
N ) = w3(x

+
N ) imply

P−(−1)w(x−0 ) = P−(1)w(x+N ) = 0. (37)

2.4.2 Fully discrete DG scheme

In order to obtain the discrete solution, it is necessary to equip the scheme (27) with
suitable solvers for the time integration. There is a wide range of approaches for the
time discretization of ODE systems resulting from the space semi-discretization. In
practical computations, the simplest time discretization is via an explicit scheme,
e.g. forward Euler scheme and Runge-Kutta methods. Then we get conditionally
stable methods applicable under a severe limitation on the time step due to a CFL-
stability condition. However, their main advantage is an easy implementation.

On the other hand, in order to avoid the strong time step restriction of the
explicit DG schemes, it is advantageous to use an implicit time discretization.
Moreover, the bilinearity of the convection and reaction terms (28) and (29) di-
rectly implies that the implicit treatment in (27) corresponds to a system of linear
algebraic equations without employing any additional linearization, cf. [11].

In order to present the high-order scheme with respect to the time coordinate,
we introduce the fully discrete scheme for the time discretization with trapezoidal
rule, giving the second order convergence in time. Equivalently, it is the average
of forward Euler and backward Euler in time, well-known as the Crank-Nicolson
method. The aforementioned scheme is practically unconditionally stable without
any condition on the length of the time step and preserves the energy conservation
property (7), see [5].

We now partition [0, T ] as 0 = t0 < t1 < t2 < . . . < tM = T , denoting
each time step by τl ≡ tl − tl−1 and let wl

h stand for the approximate solution of
wh(tl), tl ∈ [0, T ], l = 0, . . . ,M of problem (27) with (30). The values wl

h at given
time levels are computed according the following formula

(wl
h,vh) +

τl
2

{
bh(w

l
h,vh) + rh(w

l
h,vh)

}
= (wl−1

h ,vh) (38)

−τl
2

{
bh(w

l−1
h ,vh) + rh(w

l−1
h ,vh)

}
∀vh ∈ Shp, l = 1, . . . ,M,

where w0
h is Shp-approximation of w0(x) given by (30).

The discrete problem (38) is equivalent to a system of linear algebraic equations
at each time instant tl ∈ [0, T ]. In what follows we shall be concerned with the
matrix representation of the resulting linear algebraic problem.

2.4.3 Linear algebraic representation

We proceed in a similar manner to [11]. Let us introduce

Bk = {vk,j ; supp(vk,j) ⊂ Ik}dofkj=1 , (39)

a local basis of the space of vector-valued discontinuous piecewise polynomial func-
tions Shp defined with the aid of (25), i.e a set of linearly independent polyno-
mial functions on Ik ∈ Th. The basis Bk belongs to the corresponding element
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Ik and its dimension is given by dofk = 3(pk + 1), where pk denotes the degree
of polynomial approximation on element Ik ∈ Th. Further, a composition of lo-
cal basis defines a global basis Shp by B = {vk,j ;vk,j ∈ Bk}k∈J and implies
dim(Shp) = dof =

∑
k∈J dofk.

Then a function wl
h ∈ Shp can be written in the form

wl
h(x) =

∑
k∈J

dofk∑
j=1

ξlk,j · vk,j(x), x ∈ I, l = 1, . . . ,M, (40)

where ξlk,j ∈ IR, l = 0, . . . ,M, j = 1, . . . , dofk, k ∈ J . Moreover, for wl
h ∈ Shp we

define the vector of its basis coefficients by

W l ≡
{
ξlk,j
}k∈J
j=1,...,dofk

∈ IRdof , l = 1, . . . ,M (41)

and obtain one-to-one mapping between (40) and (41).
Therefore, the linear algebraic problem (38) can be written in the matrix form(

M+
τl
2
B +

τl
2
R
)
W l =

(
M− τl

2
B − τl

2
R
)
W l−1, l = 1, . . . ,M, (42)

where M is a symmetric, positive definite block diagonal mass matrix. Each diag-
onal block of the matrix M corresponds to the appropriate element Ik ∈ Th and
its local mass matrix Mk set up only from basis Bk, k ∈ J , i.e.,

Mk = {M(i,j)
k }dofki,j=1, M(i,j)

k ≡
∫
Ik

vk,j · vk,i dx, i, j = 1, . . . , dofk. (43)

