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Abstract: Brace diaphragm walls are commonly used in underground structures
in metropolitan areas, where avoiding costly damage to adjacent infrastructure /
buildings is critical to project success. It is necessary to make accurate diaphragm
wall deflection predictions to ensure actual deflection falls within allowable limits,
and thus ensure the safety of both the project and adjacent structures. Numer-
ous studies and approaches, such as empirical, semi-empirical as well as numerical
approaches, have addressed excavation-induced deflection in diaphragm walls. Ar-
tificial intelligence (AI) has been used recently by several researchers to improve
diaphragm wall deflection prediction capabilities. This paper proposes a hybrid ar-
tificial intelligence system, namely the evolutionary fuzzy support vector machine
inference model for time series data (EFSIMT ), to predict diaphragm wall deflection
in deep excavation through the application of historical project data. Simulations
were performed on 1,083 instances, segregated into a total of 988 training data sets
and 95 test data sets. Validation results show that the EFSIMT achieves higher
performance in comparison with Artificial Neural Networks and the Evolutionary
Support Vector Machine Inference Model (ESIM). Therefore, EFSIMT has great
potential as a predictive tool for diaphragm wall deflection problems and assisting
project managers/engineers to ensure safety during the construction process.
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1. Introduction

Brace diaphragm walls are underground structures commonly used in dense ur-
ban areas with existing infrastructure / buildings. Brace diaphragm technology is
employed primarily in retaining structures designed to support deep excavations
and protect adjacent structures and buildings by minimizing ground deformation.
In order to prevent costly damage, builders try to avoid excessive diaphragm wall
deflection and excavation-induced ground settlement. It is necessary to make accu-
rate diaphragm wall deflection predictions to ensure actual deflection falls within
allowable limits, and this ensure the safety of both the project and adjacent struc-
tures.

Many studies on diaphragm wall deflection prediction have been conducted,
adopting empirical, semi-empirical as well as numerical approaches [1-4]. While nu-
merical models (e.g., the finite element method [FEM]) have been most commonly
employed, their predictions can differ significantly from actual field measurements
and case histories [5]. Moreover [5] reported that adjusting the properties of certain
models could enhance predictive accuracy. However, the proposed approach was
not systematic and most often could not be applied to similar problems. Further-
more, [6,7] found that FEM analysis depends heavily on the constitutive behavior of
soil, soil parameters generally obtained from laboratory tests, which are inadequate
to represent actual soil conditions and diverse construction effects.

As empirical and numerical approaches have inherent drawbacks, several re-
searchers tried to seek more reliable alternatives. Recently, there has been growing
interest in using artificial neural networks (ANNs) as an artificial intelligence (AI)
technique due to their excellent performance modeling nonlinear relationships and
the dependent relationships shown between variables. Goh et al. [8] demonstrated
that ANNs are able to synthesize data derived from FEM on braced excavations
in order to capture nonlinear relationships between variables and predict wall dis-
placement to a reasonable level of accuracy. Jan et al. [6] employed ANNs to
predict diaphragm wall deflection in 18 historical cases from Taipei, each of which
covered between four and seven excavation stages and contained seven distinct in-
put variables. Moreover, Chua and Goh [9] fused ANNs, a Bayesian framework and
genetic algorithm (GA) to form evolutionary Bayesian back-propagation (EBBP)
as an expanded approach proposed in [8]. This hybrid approach was taken in order
to handle “overfitting” problems inherent in ANNs as data and input variables
numbers increased and contained “noise”.

Beside thes “overfitting” problem ANNs present several additional drawbacks
[10, 11], therefore numerous studies have been conducted to overcome such draw-
backs. For example, the Structural Genetic Trained Neural Network (SGTNN)
proposed in [10], combines ANNs and GA. Moreover, continued development of
new AI techniques has expanded research into their adaptation and utilization to
solve geotechnical engineering problems. This paper focuses on predicting deep
excavation diaphragm wall deflection using the Evolutionary Fuzzy Support Vec-
tor Machine Inference Model for Time Series Data (EFSIMT ), a fusion of Fuzzy
Logic (FL), weighted Support Vector Machines (weighted SVMs) and a fast messy
genetic algorithm (FMGA). In EFSIMT , FL handles vagueness and uncertainty.
Moreover, FL is also used as a fuzzy inference mechanism. Weighted SVMs in the
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EFSIMThandle fuzzy input-output mapping and focus on time series data charac-
teristics inherent to the diaphragm wall deflection database and FMGA is deployed
as an optimization tool to handle FL and weighted SVMs search parameters. This
study applied diaphragm wall data compiled previously from 18 historical deep ex-
cavation project cases located in metropolitan Taipei with the intent of obtaining
a level of prediction result accuracy higher than both [6], which employed only
ANNs, and [12], which applied ESIM. Therefore, the performance of the proposed
system was compared with [6] and [12] results.

