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Abstract: Optimization of sensors’ position is a challenging problem in wireless
sensor networks since the processing process significantly affects energy consump-
tion, surveillance ability and network lifetime. Vectorbased algorithm (VEC) and
Voronoi-based algorithm (VOR) are two existing approaches. However, VEC is
sensitive to initial deployment, while VOR always moves to the coverage holes.
Moreover, the nodes in a network may oscillate for a long time before they reach
the equilibrium state. This paper presents an initially central deployment model
that is cost effective and easy to implement. In this model, we present a new
distributed deployment algorithm based on boundary expansion and virtual force
(BEVF). The proposed scheme enables nodes to move to the boundary rapidly and
ultimately reach equilibrium quickly. For a node, only the location of its nearby
nodes and boundary information are needed in the algorithm, thereby avoiding
communication cost for transmitting global information. The distance threshold is
adopted to limit node movement and to avoid node oscillations. Finally, we com-
pare BEVF with existing algorithms Results show that the proposed algorithm
achieves a much larger coverage and consumes lower energy.
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1. Introduction

Wireless sensor network [1] is an emerging technology in recent years It consists
of many sensor nodes with identical or different functions. The nodes have a
certain capacity in various applications such as communications, data processing
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and data storage, and are reasonably cheap. As an important issue in Wireless
sensor networks (WSNs), optimizing sensor deployment [2] is critical for energy
consumption, monitoring capability and network lifetime

The method of initially random deployment [3,4] is usually adopted in case
of large number of sensor nodes. However, the uniform coverage in the target
area is hard to achieve in randomly deployed nodes, which affects the efficiency
of the whole network and monitoring capability of the target area. Therefore, the
nodes need to be adjusted based on the designed optimization algorithm to achieve
maximization and uniform coverage of the target area.

Several deployment strategies have been proposed in recent years. They can be
divided into centralized and distributed approaches. Most centralized methods em-
ploy the distance threshold to compute the sensor movement, which cannot easily
achieve a k-coverage scenario. In this case, any point in the target field should be
covered by at least k sensors [5]. Moreover, a central server is necessary in a cen-
tralized manner. However, gathering information from sensor nodes to the server
node and delivering information from the server node to other nodes are difficult,
especially for random initial deployment scenarios [6]. Hybrid algorithms combine
distributed and centralized algorithms to achieve the required coverage, which also
needs a central server for information management and exchange. Whereas in most
of the distributed algorithms, the nodes only need limited computing capabilities
according to the location information and the dynamic information of the adja-
cent nodes to execute the algorithm, and independently make the corresponding
adjustments. In addition, achieving k-coverage through a distributed manner is
easy. In summary, a better distributed deployment algorithm for randomly ini-
tial deployment can be performed. The algorithm can also effectively improve the
performance of the network, especially for applications wherein knowledge of the
environment is unknown.

In a real environment, a random deployment in the central area is introduced
based on the model in [8] because of the high cost and influence of the executing
algorithm in the large-scale initial random deployment model [4,5,6,7]. The ran-
dom deployment method is easy to carry out because the nodes can be deployed
by the aircraft to certain coordinates or locations. Considering that all sensors in
the central area are randomly and densely deployed, these nodes are assumed to
easily receive boundary information of the target area through multi-hop commu-
nications from a special node. In fact, using only the initially random deployment
scheme to achieve whole area coverage is difficult, especially in case of forests fire
monitoring, large scale leakage of chemicals and toxic substances in industry, and
battle environments. As a consequence the initially random deployment scheme
cannot achieve real-time monitoring of the whole target region. Therefore, under
the proposed random initial deployment model, we also present a distributed algo-
rithm based on boundary expansion and virtual force (BEVF). The target region
is divided into four sub-regions, and the sensors determine their movement by vir-
tual forces based on boundary information and their neighbor nodes. The sensors
also adjust their movement by a distance threshold, which reduces the oscillation
of nodes and enables them to reach balance status to maximize sensor coverage.
Thus, the nodes move away from a dense area to a sparse area. As such, uniform
coverage distribution and maximization are ultimately achieved.
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The rest of this paper is organized as follows: Section 2 presents some research
works related to ours. In section 3, the system model and assumptions are dis-
cussed. Section 4 introduces the structure and process of the BEVF algorithm In
Section 5, we present the simulation and experimental results to demonstrate the
efficiency of the system and compare it with other existing deployment algorithms.
Finally, the advantages and disadvantages of the proposed scheme are discussed in
Section 6, together with open research issues.