The matrix B corresponds to the convection flux in the following sense as

B = {Bk,s}k,s∈J , B = {B(k,i),(s,j)}j=1,...,dofs
i=1,...,dofk

, B(k,i),(s,j) = bh(vs,j ,vk,i). (44)

It is easy to observe that the matrix B is sparse and has a block structure, because
the matrix element B(k,i),(s,j) is non-vanishing only for k = s (the common element)
or s = k±1 (the shared node for two neighbouring elements). The structure of the
matrix R is formally similar to the convection matrix B, i.e.,

R = {Rk,s}k,s∈J , R = {R(k,i),(s,j)}j=1,...,dofs
i=1,...,dofk

, R(k,i),(s,j) = rh(vs,j ,vk,i), (45)

but the matrix element R(k,i),(s,j) is vanishing for all k ̸= s (different elements)
due to the definition of the reaction form rh in (29).

3. Numerical experiments

The following section provides experimental insight into the behaviour of a me-
chanical wave propagation of initially excited pulses and harmonic waves in the
considered neural medium. First, we describe the parameters of the numerical
scheme, then the simple experiment with a single traveling wave will be used to
validate the numerical code for the subsequent solving Gauss initial pulse and other
types of initial conditions with respect to the wave frequencies.

167



Neural Network World 2/14, 157-176

3.1 Experiment settings

We consider the wave propagation in the dimensionless domain of the length corre-
sponding to 12Lref , namely I = [−4, 8] with the interface of the width dM located
at interval IM = [M−,M+] = [xM − dM

2 , xM + dM

2 ] ⊂ I with the center xM . The
computational grid Th satisfies the consistency condition for its partition given
by (24). The basis functions from local basis Bk on each element Ik are associated
with the corresponding Lagrange nodes according to the local polynomial degree
pk. These nodes form the principal lattice defined by

L(k) =

{
x ∈ Ik : x =

2∑
j=1

αjxk−2+j , α1 + α2 = 1,

αj ∈
{
0,

1

pk
, . . . ,

pk − 1

pk
, 1

}
, j = 1, 2

}
. (46)

Then we can write the local basis function as

vk,j,n =
(
vk,jδn1, vk,jδn2, vk,jδn3

)
, vk,j ∈ Ppk

(Ik), vk,j

(
N j′

k

)
= δjj′ , (47)

k ∈ J , j, j′ = 1, . . . , dofk, n = 1, 2, 3,

where N j
k ∈ L(k), j = 1, . . . , dofk are Lagrange nodes of element Ik and the symbol

δjj′ stands for the Kronecker delta.
To model a medium with weak heterogeneity located at the interface, the scaled

phase velocity c(x), viewed in Fig. 2, is defined as

c(x) =

{
1
2 (cM − 1) sin

(
2π
dM

(x− xM ) + π
2

)
+ 1

2 (cM + 1), x ∈ IM ,

1, x ∈ I\IM
(48)

where the peak value cM is a scaled phase velocity at the node xM . Note that c(x)
is continuously differentiable and its derivative c′(x) has support in interface IM .
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Fig. 2 The graph of phase velocity c(x) for parameters cM =
√
2, dM = 0.4, xM =

= 2.0.

Simply, it can be said about function c(x) given by (48) with cM =
√
2 that

it represents the medium, wherein the ratio of Youngs’ moduli between interface-
neuron is equal to 2:1 at the same density or vice versa the ratio of densities between
interface-neuron is equal to 1:2 at the same Young’s modulus, respectively.

168



Hozman J. et al.: Neural tissue response to impact – numerical study

Further, to ensure sufficiently high resolution of the observed phenomena such
as the wave reflection and transmission, a suitable choice of the mesh and time
step has to be specified. The spatial step h has to be chosen appropriately to the
wavelength and also the length of the time step τl does not destroy the stability of
the proposed numerical scheme. Therefore, we introduce the CFL-number