2. Overview of Fuzzy Logic, Weighted Support
Vector Machines and Fast Messy Genetic
Algorithm

2.1 Fuzzy Logic

Fuzzy Logic (FL) a popular AI technique invented by Zadeh in the 1960s, has been
used in forecasting, decision making and action control in environments character-
ized by uncertainty, vagueness, presumptions and subjectivity [13]. FL simulates
the human decision-making process by employing approximate reasoning logic [14].
Heshmaty and Kandel [15] expressed that FL provides a more realistic approach
than that used by traditional mathematical models to address phenomena in nature
characterized by vagueness and uncertainty.

FL consists of a set of rules that relates a set of inputs to a set of outputs.
Quantitative relationships are established through a membership function (MFs)
between actual variable values and the qualitative and linguistic variables used in
‘if-then’ rules. Therefore, linguistic variables described by MFs and fuzzy if-then
rules play an essential role in fuzzy logic applications [16].

FL consists of four major components: fuzzification, rule base, inference engine
and defuzzification. Fuzzification is a process that uses MFs to convert the value of
input variables into corresponding linguistic variables. The result, which is used by
the inference engine, stimulates the human decision-making process based on fuzzy
implications and available rules. In the final step, the fuzzy set, as the output of
the inference process, is converted into crisp output. This process, which reverses
fuzzification, is called defuzzification [17].

Despite the advantages of FL, the approach presents a number of problems;
including identifying appropriate MFs and number of rules for application. This
process is subjective in nature and reflects the context in which a problem is viewed.
Ko [18] found that the more complex the problem, the more difficult the construc-
tion of MFs and the fuzzy rules. Such shortcomings are seen by some researchers
as optimization problems, as determining MFs configurations and fuzzy rules is
complicated and problem oriented. To overcome remaining difficulties, some re-
searchers have tried to fuse FL with AI optimization techniques such as simple
genetic algorithms (SGAs) and ant colony [19, 20]. These optimization methods
have demonstrated their ability to minimize time-consuming operations and the
level of human intervention necessary to optimize MFs and fuzzy rules.
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2.2 Weighted Support Vector Machines

Weighted Support Vector Machines are also known as Fuzzy Support Vector Ma-
chines (FSVMs); a name proposed in [21] as weight is effectively the fuzzy mem-
bership addressed for each training point. In this paper, to avoid confusion with
the FL technique, the term “WSVMs” is used. FSVMs were developed in [22] to
enhance support vector machines (SVMs) abilities to reduce the effect of outliers
and noise in data points. While SVMs theory has been demonstrated to be very
powerful in solving classification problems [23], it has certain drawbacks. For ex-
ample, SVMs treat all training points of a given class uniformly, however in many
real world applications, not all training data points are equally important for clas-
sification purposes. To solve this problem, [22] applied a fuzzy member to each
input point in SVMs, thus allowing different input points to contribute differently
to the learning decision surface. In such time series prediction problems, the older
training points are associated with lower weights so that the effect of older training
points can be reduced when the regression function is optimized.

Given a set S of labeled training data points associated with weights

(y1, x1, s1), . . . , (ym, xm, sm) (1)

where xi ∈ Rn is the input vector, yi ∈ R is the desired value and σ ≤ si ≤ 1 is a
weight for (xi, yi)(i = 1, . . . ,m) and a sufficiently small σ > 0 represents the lower
bound of weighted data. The WSVMs for regression solves and optimizes:

min
1

2
w.w + C

l∑
i=1

si(ξi + ξi∗) (2)

subject to

 yi − (w.φ(xi) + b) ≤ ε+ ξi,
(w.φ(xi) + b)− yi ≤ ε+ ξi∗,
ξi, ξi∗ ≤ 0

where C is a constant and φ(x) is the high dimensional feature space, which is
non-linearly mapped from input space x. ξi and ξi∗ represent upper and lower
training errors, respectively. It should be noted that a smaller si reduces the effect
of the parameter ξi in Eq. (2), so that the corresponding point φ(xi) is treated as
less important.