2. Related Work

Sensor deployment is a fundamental issue in WSN since the sensors’ position af-
fects coverage, communication costs and resource management. Sensor deployment
problems with more practical considerations have also been studied in-depth over
the last decade in a variety of scenarios Previous studies related to this paper con-
sist of centralized and distributed deployment strategies, together with coverage
and connectivity issues.

2.1 Centralized Deployment

The virtual force algorithm (VFA) [5] presented by Zou and Chakrabarty is a cen-
tralized approach that divides a sensor network into clusters. Each cluster-head is
responsible for collecting the position information of nodes, and computing their de-
sired locations. New positions are chosen in such a way that the network coverage is
maximized, and sensor movement is minimized. However, this method is based on
very demanding assumptions including location-awareness and autonomous sen-
sor mobility, which restrict its applications. Tan et al. extended the VFA to a
connectivity-guaranteed and obstacle-adaptive version called CPVF [7].

The authors in [3] proposed a Hungarian algorithm–based centralized solution.
In their study, a scan-based movement assisted deployment method (SMART) was
used to divide the sensor network into clusters Each cluster is then scanned to
determine the new sensor locations in each stage This solution can achieve load
balancing and minimize the total moving distance of sensors. They also proposed
a centralized optimal solution in [9] based on the Hungarian method for 2-D grid-
based mesh application.

In [10], the authors proposed the solutions to sensor deployment and dispatch
problems In the sensor dispatch problem, a centralized approach and a distributed
method were discussed to determine a set of mobile sensors to be moved to an area
of interest with the desired coverage and connectivity properties. In the central-
ized solution, the sensor dispatch is converted to the maximum-weight maximum-
matching problem based on the prior deployment results. The objective of this
solution is to minimize the total energy consumption and maximize the average
remaining energy of the sensors. Their solution allows arbitrarily shaped obstacles
and an arbitrary relationship between sensor communication radius and its sensing
radius However, it cannot be used for k-coverage scenarios

To extend the network lifetime, the region closer to the sink should be pro-
vided with higher density of sensors Thus, the problem of sensor deployment to in-
crease network lifetime was addressed in [11] Three solutions including a centralized
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integer-programming formulation, a localized matching method, and a distributed
corona-radius scanning algorithm are addressed.

In [12], the author considered a two-tiered hierarchal heterogeneous wireless
sensor network using the concept of clustering. The author formulated the sen-
sor deployment problem as a multi-constraint optimization problem, and solved it
through a binary integer linear programming (BILP) approach, greedy approach
(GREEDY) and genetic algorithm (GA) approach. Actually, the use of more high-
end sophisticated nodes with significantly additional resources in two-tiered sensor
networks is not a cost effective solution. Moreover, fewer studies regarding connec-
tivity, coverage and traffic constraints are discussed in the paper.

Some bio-inspired algorithms were proposed to solve the sensor deployment
problems. In [13], the author applied a particle swarm optimization (PSO) ap-
proach to optimize the coverage in ad hoc sensor network deployment and to re-
duce cost through a clustering method. A self-organizing algorithm for enhancing
the coverage and detection probability for sensor networks to solve hybrid sen-
sor deployment was presented in [14] Their algorithm combined VFA with PSO,
which is called virtual force-directed particle swarm optimization (VFPSO). The
VFPSO algorithm regards each mobile node as a particle PSO was used to search
the optimal deployment strategy, whereas VFA was used to direct the movement
of particles. The authors also presented a distributed particle swarm optimization
and simulated annealing for an energy-efficient coverage problem in [15], which con-
sidered sensing coverage and energy consumption in their work. They used a grid
exclusion algorithm to evaluate the coverage and Dijkstra’s algorithm to calculate
energy consumption. However, their work did not consider obstacle exits

2.2 Decentralized Deployment

The field based deployment algorithm [16] processes the movement of each node
by virtual force from other nodes and obstacles. Similar to the particles in the
microscopic world, it allows all nodes to explore from a compact region and cover
the whole monitoring area. The method can achieve maximum area coverage.
However, it may take a long time for the network to reach the static equilibrium.
Furthermore, this approach is also constrained due to its boundary restriction.

