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Abstract: With the rapid development of location-acquisition technologies (GPS,
GSM networks, etc.), more and more unstructured, geo-referenced data are accu-
mulated on the Web. Such abundant location-based data imply, to some extent,
users’ interests in places, so these data can be exploited for various location-based
services, such as tour recommendation. In this paper, we demonstrate that, through
utilizing the location data from a popular photo sharing web site such as Flickr,
we can explore interesting landmarks for recommendations. We aim to generate
personalized landmark recommendations based on geo-tagged photos for each user.
Meanwhile, we also try to answer such a question that when we want to go sight-
seeing in a large city like Beijing, where should we go? To achieve our goal, first, we
present a data field clustering method (DFCM ), which is a density-based clustering
method initially developed to cluster point objects. By using DFCM, we can cluster
a large-scale geo-tagged web photo collection into groups (or landmarks) by loca-
tion. And then, we provide more friendly and comprehensive overviews for each
landmark. Subsequently, we present an improved user similarity method, which
not only uses the overview semantic similarity, but also considers the trajectory
similarity and the landmark trajectory similarity. Finally, we propose a personal-
ized landmark recommendation algorithm based on the improved user similarity
method, and adopt a TF-IDF like strategy to produce the nontrivial landmark rec-
ommendation. Experimental results show that our proposed approach can obtain
a better performance than several state-of-the-art methods.
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1. Introduction

With the increasing availability of location-aware mobile devices (e.g., GPS-enabled
portable devices), wire-less communication technologies (e.g., 3G and Wi-Fi), map
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services (e.g., Google Maps1, Microsoft Bing Maps2, and Yahoo! Maps3 ), and
spatial database management systems (DBMSs) [11], a number of location based
social networking services (LBSNS ) have emerged in recent years, such as Loopt4,
Flickr5, Panoramio6 et al. People are now capturing and uploading far more pho-
tographs than ever before. In addition, LBSNS allow users to tag, rate and describe
locations as they visit them, in order to aid the discovery of locations they may be
interested in [10]. Therefore, billions of photos shared on websites such as Flickr
serve as a growing record of our culture and environment. These photos are anno-
tated with various forms of information including GPS coordinates, time stamps,
photographer, and a wide variety of textual tags.

In this paper, we face the three challenges: (1) How to organize a large collec-
tion of photos with all those kinds of information? (2) How to model the users’
dynamic behaviors based on geo-tagged photos? (3) How to generate personalized
landmark recommendations based on geo-tagged photos for each user? We aim
to generate a representative and comprehensive landmark overview, explore users’
similarity measures which descript users’ behaviors suitably, and finally implement
the personalized landmark recommendation. Our work can be widely applied in
location-based service, tour recommendation, travel assistance, image search opti-
mizing and images management etc.

In order to handle the above three challenges, we present different strategies.
For challenge (1), we first do some clustering, automatically detecting hot land-
marks and generate an overview for each landmark. To automatically detect hot
landmarks, we propose a clustering method based on data field, which is a density-
based clustering method initially developed to cluster point objects. For challenge
(2), we present an improved user similarity measure, which combines the semantics
indicated by geo-tagged photos with travel trajectories of the user, to model the
user’s dynamic behaviors. For challenge (3), we put forward a collaborative filter-
ing (CF ) algorithm based on the improved user similarity, to generate personalized
landmark recommendations for each user. We further adopt a TF-IDF like strategy
in order to produce the nontrivial landmark recommendation.

Our work leverages the set of geo-tagged photos taken in Beijing from Flickr,
which is a popular photo sharing web site that supports user-contributed tags and
geo-referenced (or geo-tagged) photos. The location of geo-tagged photos can be
automatically captured by the camera or a location aware device. The reasons
we chose Flickr here are the following: Flickr, as one of the world’s most popular
photo sharing websites, enables users to label their friends’ photos, so this brings
us opportunities to understand the correlation between users and locations; Flickr
contributes a tremendous volume of travel data which is a rich source of travel
trajectories that can match various user preferences; Flickr is claimed to host more
than one billion photos associated with tags and GPS location, which provides
affluent data for analyzing geographical characteristics and generating personalized
landmark recommendations based on geo-tagged photos for each user.

1http://maps.google.com.
2http://www.bing.com/maps.
3http://maps.yahoo.com.
4http://www.loopt.com.
5http://www.flickr.com.
6http://www.panoramio.com.
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The rest parts of the paper are organized as follows. We start out discussing
the related work in Section 2. In Section 3, we introduce some notations and
some terms used in this paper. In Section 4, we describe the detailed process of
detecting landmarks and generating landmark overviews. In Section 5, we propose
a personalized landmark recommendation algorithm based on the improved user
similarity method. In Section 6, we evaluate our approach based on the geo-tagged
photos from Flickr. Some experiment results are also presented. Finally, we draw
conclusions and offer an outlook for our future work in Section 7.

2. Related Work

Location recommendation is an important feature in location based services (LBSs).
It aims to provide location suggestions that a user may be interested in [6, 7, 8,
9]. In location recommendation, there have already been a reasonable amount of
researches [13, 14, 15, 22, 23, 34].

In [27], Arase et al. defined the idea of a photo trip and proposed frequent
photo trip pattern mining algorithms that can detect novel trip knowledge (i.e.,
frequently visited city sequences and typical visit duration) from geo-tagged photo
collections on the Web. In [8], Zheng et al. introduced a social networking service,
called Geo-Life, which aims to understand trajectories, locations and users, and
mine the correlation between users and locations on the basis of user-generated
GPS trajectories. Eagle et al. [29] aimed to recognize the social pattern in daily
user activity from the dataset collected by 100 users with a Bluetooth-enabled
mobile phone. Takeuchi et al. [30] attempted to recommend shops to users based
on their individual preferences estimated by analyzing their past location histories.