The above optimization problem can be transformed into

maxW (α) = −1

2

l∑
i,j=1

(αi − αi∗)(αj − αj∗)K(xi, xj)− ε

l∑
i=1

(αi + αi∗) +

+
l∑

i=1

yi(αi − αi∗) (3)

subject to
l∑

i=1

yiαi = 0, 0 ≤ αi ≤ siC, i = 1, . . . , l

and the Kuhn-Tucker condition is defined as

αi(ε+ ξi − yi + w.xi + b) = 0, i = 1, . . . , l, (4)
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α∗
i (ε+ ξ∗i + yi − w.xi − b) = 0, i = 1, . . . , l, (5)

(siC − αi)ξi = 0, i = 1, . . . , l, (6)

(siC − α∗
i )ξ

∗
i = 0, i = 1, . . . , l (7)

Point xi with the corresponding α∗
i > 0 is a support vector. The other type of

support vector, with corresponding 0 ≤ αi
(∗) ≤ siC, lies on the ε-insensitive tube

around the decision function. The one with corresponding α∗
i = siC is outside the

tube. An important difference between SVMs and WSVMs is that the points with
the same value of αi

(∗) may indicate a different type of support vector in WSVMs
due to the factor si [24].

K(xi, xj) in Eq. (3) is defined as the kernel function. The value of the kernel is
equal to the inner product of two vectors Xi and Xj in the feature space φ(xi) and
φ(xj), that is, K(xi, xj) = φ(xi) ∗ φ(xj). The chosen kernel function must fulfill
Mercer’s condition, which determines whether a prospective kernel is actually an
inner product in some space and guarantees that unique global optimal solutions
are achieved [23]. Several admissible kernel functions used today include the poly-
nomial kernel, radial basis function (RBF) and sigmoid kernel. However, the RBF
kernel has been recommended for general users as a first choice due to its ability
to analyze higher-dimension data, the use of only one hyperparameter to search,
and fewer numerical difficulties [25].

In sequential learning and inference methods such as time series problems, where
a point from the recent past may be given greater weight than a point from further
in the past, function of time ti can be selected as the weighted SVMs si scheme.

si = f(ti) (8)

with this scheme assuming the last point xm as the most important and sm =
f(tm) = 1 and the first point x1 as the least important, and choosing s1 = f(t1) = σ
[21]. Lin and Wang [21] proposed two time functions, linear and quadratic, as
shown in equations (9) and (10). Both have been used in [26] on financial time
series forecasting problems, whose authors demonstrated their ability to deliver
better results than SVMs.

si = fl(ti) = ati + b =
1− σ

tm − t1
ti +

tmσ − t1
tm − t1

(9)

si = fq(ti) = a(ti − b)2 + c = (1− σ)

(
ti − t1
tm − t1

)2

+ σ (10)

Like SVM, using WSVMs presents the user with the problem of how to set optimal
parameters, as parameter selection affects WSVMs prediction accuracy. The three
parameters that must be optimized when using RBF kernels include the penalty
parameter (C), kernel parameter (γ) and lower bound of weighting data parameter
(σ). To overcome this drawback, an optimization technique (e.g., FMGA) may be
used to identify best parameters simultaneously [12].
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2.3 Fast Messy Genetic Algorithm

Fast messy genetic algorithms are a recently developed machine learning and opti-
mization tool based on a genetic algorithm approach that can efficiently find opti-
mal solutions for large-scale permutation problems. The latter differ from SGAs,
which describe possible solutions using fixed length strings. FMGA applies messy
chromosomes to form strings of various lengths [27].

The fast messy genetic algorithm was developed in [28] in 1993 as an improve-
ment on the messy genetic algorithm (MGAs). MGAs were initially developed to
overcome the SGAs linkage problem, which resulted from a parameter coding prob-
lem that could generate suboptimal solutions [29]. However, MGAs faced a problem
as well. Goldberg et al. [28] proposed three modifications in order to reduce the
size of the initial population as well as the MGAs execution time initialization and
primordial phase. Those modifications utilize probabilistically complete initializa-
tion (PCI) instead of partially enumerative initialization (PEI), use building block
filtering, and take a more conservative approach to thresholding in tournament
selection.