To reduce oscillation and save energy consumed by node movement, another
distributed deployment protocol for MSNs based on Voronoi diagrams (VD) by
Wang et al was discussed in [6] In their study, VD was used to discover coverage
holes and maximize coverage area. The author also designed three algorithms
including the vector-based algorithm (VEC), the Voronoi-based algorithm (VOR)
and minimax algorithm to support move assisted sensor deployment with high
network coverage and limited moving distance. All these algorithms assume that
each node shall exchange its current location information with all other nodes in
the network to acquire its corresponding Voronoi vertices and cell Hence, each
sensor is required to maintain a large portion of information and consumes more
communication cost during the round-by-round deployment phases.

A distributed deployment scheme was presented in [17] to achieve multilevel
coverage of the area of interest. The scheme utilizes a competition-based scheme
and a pattern-based scheme for the dispatch problem The former allows mobile
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sensors to bid for their closest locations, whereas the latter allows sensors to derive
the target locations on their own. This scheme can achieve a k-coverage scenario.
However, there is an assumption that the initial deployment of the network is
connected, which is usually not the case in practice.

Fagiolini et al addressed how mobile sensors with limited sensing capabilities
cooperate and adjust their locations to maximize the covered area and minimize
coverage holes [18]. They used a distributed motion algorithm based on an original
extension of Voronoi tessellation.

Other fundamental issues related to sensor deployment are sensing coverage and
network connectivity [19]. The relationship between coverage and connectivity was
investigated in [20]. Both the necessary and sufficient conditions are improved to
ensure that coverage implies connectivity. Moreover, the problem of maintaining
sensor coverage and connectivity by keeping a minimum number of sensor nodes in
the active mode is addressed. In [21], the m-coverage and n-connectivity problem
under border effects is studied and the metric of sensing coverage and network
connectivity is proven. In [22], the sensing coverage and network connectivity are
combined into an optimization problem and solved by a single algorithm. The
dynamic network configuration was designed and analyzed in [23,24] to achieve
guaranteed degrees of coverage and connectivity. Bai et al. proposed an optimal
deployment patterns (OPT) to achieve both coverage and connectivity in [25]

We conclude this section by observing that both the centralized deployment
schemes and the distributed deployment strategies have their special applications.
To quickly move nodes towards the boundary, as well as to improve the network
lifetime and QoS performance, we present a new distributed algorithm based on
boundary expansion and virtual force (BEVF).

3. System Model and Assumptions

We consider a network of mobile sensors that are randomly deployed over a small
central area inside the sensing region of interest [8] to detect and track events, as
shown in Fig. 1. In the WSN each sensor has the same role and relies on other
sensors to relay its messages to the sink node via multi-hop radio communication
[26]. Each point in the area is observed by at least one sensor at any time. The
lower bound of the network 1-connectivity is also guaranteed. The objective of
the deployment problem is to redeploy the mobile sensors to the whole region to
achieve uniform distribution, as well as to minimize the total moving distance and
energy consumption of the nodes. Meanwhile, the desired coverage and connectivity
constrains should be satisfied.

We consider a monitored region A. A WSN can be modeled as a graph G =
(S,E), which consists of N mobile sensors S = {s1, s2, . . . , sN}, a base station, and
a set of wireless links E. All the sensors have the same communication range rc
and sensing range rs [25]. As with many applications, the sensors can communicate
with one another as long as the distance between any two sensors is less than rc,
and any target in the region can be detected by a sensor according to the binary
detection model.

Assuming that sensor si is located at point (xi, yi), P is a point in the region
and its coordinate is (x, y), the Euclidean distance [14] between si and P can be
denoted as d(si, P ), which is calculated as follows.
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Fig. 1 Initially central deployment.

d(si, P ) =
√

(x− xi)2 + (y − yi)2 (1)

The sensing coverage of a network can be determined by finding the union of the
areas defined by the location of each sensor and its rs In the binary detection model
[26], the probability of detecting the event of interest is one within the sensing range
rs Otherwise, the probability is zero.