In [12], Zheng et al. raised a question that for a specific user, if she wishes to do
some sightseeing or food-hunting in a large city such as Beijing, where should she
go, given her previous GPS traces and other similar users’ GPS histories? To solve
this case, they proposed a novel approach, known as user-centered collaborative
location and activity filtering (UCLAF ), to pull many users’ data together and
apply collaborative filtering to find like-minded users at different locations. We
also try to answer this question, but we adopt a different approach. Starting from
point of geo-tagged photos, first, we start out clustering a large-scale geo-tagged
web photos collection into groups by location, and then generate an overview for
each landmark. Subsequently, we propose an improved user similarity method
via combining overviews semantic similarity and travel trajectories similarity of
users. Finally, we recommend personalized landmarks by using the improved user
similarity based CF algorithm.

To model the users’ similarity, in [16], Ying et al. proposed a novel approach for
recommending potential friends based on users’ semantic trajectories for location-
based social networks. The core of their proposal is a novel trajectory similarity
measurement, namely, Maximal Semantic Trajectory Pattern Similarity (MSTP
Similarity), which measures the semantic similarity between trajectories. Zheng
et al. [7] proposed a personalized friend and location recommender for the Geo-
graphical Information Systems (GIS ) on the web, as well as a framework, namely
“hierarchical-graph-based similarity measurement (HGSM )” to uniformly model
each individual’s location history and effectively measure the similarity among
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users. In [6], Li et al. presented an approach which mines the similarity of peo-
ple’s trajectories based on location histories. Their proposed trajectories consist
of a series of stay points representing some places where a user stays for a while
and carry a particular semantic meaning. However, our presented users’ similarity
measure not only utilizes the similarity of people’s trajectories but also considers
the semantic similarity of landmark overviews.

In [17], Zheng et al. modelled individuals’ location histories with a tree-based hi-
erarchical graph (TBHG). Based on the TBHG, they proposed a HITS (Hypertext
Induced Topic Search)-based inference model which is used to recommend the
tourism hot spots that are popular and highly recommended by the experienced
users. In [18], Zheng et al. provided a collaborative filtering (CF ) approach based
on collective matrix factorization to take information sources from users as inputs
and train a location and activity recommender. The GM-FCF system [19] di-
rectly made location aware recommendations to users using a novel combination
of social relations and geographic information. In [20], Cao et al. put forward a
framework that encompasses new techniques for extracting semantically meaning-
ful geographical locations from the proliferation of GPS data, and for the ranking
of these locations according to their significance. In [25], Papadimitriou et al. pro-
posed a Geo-social recommender system which is capable of recommending friends,
locations and activities. They used a tensor, which is updated by incremental ten-
sor approaches, as new users, locations, or activities are being inserted into the
system. In [26], Clements et al. pointed out that a user’s favourite landmarks in a
previously unvisited city can be predicted by re-ranking the most popular locations
of the users with similar travel preference. Their results indicated that statistical
improvement over all users is hard to achieve, but for users with a clear travel
preference very accurate predictions can be made. In [21], Shi et al. provided a
novel category-regularized matrix factorization approach (CRMF ) to recommend
landmarks to individual users based on both user-landmark preference information
and category-based landmark similarity. Our aim is similar to [21], which focus
on personalized landmark recommendation based on geo–tagged photos, but our
recommendation method is different. In this work, we regard CRMF as one of the
baselines.

3. Preliminary

In this section, we will clarify some notations and terms used in this paper.

3.1 Notations

There are three basic elements in our dataset: photos, tags and users. We define a
set of photos as F = {f}, where f is a tuple (if , lf , uf ) containing a unique photo
ID if , a place lf , which is also a tuple (longif , latf ) representing photo’s capture
location coordinates and uf represents a Flickr user who uploaded the photo f .
Set of tags is symbolized as A = {a}. We use a to denote a tag, Af to denote
a set of tags associated to the photof . So set of all tags can also be denoted as
A = ∪f∈FAf . A subset of photos associated with a specific tag can be defined as
Fa = {f ∈ F |a ∈ Af}, and given c is a cluster, set Fc = {f ∈ F |a ∈ c} means
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a set of photos with a specific cluster of tags, and Fc,a = Fa ∩ Fc denotes photos
with a tag a in a cluster c. Set of users is denoted by U = {uf}. Same way,
Ua, c = Ua ∩ Uc denotes users set who use a tag a in a cluster c.

3.2 Definitions

Definition 1 GPS Point (or GPS Coordinate): A GPS point p is a four-tuple:
⟨x, y, t,m⟩, where x and y are Euclidean coordinates, t is the timestamp and m is
the times a user has visited this GPS point (we can call it mass or score of the
GPS point). It is depicted in the left part of Fig. 1.
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Fig. 1 GPS points, a trajectory and a landmark trajectory.

Definition 2 Landmark (or Hot Spot): A landmark is a geographical region
which is obtained using DFCM. A landmark L consists of a group of consecutive
GPS points P = {p1,p2, . . . , pn}. Formally, conditioned by P , ta, tl, lm and ov, a
virtual landmark center c̃ = (x, y, ta, tl, lm, ov), where

c̃.x =

n∑
i=1

pi.x/|P | (1)

c̃.y =
n∑

i=1

pi.y/|P | (2)

respectively stands for the average latitude and longitude of the collection P , ta =
p1.t and tl = pn.t represent user’s arrival and leaving time on L, lm =

∑n
i=1 pi.m

represents the times a user has visited this landmark (we can call it mass or score
of the landmark) and ov represents overviews of this landmark L. It is shown in
the right part of the Fig. 1.

Definition 3 Trajectory: As shown solid arrow line in the right part of Fig. 1, a
trajectory with a score Tr of a user is a sequence of GPS points based on a certain
threshold ∆T . Thus, Tr = p1 → p2 → . . . → pn, where pi ∈ P ,pi+1.t > pi.t,
pi+1.t − pi.t < ∆T (1 ≤ i ≤ n) and the score is the times a user has passed this
trajectory.

Definition 4 Landmark Trajectory: As shown dotted arrow line in the right
part of Fig. 1, a landmark trajectory with a score Ltr of a user is a sequence of
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landmarks based on a certain threshold ∆T . Thus, Ltr = L1 → L2 → . . . → Lm,
where Li ∈ P , Li+1.t > Li.t, Li+1.t − Li.t < ∆T (1 ≤ i ≤ m) and the score is the
times a user has passed this landmark trajectory.