The FMGA contains two loop types, namely the inner and outer. The pro-
cess starts with the outer loop. Firstly, a competitive template, represented by a
problem-specific, fixed-bit string, is generated randomly or found during the search
process. Each outer loop cycle is one “era”, which iterates over the order k of pro-
cessed building blocks (BBs). A building block is a set of genes, a subset of strings
that are short, low-order and high-performance.

With the start of each new era, the three phase operations of the inner loop,
including the initialization phase, the building block filtering (BBF) or primordial
phase, and the juxtapositional phase, are invoked. In the initialization phase, an
adequately large population contains all possible BBs of order k. FMGA performs
the PCI process at this stage, which randomly generates n chromosomes and calcu-
lates their fitness values. There are two operations in the primordial phase, namely
building-block filtering and threshold selection. In the primordial phase, ‘bad’
genes that do not belong to BBs are filtered out, so that, in the end, the resultant
population encloses a high proportion of ‘good’ genes belonging to BBs. In the
juxtaposition phase, operations are more similar to those of SGAs. The selection
procedure for good genes (BBs) is used together with a cut-and-splice operator to
form a high quality generation, which may contain the optimal solution.

Once the inner loop is finished, the next outer loop begins. The competi-
tive template is replaced by the best solution found so far, which becomes the
new competitive template for the next era. The whole process is repeated until
the maximum number era (kmax) is reached. The FMGA can also perform over
“epochs”. This term is used to describe a complete process that starts from a first
era and continues until kmax. The best solution found in one complete process
is passed to succeeding epochs though the competitive template. Epochs can be
performed as many times as desired. The algorithm is terminated once a sufficient
solution is obtained or no further improvement is made.
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3. Evolutionary Fuzzy Support Vector Machine
Inference Model for Time Series Data for
Predicting Diaphragm Wall Deflection

3.1 The Proposed Model

The proposed EFSIMT is an alternative approach to retaining and utilizing expe-
riential knowledge that fused three different AI techniques namely FL, WSVMs
and FMGA [30]. FL deals with vagueness and approximate reasoning; WSVMs
act as a supervised learning tool to handle fuzzy input-output mapping and focus
on time series data characteristics; and FMGA works simultaneously for the fittest
MFs, the defuzzification parameter (dfp) as FL parameters, and the SVM hyper-
parameter (here in C and γ), the lower bound of the weighted data parameter (σ)
as WSVMs parameters. Fig. 1 illustrates the EFSIMT architecture.

Fig. 1 EFSIMT architecture [30].

Below are the major steps of the proposed EFSIMT model:

1. Training Data. EFSIMT uses sequential data as training data. Sequential
data reflect identified attributes, and training data are normalized into a (0, 1)
range, which helps avoid attributes with greater numeric ranges dominating
those with smaller numeric ranges, and also helps avoid numerical difficulties
[25].

2. Data Weighting. Each training data point was weighted to the time function
using either a linear or quadratic function, as shown in Equation (9) and
(10). The last data point xm as the recent data, treated as most important,
and such, has a weighting value sm of 1. The first data point x1 as the most
distant past, treated as the least important assigned a weighting valuesm
equal to σ. In this step, the lower bound of weighted data parameters (σ)
are generated randomly in the range of 0.1 – 1 and encoded by FMGA.
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3. Fuzzification. This process converts each normalized input variable value
from the first step into corresponding membership grades. The MFs are used
to map normalized input variables to corresponding membership grades. The
model used trapezoidal MFs and triangular MFs shapes (see Fig. 2) that,
in general, can be developed by referencing summit points and widths [19,
31]. The summit and width representation method (SWRM) was applied
to encode complete MF sets (see Fig. 2 (c)) [32]. Each normalized input
pattern was converted to membership grades corresponding to the specific
MF set generated and encoded by FMGA.

Fig. 2 Membership function: (a) trapezoidal; (b) triangular; (c) complete MF set
[18].

4. Weighted SVM Training Model. The fuzzification process output, in the
form of membership grades, is a fuzzy input for WSVMs. WSVMs train this
dataset to obtain the prediction model. WSVMs use penalty (C) and kernel
parameters (γ), which are generated randomly and encoded by FMGA. This
study used the RBF kernel as a reasonable first choice [25]. In this research,
the range value search by FMGA for C and γg is followed [12]. Moreover, to
train the dataset, LIBSVM developed in [33] was embedded into the EFSIMT

model. LIBSVM is currently one of the most widely used Support Vector
Machine software. LIBSVM is also able to process a weight to each data
instance.