CFL = max
l

(τl) · λmax
P ·max

k∈J

(
1

hk

)
, (49)

where λmax
P is the maximal eigenvalue of matrix P defined in (31). For explicit

schemes, the stability condition reads as CFL ≤ 1, which can be rewritten in the
condition

max
l

(τl) ·max(1, cM ) ≤ min
k∈J

(hk), (50)

whereas the stability of the implicit scheme is guaranteed for CFL≫ 1 as well.
In all forthcoming numerical experiments, we set equidistant space-time dis-

cretization with steps h = 0.005 and τ = 0.001, which in fact corresponds to the
stability condition of explicit schemes up to a maximal heterogeneity rate cM = 5.0
in (48). The width of the interface is dM = 0.4 and its position is given by the
center xM = 2.0, see Fig. 2. For simplicity, we also consider a uniform polynomial
approximation with the aid of piecewise linear, quadratic and cubic functions. The
resulting linear algebraic problem (42) should be numerically solved at each time
level tl ∈ [0, T ]. It is possible to use a direct solver which is more efficient for not
too large number of degrees of freedom. For larger systems, it is suitable to use
some iterative solvers. We employ the restarted GMRES solver. The restart was
carried out after 50 iterations. The iterative process was stopped when the discrete
l2-norm of the residuum was smaller than 10−5. The numerical computations indi-
cate that this choice is sufficient, i.e., smaller value of the tolerance does not cause
any increase of accuracy and stability of the method.

Finally, let us mention that all data used in the presented experiments are
merely illustrative and can not be used for any clinical conclusions.

3.2 Traveling wave in homogeneous medium

The first example is devoted to the verification of the presented numerical scheme
on the single traveling wave in homogeneous medium, i.e. we set cM = 1 in (48).
Let us consider the analytical single harmonic wave solution of (11) expressed as

u(x, t) =
1

2

(
1− cos (2π(x− t))

)
· χ[−1+t,t] (51)

where χ[−1+t,t] denotes the characteristic function of the support interval [−1+t, t].
This exact solution represents a single wave of unit wavelength and amplitude,
traveling with the unit scaled velocity in positive x-direction and located initially at
the point xT = − 1

2 . The initial conditions are extracted from the exact solution (51)
and homogeneous Dirichlet boundary conditions correspond with non-reflective
approach introduced in (13).

Fig. 3 captures the development of approximate solutions obtained by the nu-
merical scheme (38) with piecewise linear approximation from the initial condition
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to the different time instants in comparison with the exact ones given by (51). We
see that the plotted approximation and the exact solutions are quite comparable,
i.e. the approximate solution preserves its shape and support.
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Fig. 3 Single traveling wave: Comparison of approximate (+) and exact (−−)
solutions of the single solitary wave (left) and corresponding isolines in the space-

time domain (right).

In order to illustrate the accuracy and resolution capabilities of the proposed
numerical scheme, we append Tab. I monitoring the energy invariant given by (7)
together with a wave amplitude. Both quantities are kept almost constant during
the computation and correspond to the analytical values.

method time t amplitude energy E(t)

present 0.0 1.0000 4.933991
method 2.0 1.0016 4.933104

4.0 1.0032 4.932248
6.0 1.0047 4.931405
8.0 1.0063 4.930610

analytical val. (c = 1.0) – 1.0 4.9348022

Tab. I Single traveling wave: Computed invariant energy and amplitude.
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3.3 Gauss pulse in weakly heterogeneous medium

In the second example, we investigate the behaviour of the wave propagation
through weakly heterogeneous medium with peak value cM =

√
2 (see Fig. 2)

after the initial impact with certain intensity and locality. Therefore, the govern-
ing equation (11) is solved under the initial zero amplitude and the initial excitation
of velocity by Gauss pulse, i.e.

u(x, 0) = 0, x ∈ I, (52)

∂u

∂t
(x, 0) = iG exp(−sG(x− xG)

2), x ∈ I, (53)

where the parameter iG > 0 stands for the intensity of impact, xG represents the
center of pulse and sG > 0 determine its locality. For numerical experiments, it
was chosen iG = 1.0, xG = 0.0 and sG = 10, see Fig. 4 (top left). The run of the
algorithm is carried up to the time T = 7.0 with piecewise cubic approximation.

The set of snapshots in Fig. 4 shows the development of the approximate so-
lutions (amplitude, velocity and strain), from the zero state into two opposite
traveling waves with amplitude, which is given by the initial Gauss pulse and it is
proportional to the value of the peak of this pulse and the length of its support.
During the whole simulation one can easily observe the non-reflecting behaviour of
traveling waves at both the endpoints of the domain and also the transmission and
reflection of a wave through the interface. The exact behavior of the reflection and
transmission waves depends on the phase velocity properties on both sides of the
interface.