Definition 5 M-length Trajectory: If the number of nodes in a trajectory is M ,
we call this trajectory M -length trajectory. As shown in the right part of Fig. 1,
p1 → p2 is a 2-length trajectory. Similarly, we can define an M -length landmark
trajectory.

4. Generate Landmark Overview

In this section, we describe the detailed process of generating landmark overviews.
This process is divided into three parts: detecting landmarks, scoring tags within
a cluster, and mining topics within a landmark.

4.1 Detect Landmarks

We intuit that interesting landmarks (or hot spots) attract more visitors, thus there
are more geo-tagged photos taken in it. In order to better detect landmarks (or hot
spots) of users’ interests in the geographic space, we can cluster geo-tagged photos.
But cluster results are influenced by the granularity of the location. For instance,
the larger the extent of a place, the longer the distance the activities could occur
in [1]. To accommodate variable granularity, we propose a data field clustering
method, which is a density-based clustering method initially developed to cluster
point objects. We consider the Mean Shift (MS ) [2], which has been shown effective
for spatial data clustering in previous work [3, 4], as a baseline method in order to
verify the effectiveness of our proposed algorithm.

We elaborate the notion of data field [32] prior to introducing the data field
clustering method.

4.1.1 Data Field

There are many fields in physics, such as gravitational field, electric field and
magnetic field et al. All of these fields describe the law of interaction of particles.
Inspired by the knowledge of physical fields, we introduce the interaction of particles
and the concept of “field” into the data space. Given a dataset containing n

objects in space Ω ⊆ RP, i.e., D = {x1, x2, . . . , xn}, where xi = (xi1, xi2, . . . , xip),
i = 1, 2, . . .n. Each data object can be considered as a mass point or nucleon with
a certain field around it and the interaction of all data objects will form a data
field through the space.

Because Gaussian function has good mathematic properties, in this work we
adopt Gaussian function to define the potential at any point x as,

ϕ(x) =
∑n

i=1
ϕi (x) =

∑n

i=1

(
m×e

−
(

||x−xi||
σ

)2)
(3)

where ||x − xi|| is the distance between object xi and x, mi is the mass of object
xi, and σ is the influence factor that indicates the range of interaction.
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In this work, we assume each data object x is supposed to be equal in the mass
(that is, each data object x possesses the same influence over the space) and meets
a normalization condition

∑n
i=1 mi = 1. Thus a simplified potential function can

be given as,

ϕ(x) =
∑n

i=1
ϕi (x) =

1

n

∑n

i=1
e
−
(

||x−xi||
σ

)2

(4)

where x is a GPS coordinate and ||x− xi|| is a Euclidean distance.
Given a data set in space, the distribution of the associated data field is pri-

marily determined by the influence factor σonce the form of potential function is
fixed. Thus, the choice of the σshould make the distribution of potential field as
consistent with the underlying distribution of original data as possible. And then,
we should find the best choice of the σ.

In order to minimize the uncertainty, Shannon entropy principle is used as
Equation 5 to optimize the influence factor σ.

minH = min
σ

(
−
∑n

i=1

ϕi

Z
log

(
ϕi

Z

))
(5)

where Z =
∑n

i=1 ϕi is a normalized factor.

4.1.2 Clustering Method Based On Data Field

According to the data field theory and its definition, we propose the data field
clustering method (DFCM, in Algorithm 1) which clusters the points in the data
space based on the strength of interaction of objects.

Algorithm 1: DFCM
Input: D = {x1, x2, . . . , xn}, sample number nsample, noise threshold ξ
Output: the hierarchical partition {Π1,Π2, . . . ,Πk}
Steps:
Select nsample samples randomly to construct the sample data set SampleSet.
//Optimization of the influence factor σ
σ = Optimal Sigma(SampleSet)
//Apply grid partition on the space and construct an index tree
Map = CreatMap(D, σ)
//Search in the topological critical points
CriticalPoints = Search CriticalPoints(Map, σ)
Set MaxPoints as the set of local maximum points and SadPoints as the set of
saddle points.
//Initially divide the data according to the set of local maximum points
Π1 = Initialization Partition(Map, D, MaxPoints, σ, ξ)
//Combine the initial clusters iteratively according to the set of saddle points
[Π1,Π2, ...Πk] = Saddle Merge (Map,Π1, MaxPoints, SadPoint, σ, ξ)

The idea of this clustering method is to optimally select the influence factor σ
for the generation of potential field distribution first. Thereafter, the data objects
contained in each equipotential line/surface are treated as a natural cluster, and
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the nested structures consisting of different equipotential lines/surfaces are treated
as the cluster spectrum. Thus, the clustering at different hierarchies is realized.

The local maximum points could be regarded as “virtual field sources”, and
all the data objects are convergent by self-organization due to the attraction by
their own “virtual field sources”. Thus, the local maximum points can be regarded
as cluster centers, and the initial partition is formed. To obtain the clustering at
different hierarchies, the initial clusters are combined based on regular saddle point
iteration.

In order to find local maximum points and saddle points in the potential field
distribution, the algorithm first searches all the critical points satisfying∇ϕ (x) = 0.
Thereafter, it classifies the critical points according to the eigenvalues of the Hessse
matrix ∇2ϕ(x). For a given critical point x, let l1 < l2 . . . < ld be the d eigenvalues
of the Hesse matrix, where d >= 2 is the dimension of the space. If ld < 0, x
is the local maximum point in the potential field distribution; if l1 > 0, x is a
local minimum point in the potential field distribution; if l1, l2, . . . , ld ̸= 0 and the
number of positive eigenvalues and the number of negative eigenvalues are both
bigger than 1, the point x is the saddle point in the potential field.