5. Defuzzification. Once WSVMs have finished the training process, output
numbers are expressed in terms of the fuzzy set, and must beconverted into
a single real number. Employing FMGA, the EFSIMT generates a random
defuzzification parameter (dfp) substring and encodes it to convert WSVMs
output. This evolutionary approach is simple and straightforward, as it uses
dfp as a common denominator for WSVMs output.

6. FMGA Parameter Search. The FMGA is utilized to search simultaneously for
the fittest shapes of MFs, dfp, penalty parameter C, RBF kernel parameter
γ and the lower boundary of weighted data parameter σ. FMGA works
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based on the concept of genetic operations. Thus, chromosome design plays a
central role in achieving objectives. The chromosome representing a possible
solution for searched parameters consists of five parts: the MF substring,
dfp substring, penalty parameter substring, kernel parameter substring and
lower bound of weighting data substring. Each substring has a specific length
that should fit within certain requirements corresponding to the searched
parameter, including the length of decimal point string and upper and lower
parameter bounds.

The chromosome, as the model variable in EFSIMT , is encoded into a binary string.
The chromosome consists of two segments, including FL and WSVMs. The FL
segment contains MF and dfp substrings. The WSVM segment contains penalty
parameters C, kernel parameter γ from the RBF function and the lower boundary
of weighted data parameter σ. Fig. 3 illustrates the chromosome structure.

Fig. 3 EFSIMT chromosome structure [30].

The search domains of every parameter are large, and it would be time-consuming
and inefficient to conduct a comprehensive search. This research study adopts a
search domain suggested by previous studies and systematically explores model pa-
rameters within reasonable range. The search domain for MFs is adopted from [18].
The search domains for C and γ are adopted from [12]. The search domain of σ are
followed [22] suggestion, while dfp search domains determine by systematically ex-
ploring the parameters using several experiments within 0 to 1. Tab. I summarizes
parameter settings and numbers of bits required for chromosome design.
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Upper Lower Number
Parameter bound bound of Remarks

(Ub) (Lb) bits

MF set Xub = 0.0 X lb = 1.0 27∗) Ub and Lb followed [18]
C 200 0 5

Ub and Lb followed [12]
γ 1 0.0001 10
σ 1 0.1 10 Ub and Lb followed [22]
dfp 1 0.5 9 Ub and Lb determined by

systematically exploring
the range of parameters

within 0 to1

Note: ∗) Number of bits required for one complete MF set

Tab. I Summary of EFSIMT parameter settings.

3.2 Knowledge Representation of Diaphragm Wall
Deflection Problem

The EFSIMT proposed herein solved this problem using information and measure-
ments from 18 historical deep excavation project cases located in metropolitan
Taipei. Factors affecting this problem were referred to in a study by [6]. Similar to
the latter [6] approach, the EFSIMT model is applied with the notion of making an
accurate prediction of the succeeding stage that can be derived from the informa-
tion of two or more previous stages as input. Therefore, diaphragm wall deflection
data from prior stages are important inputs to help predict the values of deflection
variables in succeeding stages of an excavation project [12].

In total, eight important factors were identified in [6], of which seven were
selected as input parameters and one as the output parameter. All of the factors
related to the diaphragm wall structure system are illustrated in Fig. 4.

In Fig. 4, H represents final excavation depth. According to [6], embedment
depth is typically set to 0.8H, therefore the total diaphragm wall length measured
1.8H. W represents diaphragm wall thickness and Ri represents the observation
point factor for each of the 18 segments. This segmented approach made diaphragm
wall deflection prediction a time series data problem, and gave EFSIMT the po-
tential to solve such. If, as in certain cases, embedment depth is less than 0.8H,
deflection between the bottom of diaphragm wall and the 19th observation point is
assigned as linear and converges to zero. Each observation point can be regarded
as an instance that consists of seven inputs and one output, illustrated as follows:

Inputs:

1. Diaphragm wall thickness: W

2. Depth of excavation surface: D

3. Equivalent SPT-N value between D+0.25H and D-0.25H : N

4. The factor of an observation point: R
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5. Wall deflection of the observation point in (i-1)-th stage: Si−1

6. Wall deflection of the observation point in (i-2)-th stage: Si−2

7. Wall deflection of the observation point in (i-3)-th stage: Si−3

Output:

1. The wall deflection of the observation point in i-th stage: Si

Notably, i must be greater than or equal to three. This setting prevents the absence
of fifth to seventh inputs. Therefore, when i = 3 the Si−3 is set to zero.