The first transition is located at M− = 1.8, where the waves cross from the low
speed region to the high speed one and they are partially transmitted with higher
magnitude and partially reflected with unchanged polarities. On the contrary, the
second transition located at M+ = 2.2 corresponds to the crossing from the high
speed region to the low speed one, where propagated waves are reflected with the
opposite polarity and partially transmitted with lower magnitude and no phase
change. This wave phenomenon is most evident in temporal velocity of the wave
(see the 2nd graphs in Fig. 4).

Furthermore, it is a well-known fact that the solution of the wave equation
excited by a Gauss pulse contains all the possible frequencies of corresponding
normal modes, because the general solution of the linear wave equation can be
written as a superposition of complex-valued plane waves in the following form

u(x, t) =

∞∑
k=1

Akuk(x, t), uk(x, t) = eiϕ0eikπ(x−ct), (54)

where the positive constant Ak is an amplitude of the mode function uk, ϕ0 ∈ [0, 2π)
is the initial phase, and quantity kπ is called a wave number and ω = ckπ an angular
frequency, respectively. Note that k

2 is the number of waves per unit length, i.e.
a spatial frequency, while ω

2 is the number of waves per unit time, i.e. a temporal
frequency. From this point of view, it is interesting to solve the same numerical
experiment with respect to the excitation frequencies, which correspond to the
wavelength proportionally to the width of interface, i.e. a high-frequency regime.
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Fig. 4 Gauss pulse: Development of dimensionless approximate solutions, u –
amplitude of wave (1st graph), ut – velocity of wave (2nd graph), ux – strain (3rd

graph).
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3.4 Analysis of high-frequency regime

The last example analyses the influence of the excitation frequency in the initial
velocity (i.e. the initial hit) on the significant (extremal) values of the strain for the
fixed prescribed energy supplied to the system by the initial impact. We consider
formally the same experiment setting as in the previous example of Gauss pulse,
but for the several initial velocities given by

∂u

∂t
(x, 0) =

{
Ak +Ak cos(kπ · x), − 1

k ≤ x ≤ 1
k ,

0, otherwise
, (55)

where Ak is the amplitude corresponding to the wave number kπ. Since the initial
impact is located in the region with homogeneous medium (i.e. interior of a neuron),
the value of the phase velocity c(x) ≡ 1. Moreover, the following relation for wave
number kπ = 2πf/c enables us to rewrite the initial condition (55) with respect to
the temporal frequency f as

∂u

∂t
(x, 0) =

{
Af +Af cos(2πf · x), − 1

2f ≤ x ≤ 1
2f ,

0, otherwise
, (56)

where Af is the amplitude corresponding to the frequency f . The amplitude Af is
chosen in order to guarantee the same energy of the initial wave for all considered
frequencies. From (7) and (56) we obtain for the initial energy the relation

E(0) =
1

2

∫ ∞

−∞

(
∂u

∂t
(x, 0)

)2

dx =
A2

f

2

∫ 1
2f

− 1
2f

(
1+1 cos(2πf ·x)

)2
dx := Ef (0). (57)

Therefore, we choose the amplitude Af as a multiple of 1/
√
Ef (0) to obtain the

corresponding square multiples of unit initial energy of the wave. We carried out
the computations with the presented numerical scheme (38) with the piecewise
cubic approximation over the time domain [0, 8] for several initial frequencies and
energies. A similar development of the approximate solutions such as amplitude,
velocity and strain is observed as in Section 3.3.

Tab. II records the obtained results and illustrates the dependency between
the strain and the initial excitation frequency and energy, respectively. Due to the
character of the propagated wave, the significant values of strain are proportionally
measured only by the maximal value of quantity (−cϵ)+ over all the time levels
tl, i.e. the minimal value of (−cϵ)− does not play an important role in crossing
the interface as illustrated in Fig. 4 (3rd graph). Let us note that the quantity cϵ
reflects the character of the propagated wave more closely, because it also takes the
properties of the medium into account. Fig. 5 depicts the development of (−cϵ)+
at each time level with the maximal value highlighted, which corresponds with the
results from Tab. II.