There are two parameters in the Algorithm 1: random sample number nsample

and noise threshold ξ. nsample is usually set as nsample = [α ∗ n] , α > 0.05, while
ξ is applied to judge whether the initial clusters are meaningful. Because the
final clustering result is determined by the regular saddle points in the potential
field, ξ, which is in a relatively stable domain, will not affect the clustering result.
If noise data is not included in the data set D, the value domain of ξ will be[
0, min

x∈MaxPoints
ϕ (x)

]
, and usually let ξ = 0. Let ||Dnoise|| be the size of noise

data set, if the noise data is included in D, then c̄ ≤ ξ ≤ minx∈Ā φ(x), where
Ā is the set of local maximum points generated by the non-noisy data, and c̄ is
equivalent to the potential value generated by ||Dnoise|| noise data with uniform
distribution, i.e. c̄ = φDnoise(x).

In this work, we can get the landmarks using DFCM. In addition, our proposed
DFCM is a nonparametric method which does not require specifying the number
of clusters, and does not assume the shape of the clusters.

4.2 Score Tags within Clusters

Once the previous clustering work has been done, we regard each cluster and its
central point as a landmark and a landmark center respectively. Next, we will score
the tags within a cluster.

When we try to detect representative tags for landmarks within a city, we should
take measures to cope with noise tags. The number of photos with inaccurate
coordinates cannot be ignored. It is really common that users could just drag
the photo originally taken in a landmark like the Great Wall, to the Tiananmen
Square when use Flickr map interface to record photo’s capture coordinates, for
Tiananmen is recognized as Beijing’s symbol and some users don’t care the detailed
place information as long as the city is right. Another issue, in our Beijing photos
dataset, some tags like “Beijing”, “Asia”, “China”, appear much frequently across
many landmarks, obviously there is no sense to select them as representative tags.
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Trying to resolve the above problems and make a reasonable score for a tag, we
get some heuristics from a simple analysis on the dataset:

• Tags that occur in a concentrated area (and do not occur often outside that
area) are more representative than the ones that occur diffusely over a large
region.

• The more users that used a tag in an area there are, the more representative
the tag is for that area.

Given those heuristics, we believe a TF-IDF like method should be effective and
reasonable for scoring tags. The term frequency for a given tag a in a cluster c can
be denoted as:

tf (a, c) = |Fc,a| / |Fc| (6)

and IDF part can be denoted as:

idf (a) = log

(
|C| /

∑
c∈C

I (c, a)

)
(7)

where C = {c} is the set of clusters, and function I is defined as:

I(a, c) =

{
1,
0,

if
if

a ∈ c
a /∈ c

(8)

According to heuristics, we also take the tag’s geographical distribution into ac-
count, so we introduce a new factor MTF, which is defined as:

mtf (a, c) =
∑
c∈C

tf(c, a)/ |C| (9)

We believe the higher the ratio tf (c, a) /mtf (c, a) is, the more representative the
tag a is. We also take factor uf(a, c) = |Uc,a| into our score function, which was
first proposed in work [31] and has been tested effective to cope with the noise
issues (e.g., in some scenarios, data should be contaminated if a single user took a
large number of photos in one location and labelled them with the same tag) and
we get our final score function for tag a in cluster cas:

tag score(a, c) =
(tf(a, c) · idf(a) · uf(a, c))

mtf(a, c)
(10)

4.3 Topics Mining Within Landmarks

Once we have scored the tags within landmark, the top N score tags can be seen
as the landmark’s representative tags. But to be comprehensive we also want to
show connections among tags. Next, we turn to the task of mining the topic groups
among tags. It has been proposed that folksonomies contain nested groups of tags
related to common topics in work [28].

Here, we utilize a clustering method based on tags similarity directed graph for
topics mining. First we give our definitions for tag similarity directed graph.
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In a directed graph G, nodes represent tags, edge weights represent strength of
similarity, and strength of similarity is based on the number of tag co-occurrences
(both two tags occur in one photo). The weight of edge from a1 to a2 was defined
as sim(a1, a2) = |Fa1,a2 |/|Fa2 | and the weight of edge from a2 to a1 was defined as
sim(a2, a1) = |Fa1,a2 |/|Fa1 |. Next we give the cluster algorithm.

In algorithm 2, line 2 utilizes the equation (10) for computing tags’ score, the
higher score tag will be more prior to mine its related downstream neighbors. The
algorithm’s time is mainly spent in computing similarity between two nodes, and
mining topic group is linear time costing. The time complexity is O(n2), where n
is the number of unique tags.

Algorithm 2: Clustering on directed tag graph
Input: directed tag graph G, similarity threshold τ
Output: clusters set C
1: Initialize clusters set C = ∅, set U = {u|u ∈ G.nodes}
2: Initialize array centers = sorted (U) in descending order of tag score(u)
3: Remove the edges with weight less than τ
4: Forc in centers do
5: If c is not visited do
6: v = v ∪ c
7: While v! = ∅ do
8: n = v.pop()
9: If n is not visited do
10: Find n’s downstream neighbors set {nd} and update v = v∪{nd}
11: End if
12: End while
13: Update C = C ∪ v, v = ∅
14: End if
15: End for

4.4 Generate Landmark Overviews

Given the results of the clustering step, we rank the clusters according to how well
they represent the various tags within a landmark. For each cluster, we use the
highest score of its member tags as the cluster’s score. We select tags with score
above a threshold from the top N score clusters as topics to display, and hide the
lower-ranked clusters.

After text overview is determined, the overview photos generating is just a
retrieval work. For each topic, we just retrieve photos whose tags are appeared
in the topic tags set. The photos are ranked according to the numbers of its own
tags appeared in corresponding topic’s tags set. Fig. 2 shows the text and photos
overview of Landmark Tsinghua. In this case, top three topics in this landmark
were selected to display.

As shown in the Tab. I, it also presents an example of a landmark (Tsinghua)
overview. The first entity of each row represents a ranking topic of an overview,
and the following entities represents ranking sub-topics.
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Ranking
Topic

Sub-topic
Overview 1 2 3

1 tsinghua university students classroom auditorium
2 old summer palace qing dynasty lotus imperial gardens
3 peking university weiming lake baya pagoda campus

Tab. I An overview of landmark Tsinghua, three topics and three sub-topics are
selected for displaying.

 

Fig. 2 Overviews of landmark Tsinghua, three topics are selected for displaying
and red italic tags are with scores at top 20.