Tab. II shows data from 18 historical deep excavation project cases that include
the number of excavation stages, excavation depth and construction method used.
Among the 18 historical deep excavation project cases, 3 cases were performed by
the bottom-up method and 15 cases performed by the top-down method. Bottom-
up methods and top-down methods are two main basement construction methods
[34]. In the bottom-up method, after the construction of basement piles and the
diaphragm wall, the construction agency excavates the enclosed area to the desired
depth and then proceeds for installation of the strutting/ bracing system to sup-
port the excavation walls as the excavation proceeds, followed by construction of

Fig. 4 Representation of the diaphragm wall structure system [12].
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No. Stages Depth Construction No. Stages Depth Construction
(m) method (m) method

1 5 12.30 Top-down 10 6 14.05 Top-down
2 4 13.90 Bottom-up 11 4 13.60 Top-down
3 6 16.00 Top-down 12 5 17.35 Bottom-up
4 5 12.60 Top-down 13 5 13.15 Top-down
5 5 12.30 Top-down 14 5 23.85 Top-down
6 5 12.25 Top-down 15 6 19.40 Top-down
7 4 10.00 Top-down 16 6 19.40 Top-down
8 6 18.95 Top-down 17 5 13.70 Top-down
9 4 9.30 Top-down 18 7 19.70 Bottom-up

Tab. II 18 Historical cases of deep excavation projects in metropolitan Taipei
[12].

the basement [35]. As bottom-up methods employ temporary steel struts to bal-
ance the lateral pressure on the excavation, the top-down methods apply concrete
floor slabs to resist the lateral earth pressure. Therefore, the top-down method is
a construction method that builds the permanent structure members of the base-
ment along with the excavation from the top to the bottom. Moreover, as the
name implies, the top-down method allowed for simultaneous construction of the
basement and superstructure erection.

In these 18 historical deep excavation project cases, the number of deep exca-
vation stages varied from four to seven. As each stage was treated individually,
these cases comprised 93 stages in total. Referencing observation [6] that engineer-
ing failures rarely occur during the first and second excavation stages, this study
excludes these two stages from consideration. Therefore, similar to [6] and [12],
valid data on a total of 57 stages were collected and used here.

Following the [6] and [12] data setting, the first seventeen construction cases
(encompassing a total of 52 stages) were used for training. Data from the 18th
case (5 stages) were employed in testing. Nineteen observation points were set for
every stage, although excavation depths were not uniform. Therefore, 19 sets of
data were collected for each stage. Based on the above, 52×19 = 988 training data
sets and 5×19 = 95 testing data sets were collected. Tab. III shows example data
of one complete excavation stage.

3.3 Results and Comparison

This section verifies and validates the performance of the hybrid system EFSIMT

in predicting diaphragm wall deflection problems. As mentioned before, the model
proposed herein predicts diaphragm wall deflection by adopting a database used by
[6] and [12]. The database includes a total of 1,083 instances from the 57 excavation
stages. Jan et al. [6] and Cheng and Wu [12] split the data into two groups, a total
of 988 instances in 52 excavation stages were classified as training data, while 95
instances in five excavation stages were classified as the testing data.
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Exca- Seg- Output Input Factors
vation ment Factor
Stage Deflection W D

R N
Si−1 Si−2 Si−3

(mm) (cm) (m) (mm) (mm) (mm)
5 1 13.000 70 13.700 0.000 7.930 13.200 15.050 17.400