One can easily observe from Tab. II that the higher values of maxtl(−cϵ)+ (i.e.
extremal values of strain ϵ) are proportional to the increasing initial frequency f
as well as to the increasing initial energy Ef (0) of the impact. Since we consider
the stress σ = σ(ϵ) as a linear function of strain ϵ, we are easily able to determine
the so-called critical initial excitation frequency for fixed wave energy for each
prescribed stress, for which the wave causes the significant strain resulting in an
irreversible change in the medium, i.e. the corruption of neural tissue.
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f = 1.0 f = 2.0 f = 3.0 f = 4.0 f = 5.0

Ef = 1.0 maxtl(−cϵ)+ 1.5501 2.0680 2.4545 2.7829 3.0721
Ef = 2.0 maxtl(−cϵ)+ 2.1922 2.9246 3.4712 3.9356 4.3447
Ef = 3.0 maxtl(−cϵ)+ 2.6848 3.5819 4.2513 4.8200 5.3211
Ef = 4.0 maxtl(−cϵ)+ 3.1002 4.1360 4.9090 5.5657 6.1443

Tab. II Strain-frequency dependency for fixed initial energy
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Fig. 5 High-frequency regime: Development of quantity (−c(x)ϵ)+ during the whole
simulation for the unit initial energy and frequency (Ef (0) = 1.0 and f = 1.0).

4. Results and discussion

This paper aims to provide to the readers a deeper insight into the one of the
possible computational models to deal with neural tissue injuries caused by prop-
agating mechanical shock wave at the level of neural cells. The numerical models
of these systems usually describe the tissue as a fixed set of interconnected neural
cells comprised of a large amount of units with similar properties, which in fact
represent the homogeneous neural medium. In contrast, our study is focused only
on one neuron-neuron interface modeled by the sufficiently smooth phase velocity
function supplying to the medium a certain rate of inhomogeneity. From the recent
reviews devoted to the inhomogeneous neural network let us mention, e.g. [6], [7]
and [24].

The introduced numerical model also has its limitations consisting in the sim-
plification of the structure of tissue as a linear elastic medium, and in uncertain
material data; namely the precise determination of Young’s modulus of neuron or
the compact neural tissue still remains an open problem.

On the other hand, the presented numerical experiments (Sections 3.3 and 3.4)
have shown even a weak heterogeneity can dramatically influence the wave prop-
agation in an excitable neural medium. We showed that for several amplitudes
and wavelengths the main effect of the inhomogeneity located at the interface of
two neurons is to reflect and transfer the original excited pulse with new changed
characteristics. Moreover, if we assume sufficiently accurate input data, we shall
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be able to compute stresses, which indicate the possible damage of the neural tis-
sue, and even determine the critical frequencies inducing irreversible changes in the
neural tissue.

These results give us quite good a starting point to relate the results from
our model to real experiments, which would be of interest in the further study
together with important extension of our current work to the two-dimensional
waves. Another extension of our model can also be carried out in the sense of
nonlinear medium, which is obviously more realistic from the viewpoint of neural
tissue modeling.

5. Conclusion

The original problem is to describe the mechanism of a viscous injury by the pres-
sure wave at the histological level, i.e. to find answers to what is happening with
each structural component of a neuron, especially with axons and their synapses,
when the wave excited by an impactive force propagates in the continuum. The
above considered problem is modeled by using a simplified approach for a longitudi-
nal one-dimensional mechanical wave propagation in linear elastic inhomogeneous
media having two segments with different mechanical properties. From the math-
ematical point of view the linear hyperbolic wave equation of the second order
describing the simplified model problem is transformed into the conservation form
as a first-order system and the concept of non-reflective boundary conditions is
employed. The referred special choice of transformation of variables allows us to
easily compute the values of strain as one component of the state vector.

The subsequent numerical study arises from the discretization of the equa-
tion with the aid of a combination of the discontinuous Galerkin method for the
space semi-discretization and the Crank-Nicolson scheme for the time discretiza-
tion. The set of numerical examples produces satisfactory results and illustrates
the potency of the proposed numerical scheme from traveling waves in homoge-
neous medium over simply excited Gauss pulses in weakly heterogeneous medium
to high frequency analysis with respect to the strain-frequency dependency.

For the future work, we intend to extend the introduced model to two-dimen-
sional case with nonlinear medium and the comparison with experimental results
will be also perspective.
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