5. Recommend Interesting Landmarks

In this section, we introduce our process of recommending interesting landmarks
in detail. First, we model the user’s similarity, which not only uses the overview
semantic similarity, but also considers the trajectory similarity and the landmark
trajectory similarity. And then, based on the user’s similarity, we present a novel
landmark recommendation algorithm.

5.1 User Similarity Exploration

In this section, we detail the processes of user similarity exploration, including lo-
cation history extraction, overview semantic similarity extraction, trajectory simi-
larity extraction and landmark trajectory similarity extraction.
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5.1.1 Location History Extraction

We construct two location histories: users’ trajectories and users’ landmark trajec-
tories.

With users’ travel experiences and their interests in locations, we can calculate
a classical score for each GPS point (or each landmark) and each trajectory (or
each landmark trajectory) within the given geospatial region. The classical score of
each GPS point (or each landmark) is regarded as the times users have visited this
GPS point (or landmark). Also, the classical score of each trajectory (or landmark
trajectory) is regarded as the times users have passed this trajectory (or landmark
trajectory).

As shown in the Fig. 3, we present two graphs: the graph of GPS points in the
left part of the Fig. 3 and the graph of landmarks in the right part of the Fig. 3.
These two graphs contain all trajectories and all landmark trajectories of each user
respectively. For the graph of GPS points in the left part of the Fig. 3, the graph
nodes (p1, p2, p3, p4 and p5) stand for GPS points, and the graph edges denote
users’ trajectories among GPS points. Take a 2-length trajectory (p1 → p2) as an
example, the number shown on the nodes (6 and 4) and the edge (3) represents the
score of the GPS point and the trajectory respectively. For the graph of landmarks,
we have the similar analysis.

 

Fig. 3 Trajectory graph and landmark trajectory graph.

For similarity normalization (in Section 5.1.2), we construct user-GPS point
matrix UP and user-landmark matrix UL. The row of UP (or UL) represents the
GPS-point (or landmark). The column of UP (or UL) represents the user. Each
entry in the UP (or UL) is rating how many times a user has visited the GPS-point
(or landmark).

5.1.2 Overview Semantic Similarity

In Section 4.4, we introduce an overview which consistes of topics and sub-topics.
For calculating the overview semantic similarity, we construct user-topic matrix UT
and user-sub-topic matrix UST. Each entry in the UT or UST denotes whether a
user add tags to pictures with this topic or sub-topics. Here, 1 denotes this user
uses it, while 0 expresses this user does not use this topic or sub-topic.

Based on these two matrixes, we can learn users’ profiles utilizing user similar-
ities, which are reflected via considering whether users add the same tags (topics
or sub-topics). In other words, if two users are more similar, they are likely to add
more similar tags. Here, we can obtain two user similarities: user-topic similar-
ity (sim T (ui, uj)) and user-sub-topic similarity (sim ST (ui, uj)). Note that, we
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use cosine similarity to compute sim T (ui, uj) and sim ST (ui, uj). The overview
semantic similarity is formalized as:

sim−view (ui, uj) = β1sim T (ui, uj) + β2sim ST (ui, uj) (11)

where β1, β2 > 0 and β1 + β2 = 1,ui ∈ U, uj ∈ Uand U = {u1, u2, . . . , un} is a set
of users.

5.1.3 Trajectory Similarity

In Section 5.1.1, the trajectory graph and the matrix UP have been constructed.
We adopt the similar sequence matching method proposed by Li Q. [6] in order to
find the similar trajectories for each user-pair. The retrieved similar trajectories
are used to calculate an overall similarity score for each user-pair. When computing
the score, we take into account two factors: the length of a similar trajectory with
weight (that is, M -length trajectory) and the mass of each node in this trajectory.
So the score an M -length trajectory obtains can be formulated as:

score Mlt = M ∗
M−1∑
j=1

Tr.score ∗ sim mass(ui, uj) (12)

whereM(M > 1) is defined in Definition 5, Tr.score is the summation of each score
in the similar trajectory, ui and uj are defined in Section 5.1.2 and sim mass(ui, uj)
is regarded as cosine similarity based on matrix UP.

For similarity normalization, the equation (12) can be formulated as:

score Mlt = M ∗
M−1∑
j=1

Tr.score ∗ sim mass(ui, uj)/

(∑
ui∈U

Tr.score ∗
∑
ui∈U

p.m

)
(13)

where
∑

ui∈U Tr.score is the summation of scores given by all users for this similar
trajectory,

∑
ui∈U p.m is the summation of times that all users have visited this

GPS point.
As shown in equation (14), the trajectory similarity of two users is measured

based on all the similar M -length trajectories. Here, n is the number of similar
trajectories in two users.score Mlti is the score of the i-th similar trajectory, which
can be calculated according to equation (14). N1 and N2 denotes the number of
the GPS points of the two users respectively.

sim−Tra =
1

N1N2

n∑
i=1

score Mlti (14)

5.1.4 Landmark Trajectory Similarity

Like trajectory similarity in Section 5.1.3, the landmark trajectory similarity of
two users can be formulated as:

sim−LTra =
1

N1N2

n∑
i=1

score Mllti (15)
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Note that, the difference between equation (14) and equation (15) is that we need
replace trajectory and GPS point with landmark trajectory and landmark respec-
tively.

5.2 Landmark Recommendation

Incorporating the three similarity measures, we propose an improved user similarity
method (fusion similarity), which is demonstrated in equation (16).

sim−Fusion (ui, uj) = γ1sim−view (ui, uj) + γ2sim−Tra+ γ3sim−LTra (16)

where γ1, γ2, γ3 > 0 and γ1 + γ2 + γ3 = 1. Although more sophisticated functions
can be designed, the weighted summation of these three similarity measures is
simple and intuitive.

Based on the fusion similarity, we propose a landmark-based CF algorithm.
In our presented algorithm, to derive the landmark recommendation for a target
user u, usually only k most-similar neighbors are selected (Uk). When predicting
a score of a given user u for a landmark L, the weighted sum of the other users is
computed by:

score (u, L) = scoreu +

∑
v∈Uk

sim−Fusion (ui, uj) (score (v, L)− scorev)∑
v∈Uk

sim−Fusion (ui, uj)
(17)

where scoreu and scorev represents the average times a user u and vhave visited
L respectively and score (v, L) represents the times a user v has visited L.