2 17.680 70 13.700 0.056 7.930 18.150 16.090 15.420
3 20.690 70 13.700 0.112 7.930 20.430 17.120 13.340
4 24.320 70 13.700 0.168 7.930 22.970 17.540 12.440
5 28.110 70 13.700 0.224 7.930 25.720 17.900 11.920
6 31.960 70 13.700 0.280 7.930 27.520 17.900 11.350
7 35.940 70 13.700 0.336 7.930 29.440 17.800 10.010
8 40.780 70 13.700 0.392 7.930 31.460 17.010 8.670
9 44.340 70 13.700 0.448 7.930 32.650 16.180 7.630
10 47.050 70 13.700 0.504 7.930 30.990 14.920 6.720
11 46.170 70 13.700 0.560 7.930 27.920 13.660 5.850
12 43.160 70 13.700 0.616 7.930 24.770 12.350 5.190
13 38.160 70 13.700 0.672 7.930 20.980 10.980 4.440
14 32.180 70 13.700 0.728 7.930 17.200 9.550 3.210
15 26.880 70 13.700 0.784 7.930 14.010 7.680 2.860
16 21.890 70 13.700 0.840 7.930 10.900 5.800 1.820
17 17.680 70 13.700 0.896 7.930 8.540 4.810 1.550
18 13.850 70 13.700 0.952 7.930 6.260 3.870 1.370
19 10.680 70 13.700 1.008 7.930 4.590 3.400 1.270

Tab. III Example of data excavation stages.

EFSIMT employs FL to manage environments characterized by uncertainty,
vagueness, presumptions and subjectivity. This capability is suited to diaphragm
wall deflection database characteristics, as causes and effects of factors that deter-
mine the behavior of the modeled problems do not need to be fully understood
due to change of in situ environment and effects of construction [6]. Such con-
ditions make prediction of diaphragm wall deflection problems a highly uncertain
task. Moreover, EFSIMT is also able to deal with time series data characteris-
tics inherent to the diaphragm wall deflection database, as the information and
measurements are presented in 19 sequential diaphragm wall deflection data (each
diaphgram wall is discretized into 18 uniform subintervals).

The accuracy of the proposed system is demonstrated by comparing the max-
imum predicted wall displacement and the maximum measured wall displacement
for both time functions (linear and quadratic). Figs. 5a and 5b present comparison
results between measured and predicted maximum diaphragm wall displacement.
Fig. 5a presents prediction results using a linear time function. Fig. 5b presents
prediction results using a quadratic time function. Figs. 5a and 5b also show the
correlation coefficient between measured and predicted maximum diaphragm wall
displacement using two time functions (i.e., linear and quadratic) for training and
testing data.
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(a) (b)

Fig. 5 Measured vs. predicted maximum diaphragm wall deflection: (a) with linear
time function; (b) with quadratic time function.

As this research intends to compare the level of prediction result accuracy of the
approach work, which employed only ANNs [6], and the other approach, which ap-
plied ESIM [12], the error qualification criteria are adopted from both researchers.
The error qualification criteria are defined into three different ranges: less than 10%,
between 10% and 20% and greater than 20%. Results of EFSIMT obtained using
linear time function are 39 cases with relative error less than 10%, 14 cases with
relative error between 10% and 20%, and four cases with relative error greater than
20%, respectively. The EFSIMT results obtained using the quadratic time function
are 38 cases with relative error less than 10%, 16 cases with relative error between
10% and 20%, and three cases with relative error greater than 20%. Using a rel-
ative percentage error of 20% as the threshold for prediction failure [6], the linear
time function EFSIMT attained 92.98% accuracy and the quadratic time function
EFSIMT reached 94.74% accuracy, while the prediction results of ANNs and ESIM
only reached 77.19% and 78.95%, respectively.

Such results represent a significant improvement over results reported in [6],
which used NNs, and [12], which employed ESIM, as shown in Table IV. Improve-
ments reflect the superior abilities of EFSIMT to 1) cope with time series data
characteristics inherent to segmental diaphragm deflection data and 2) handle the
complex relationships between input and output variables and the many uncertain-
ties related to geological conditions. Moreover, results obtained using the quadratic
time function proved more desirable, as the level of accuracy is higher than using
the linear time function.

4. Discussion

Based on the results and comparison mentioned above, EFSIMT can provide better
estimation for providing estimates of lateral wall deflections or ground deforma-
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Number of cases
Relative error EFSIMT

(pct. range) Linear Quadratic
time time ESIM ANNs

function function
[0%, 10%] 39 38 32 28
[10%, 20%] 14 16 13 16
> 20% 4 3 12 13

Model accuracy ∗) 92.98% 94.74% 78.95% 77.19%
Note: *) Prediction failure threshold: relative error >20%.