6. Experiments

6.1 Data Set

The photos for our experiments were collected from the datasets of geo-tagged
photos available on Flickr using the site’s public API7. These photos we crawled
meet such requirements: they were taken in Beijing and the upload time is between
4th, January, 2005 and 10th, February, 2012. These photos collection contains
533,594 unique photos associated with 2,760,614 textual tags and taken by 16,196
unique users.

Because Flickr allows users to geotag their photographs using a map interface,
photos could be geotagged incorrectly, or inappropriately, or assigned a mislead-
ing accuracy level. And photos are also likely to be assigned text tags that are
irrelevant to the location. Naturally, there is no guarantee that photos taken in
Tiananmen, for example, will all have the Tiananmen tag, or any other tag relevant
to the location. To make the dataset reliably extracted and used, we adopt the
visualization method [31] to deal with issues of errors and noise in the Flickr data.

7http://www.flickr.com/services/api/flickr.photos.search.htm.
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6.2 Evaluation Metrics

Our recommendation algorithm computes a ranking score for each candidate land-
mark (i.e., those a user has not visited) and returns the top-K highest ranked
landmarks as recommendation to a target user. To evaluate the prediction accu-
racy, we focus on how many locations previously removed in the preprocessing step
re-appear in the recommended results. Therefore, we apply four popular perfor-
mance metrics, namely Mean Average Precision (MAP), Precision@K, Recall@K
and nDCG (normalized Discounted Cumulative Gain) [24], to capture the perfor-
mance of our proposed algorithm.

Precision@K is the ratio of recovered locations to the K recommended loca-
tions. Recall@K is the ratio of recovered locations to the set of locations deleted in
preprocessing. We divide the locations into two sets: the test set Tu and the top-K
set Ru. Locations that appear in both sets are members of the hit set. Precision
and Recall is defined as follows:

Precision =
size of hit set

size of top Nset
=

|Tu ∩Ru|
K

(18)

Recall =
size of hit set

size of test set
=

|Tu ∩Ru|
|Tu|

(19)

MAP is the most frequently used for the summary measure of a ranked retrieval
run. In this work, MAP stands for the mean of the precision score after each
landmark is recommended.

nDCG, which is commonly used in information retrieval to measure the search
engine’s performance, computes the relative-to-the-ideal performance. The higher
nDCG value is, the better a ranking results list is. In particular, nDCG [K], or
referred as nDCG@K, measures the relevance of top K results:

nDCG@K =
DCG@K

IDCG@K
(20)

DCG@K = rel1 +

k∑
i=2

reli
log2 i

(21)

where nDCG@K measures the relevance of top K results, IDCG@K is the DCG@K
value of ideal ranking list. reli is a relevance value.

Note that, when computing MAP and Precision@K, only the landmarks with
score above 1.5 are considered as significant.

6.3 Settings and Parameter Selection

6.3.1 Settings

We discovered landmarks in the dataset, using the method described above in
Section 4.1. We set the bandwidth as 0.02 for Meanshift and the initial points
are selected randomly. For DFCM, we set σ as 0.036. As a result, Meanshift
returns 655 landmark clusters, and DFCM returns 670 landmark clusters. For
each location cluster, representative tags are determined by scoring frequent tags
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within the cluster. For the tags chosen by the system, we retain the information
about the tag and the clusters where the tag scored well.

After the landmark clustering step, we generate the trajectories and landmark
trajectories according to the visiting order of the locations. We extract the frequent
sequential patterns by leveraging the PrefixSpan algorithm [28] and treat them as
trajectory or landmark trajectories patterns. Given a set of sequences, sequential
pattern mining algorithm will find all the sequential patterns whose frequencies
are no smaller than the minimum support. The frequency of a pattern is defined
as the number of sequences that are derived by subsuming the pattern. In this
work, we set the minimum support threshold as 2 to collect as many trajectory or
landmark trajectory patterns, namely a 2-length trajectory or a 2-length landmark
trajectory. As a result, we construct the trajectory dataset that consists of 23,448
raw trajectories and the landmark trajectory dataset that consists of 6,694 raw
landmark trajectories.

The dataset we have used in our experiments are split into training and test
sets. In this data set, we have used the 80-20% rating splits in the data set dis-
tribution and have performed 10-fold cross validation. Additionally, we have fur-
ther extracted validation data from the training data to optimize the parameters
β1, β2, γ1, γ2, γ3 and k (the neighborhood size). We have varied the neighborhood
size from 10-60 by an interval of 10 and the other five parameters from 0 to 1 by
an interval of 0.1. Using the validation data, we have found the best β1 to be 0.8,
β2 to be 0.2, γ1 to be 0.2, γ2 to be 0.3, γ3 to be 0.5 and k to be 20.

6.3.2 Parameter Selection

In this section, we will introduce the process of parameter selection in detail. We
use the validation data to investigate the impact of the parameters of our pro-
posed method, discuss their role in recommendation, and determine the parameter
settings that we use for the experiments.

First, we investigate the impact of parameters β1, β2 in our proposed method
(refer to Equation 11). Here, β1 and β2 control the overview semantic similarity
and play a role of balancing the influence between user-topic similarity and user-
sub-topic similarity. In order to get optimal values of β1 and β2, we fix other four
parameters (let γ1 be 0.3, γ2 be 0.2, γ3 be 0.5 and k be 10) and vary β1 from 0 to
1 by an interval of 0.1. Fig. 4 plots the Precision and Recall against β1 with β1

in the range [0, 1]. From Fig. 4(a), we can observe that the optimal recommenda-
tion performance (Precision) is achieved when β1=0.8, (β2=0.2). Meanwhile, from
Fig. 4(b), we can get the similar result. It indicates that the user-topic similarity
plays a more important role than the user-sub-topic similarity.

Our next experiment in this section investigates the impact of the trade-off
parameter γ1, γ2, γ3 in the proposed method (refer to Equation 16). γ1, γ2 and γ3
control the influence of fusion similarity, including overview semantic similarity,
trajectory similarity and landmark trajectory similarity. We fix β1 and β2 to the
optimal values determined during the first experiment (β1=0.8,β2=0.2) and set k
to be 10. At the same time, we vary the value of γ1, γ2, γ3 from 0 to 1 by an inter-
val of 0.1 in order to observe its influence on the ability of the proposed method.
As can be seen in Tab. II and Tab. III, the optimal recommendation performance
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(a) Precision (b) Recall

Fig. 4 Impact of β1 on recommendation performance.

γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.551 0.562 0.582 0.665 0.549 0.535 0.521 0.512 0.508
0.2 0.557 0.636 0.734 0.524 0.521 0.518 0.508 0.504 -
0.3 0.564 0.753 0.519 0.512 0.509 0.497 0.501 - -
0.4 0.613 0.515 0.509 0.488 0.479 0.456 - - -
0.5 0.505 0.501 0.483 0.457 0.435 - - - -
0.6 0.498 0.475 0.453 0.421 - - - -
0.7 0.462 0.431 0.403 - - - - -
0.8 0.425 0.402 - - - - - -
0.9 0.308 - - - - - - -

Tab. II Impact of γ1, γ2(γ1+γ2=1) on recommendation performance (Preci-
sion@10). Here, the first row represents γ1, the first column represents γ2 and
“–” represents this pattern does not exist. Each item in the table represents the

value of Precision.

(Precision and Recall) can be achieved when γ1=0.2 (γ2 = 0.3, γ3=0.5). At
the same time, from Tab. II and Tab. III, we can observe that the recommenda-
tion performance (γ1 < γ2 and γ3=0.5) is better than the recommendation per-
formance (γ1 > γ2 and γ3=0.5), which indicates that the trajectory similarity is
more important than the overview semantic similarity. Also, we can see that the
recommendation performance (γ1 + γ2 < 0.5) is better than the recommendation
performance (γ1 + γ2 > 0.5). It indicates the landmark trajectory similarity plays
the most important role among the three similarities.

As a final point in this section, we further examine the impact of parameter
k in the proposed method (refer to Equation 17). k controls the neighborhood
size affecting the performance of our proposed method. We also fix other five
paprameters ((let β1 to be 0.8, β2 to be 0.2, γ1 be 0.2, γ2 be 0.3, γ3 be 0.5,). In
Fig. 5, x axis represents the neighborhood size, from 10 to 60, and y axis refers to
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γ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.446 0.457 0.498 0.512 0.435 0.428 0.421 0.407 0.396
0.2 0.438 0.483 0.583 0.431 0.424 0.419 0.401 0.391 -
0.3 0.428 0.597 0.423 0.420 0.417 0.398 0.387 - -
0.4 0.476 0.419 0.417 0.412 0.389 0.385 - - -
0.5 0.415 0.411 0.395 0.387 0.376 - - - -
0.6 0.402 0.388 0.382 0.371 - - - - -
0.7 0.378 0.375 0.364 - - - - - -
0.8 0.367 0.356 - - - - - - -
0.9 0.351 - - - - - - - -

Tab. III Impact of γ1, γ2(γ1+γ2=1) on recommendation performance (Recall@10).
Here, the first row represents γ1, the first column represents γ2 and “–” represents
this pattern does not exist. Each item in the table represents the value of Recall.

(a) Precision (b) Recall

Fig. 5 Impact of kon recommendation performance..

Precision (Recall). From Fig. 5(a), we can see that the optimal recommendation
performance (Precision) is achieved when k = 20. Also, we can obtain the similar
result from Fig. 5(b).

6.4 Experimental Results

In this work, we employ five baselines for comparison: MeanShift (MS ) + sim Fusion
(sF (γ1 = 0.2, γ2 = 0.3, γ3 = 0.5)), DFCM + sF (γ1 = 1) (orDFCM+sV ),DFCM+
sF (γ2 = 1)(or DFCM+sT ), DFCM+ sF (γ3 = 1) (or DFCM+sL) and CRMF.
Here, sF represents the fusion similarity, sim Fusion. sV, sT and sL represents
the overview semantic similarity (sim View), the trajectory similarity (sim Tra)
and the landmark trajectory similarity (sim LTra), respectively. In order to sim-
plify the expression, sF (γ1 = 0.2, γ2 = 0.3, γ3 = 0.5) is expressed as sF.
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Fig. 6 shows the comparision of MAP between our approach (DFCM+sF ) and
baselines. Our proposed method (DFCM+sF ) is slightly superior to (MS+sF ) and
significantly superior to other methods. Using nDCG, Fig. 7 further differentiates
our approach from baselines. Obviously, (DFCM+sF ) leads the performance in
both nDCG@10 and nDCG@20 among these methods. Moreover, (DFCM+sF )
better improves the performance compared with (MS+sF ) and CRMF. The possi-
ble reasons for these are: 1) CRMF only captures the similarity of category-based
and user-landmark preference (i.e., trajectory similarity); 2) (DFCM+sF ) not only
uses the overview semantic similarity, but also considers the trajectory similar-
ity and the landmark trajectory similarity; 3) (DFCM+sV ), (DFCM+sT ) and
(DFCM+sL) only consider one of the three similarities.

Fig. 6 Comparision of MAP among
different methods.

Fig. 7 Comparision of nDCG among
different methods.

In Fig. 8, the horizontal axis plots the number of recommended landmarks (K),
and the vertical axis plots the value of precision. From Figure 8, we can observe
all methods show the same type of sensitivity, that is, with the number of recom-
mended landmarks increasing, precision of the six algorithms is trending downward.
However, our proposed method (DFCM+sF ) slightly outperforms (MS+sF ) and
significantly outperforms other methods. The explanation for this is similar to ones
for Fig. 6 and Fig. 7. Note that, when the number of the recommended landmarks
reaches 10, the optimal value of precision is obtained.