Tab. IV Number of cases showing comparative accuracies of EFSIMT , ESIM and
ANNs.

tions not only for preliminary design purposes, but also to evaluate the construc-
tion performance to avoid the braced excavations system failure. The EFSIMT as
prediction model is not only able to capture the nonlinear relationship between
input and output factors, but to handle inherent time series data characteristics.
Such merits are beneficial as the deep excavation project has many stages. The
deflection parameters in previous stages are important inputs to help predict the
values of deflection variables in succeeding stages of an excavation project. There-
fore, the deflection observed in any given stage is highly correlated to deflection
parameters in previous stages. The data from previous stages can be employed
to predict deflection in the following stage with improved accuracy. Moreover,
EFSIMT developed by assuming the deep excavation data has inherent time se-
ries data characteristics which followed certain weighting patterns, whether they
involve linear or quadratic functions. In reality, it is possible that the patterns
might not match any function. Therefore, the EFSIMT performance can still be
improved to reach the better prediction if EFSIMT able to generate the weighting
pattern arbitrary. However, EFSIMT has great potential as a simple predictive
tool for estimating the maximum diaphragm wall deflection.

This research only used seven input factors based on study [6] that considered
only the behavior of diaphragm walls obtained from 18 construction projects in the
Taipei Basin. In their research work, [6] neither include the sub-soil conditions nor
as the support system data. The factors used are related to the diaphragm wall
structure system and information for two or more previous stages as the monitored
data. As inherent limitation of [6] historical data, logically the level of accuracy as
well as the level of confidence can be different when the prediction includes more
factors. Such approaches are used in [9] by expanding the research work conducted
in [8] who employed only ANNs and seven input factors. Chua and Goh [9], used
35 input factors in total, which include the support system properties as well as the
variation of soil properties with depth. However, as a large database is used in this
research work, to avoid the “overfitting” problem, [9] is modified the ANNs into the
evolutionary Bayesian back-propagation (EBBP) that combines ANNs with genetic
algorithms and the Bayesian framework. For that reason, the expanding research
work can be generated by including more input factors such as soil parameters
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and the safety factor. As the historical data used were taken exclusively from the
Taipei Basin, the expanding research work also needs to consider extending to the
other data sets taken from other areas that have different geological conditions as
well as the scale and method of construction.

5. Conclusion

In order to prevent costly damage, builders try to avoid excessive diaphragm wall
deflection and excavation-induced ground settlement. Therefore, it is necessary to
make accurate diaphragm wall deflection predictions to ensure actual deflection
falls within allowable limits, and this ensure the safety of both the project and
adjacent structures. This study proposed EFSIMT as an alternative hybrid AI
approach to predict diaphragm wall deflection using historical cases.

EFSIMT was developed by fusing together FL, weighted SVMs and FMGA. FL
was used to address uncertainties inherent in geotechnical problems (e.g., soil pa-
rameters); weighted SVMs addressed complex relationships related to fuzzy input-
output mapping and focused on segmented diaphragm wall deflection observations
that exhibit time series data characteristics; and FMGA was deployed as an opti-
mization tool to handle FL and weighted SVM search parameters.

The accuracy of the proposed EFSIMT was higher (for both linear and quadratic
functions) than either ANNs-only proposed in [6] or ESIM approaches proposed in
[12]. This is attributable to the superior ability of EFSIMT to cope with 1) time
series data characteristics inherent in diaphragm wall deflection data, 2) complex
relationships between input and output variables, and 3) uncertainties inherent in
diaphragm wall deflection problems. Unlike other approaches, whether empirical or
semi-empirical, EFSIMT as the hybrid artificial intelligence system is able to cap-
ture the nonlinear relationship between input and output factors and also handles
inherent time series data characteristics, without requiring to derive mathematical
models in the form of some analytical nonlinear functions. Hence, the EFSIMT has
great potential as a predictive tool for diaphragm wall deflection problems, assist-
ing project managers/ engineers to ensure safety during the construction process
and preventing costly damage to adjacent infrastructure and buildings. Moreover,
as the EFSIMT here has been applied to a limited number of input factors related
to the diaphragm wall structure system and to information for two or more pre-
vious stages, the new research studies can be generated to compare how well the
prediction level can be improved if the new research studies include the sub-soil
conditions, the support system factors and the safety factors.
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