In Fig. 9, the horizontal axis plots the number of recommended landmarks
(K), and the vertical axis plots the value of recall. From Fig. 9, we can notice
that, with the number of recommended landmarks increasing, recall of the six al-
gorithms is trending upward. However, our proposed method (DFCM+sF ) slightly
outperforms (MS+sF ) and significantly exceeds other methods. The explanation
for this is similar to ones for Fig. 6 and Fig. 7. Note that, when the number of the
recommended landmarks reaches 25, the optimal value of recall is obtained.
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6.5 Discussion

So far, we have got a Top-K list for each user, but we still have an important
issue, how to produce nontrivial landmark recommendations, to be addressed. For
example, recommending Great Wall in Beijing is probably right for any tourist,
but such a recommendation is not meaningful, since the tourists know Great Wall
even without recommendations. There are some important previous works done
to solve the problem of nontrivial landmark recommendation. In [33], Shi et al.
proposed a novel approach called WMF-CR, incorporating weighted matrix fac-
torization and category-based regularization. This approach exploits geo-tagged
images from an on-line community for the purpose of personalized landmark rec-
ommendation. This research motivates us to work on how to produce nontrivial
landmark recommendations. We adopt a recommendation re-ranking approach to
solve the problem of nontrivial landmark recommendations.

6.5.1 Recommendation Re-ranking

In this section, we will introduce our recommendation re-ranking approaches. We
have two assumptions: the more users that used a tag in a landmark there are(or
the more users that visited a landmark there are), the more popular the landmark
is for most users; further, a trivial coefficient takes the number of users visiting
a landmark, divided by the total number of users in the dataset. The bigger this
trivial coefficient about a landmark is, the more trivial this landmark is. Based on
these two assumptions, we use TF-IDF like strategy for re-ranking the candidate
items. Here, the landmark (L) frequency in the dataset can be denoted as:

tf(Li)=Li.lm
/∑

Li∈L
Li.lm (22)

and IDF part can be denoted as:

idf(ui, Li) =log(|U |/
∑

ui∈U
I(ui, Li)) (23)
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where Li.lm represents the times a user has visited this landmark (refer to Defi-
nition 2), L is a set of landmarks, |U | represents the total number of users in the
dataset,

∑
Li∈L Li.lm is a normalized factor and function I(ui, Li) is defined as:

I(ui, Li) =

{
1,
0,

if
else

ui visited Li
(24)

Finally, we get our recommendation re-ranking TF-IDF like strategy to rank our
recommendation list. The TF-IDF ranking strategy can be defined as:

Rerank Score(ui, Li) = tf(Li)Idf(ui, Li) (25)

Here, the Rerank Score value increases proportionally to the number of times a
landmark is visited by users, but is offset by the frequency of the landmark in the
dataset, which helps to control for the fact that some landmarks are generally more
common than others.

6.5.2 Experimental Results

After recommendation re-ranking, we get some results of nontrivial landmark
recommendation. In this section, we will show the comparisons between our
DFCM+sF and DFCM+sF+Rerank Score considering nontrivial landmark recom-
mendation.

In Fig. 10 and Fig. 11, it can be seen that DFCM+sF+Rerank Score works at
the aspect of nontrivial landmark recommendations. From Fig. 10 and Fig. 11, we
can notice that, DFCM + sF + Rerank Score averagely improves Precision@K
and Recall@K by 1.24% and 1.01% on the Flickr dataset, respectively. The
possible reason for these is that DFCM+sF+Rerank Score assigns a punished
weight to the common landmarks and puts the nontrivial landmarks before the
common landmarks.
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We further show an example of nontrivial landmark recommendations for five
users in Tab. IV. From Tab. IV, we can see that we can get different results based
on different methods for different users. For user 1, Ds method mainly gets some
common recommendation results except Tsinghua and Nationallibrary, but DsR
method gets more nontrivial recommendation results. We can speculate that User 1
may be interested in study or is likely to be a student from the results based on
DsR. For User 2, two methods both recommend “798 art dist”, in addition, DsR
recommends other two landmarks, namely, “Art museum”, ”CAFA”. We can also
speculate User 2 may be interested in art or is likely to be an artist. Compared
with Ds, DsR can mine more landmarks that users are interested in, by filtering
some common landmarks. Meanwhile, we can have similar analysis for other three
users.

Users Methods Landmarks

User 1 Ds Great Wall Tiananmen Forbidden
City

Tsing hua National-
library

DsR Tsinghua National-
library

Guozizjian Zhongguancui Junbo

User 2 Ds Summer-
Palace

798 art dist Beihai Sanlitun Tuanjiehu

DsR Art museum 798 art dist Sanlitun CAFA Houhai

User 3 Ds Tiananmen Gugong Oldsummer-

palace

Shimatai Xiangshan

DsR Shidu Qinglongxia Tanzhe-
Temple

Phoenix-
ridge

Shimatai

User 4 Ds Xidan Sanvillage Xinjiekou Wudoukou Nanluogu-
xiang

DsR Huguoshi Jiumen Guijie Nanluogu-
xiang

Wangfujin

User 5 Ds Tuanjiehu Tiananmen BLCU BFSU Houhai
DsR San village Wudaokou Wangjing Houhai Panjiayuan

Tab. IV Results of landmark recommendation based on two proposed methods.
Here, Ds represents DFCM + sF, DsR represents DFCM + sF+Rerank Score.

7. Conclusions and Future Work

In this paper, facing the proposed three challenges, we put forward the correspond-
ing solutions. First, we present a data field clustering method, whose performance
is slightly superior to Mean Shift method. And then, we provide more friendly and
comprehensive overviews for each landmark. Subsequently, we present an improved
user similarity method, which not only utilizes the overview semantic similarity,
but also considers the trajectory similarity and the landmark trajectory similarity.
Finally, we propose a personalized landmark recommendation algorithm based on
the improved user similarity method and adopt a TF-IDF like strategy in order
to produce the nontrivial landmark recommendation. Experimental results show
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that the proposed method can provide reasonable and high quality personalized
landmark recommendations.

In the future, we intend to extend our work in the following three directions.
First, we will attempt to model the users’ dynamic behaviors using more useful
features, such as the landmark popularity etc. Second, we will try to propose a
new method which is used to generate landmark overviews. Third, we will spread
our work to other domains, such as music, book etc.
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