For the desired sensor network architecture based on the Voronoi diagram, we
make the following assumptions:

(1) All the nodes can communicate with their neighbors to achieve connectivity
for the whole network after random deployment within a small area.

(2) The sensing field is obstacle-free. Therefore, the nodes need not consider
obstacle-avoiding issues.

(3) Each node knows the boundary information and only needs to maintain the
positions of its neighbors.

4. BEVF Algorithm

In this section, we present the definitions of boundary nodes and the boundary
expansion force, and state the control approach to achieve uniform coverage and
node oscillations by a distance threshold. We analyze the total force on the nodes
due to their neighbors and boundaries, and then propose the system framework
and distributed deployment algorithm (BEVF).
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4.1 Boundary Nodes

Fig. 2 shows a Voronoi diagram [6] of the nodes that are deployed in the central area
of the target field. To construct a Voronoi polygon [6, 27], each sensor node first
calculates the bisectors of its neighbors and itself based on the location information,
these bisectors and the boundary of the target field then form several polygons.
The smallest polygon encircling the sensor is the Voronoi polygon of this sensor.
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Fig. 2 Voronoi diagram.

As shown Fig. 2, these nodes can be divided into two types, namely, the bound-
ary and internal nodes. Boundary nodes are on the boundary of convex or have at
least one Voronoi vertex that falls on the boundary of target area. For example,
boundary nodes include the nodes with numbers 3, 4, 10, 18, 20 and 38. Internal
nodes are those that have no Voronoi vertex that fall on the boundary of target
area. For instance, these include the nodes with numbers 39, 14, 42, 19 13, and 43.

The nodes move to the boundary based on the moving length dmax (no longer
than dmax) [6] under the effect of boundary expansion force which means that the
boundary nodes have the trends of expanding to the boundary by the attraction

force exerted by the boundary. In Fig. 3,
⇀

F ib is the combined force between the

horizontal force
⇀

F ih and vertical force
⇀

F iv. Therefore, the nodes move toward the

angle θ under
⇀

F ib. The angle θ is calculated by

θ = arctan(|
⇀

F iv|/|
⇀

F ih|) (2)
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where |
⇀

F ih| and |
⇀

F iv| are the horizontal and vertical distance between the node to
the boundary, respectively

The boundary expansion force is the force exerted by a definable boundary on
the boundary nodes to achieve the expansion. The boundary expansion force makes
the nodes rapidly move to the boundary and causes the nodes to achieve uniform
deployment in the target region. Our BEVF algorithm divides the target area into
four parts (Fig. 3). The boundary nodes can determine its location within the
target area based on its location information, and calculating angle θ, the angle is
the combined force of the boundary expansion between the horizontal directions.

θ θθ θ
F ibr F ibr

F ibrF ibr
F ivr F ivr

F ivrF ivr
F ihr F ihrF ihr F ihr

Fig. 3 The expansion force on boundary node.

4.2 The Distance Threshold dth

In BEVF, we use the distance threshold dth that has been introduced in [5] to
control the motion of nodes to achieve the uniform coverage, and to reduce the
oscillation of nodes to ensure the stability of network The distance threshold is
related to sensing radius rs.

The rules of node movement include the exertion of the virtually repulsive force
to push each other to move to the sparse area if the distance between two nodes
is less than the threshold dth However, if the distance is larger than the threshold,
there is no virtual force to affect each other. That is, one sensor will exert repulsive
force to the other when the distance between them is smaller than the threshold,
and they do not affect each other when the distance between them is not smaller
than the threshold. For instance consider four sensors s1, s2, s3 and s4 as shown
in Fig. 4, if we assume that d(s1, s4) = dth, d(s1, s2) < dth and d(s1, s3) > dth,
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Fig. 4 An example of virtual forces between sensors.

s2 will exert repulsive force on s1, and no force from s3 and s4 will be exerted on
s1 Therefore, the nodes will be densely distributed if the distance between each
two nodes is much smaller, such as dth ≤ rs. Furthermore, the optimal network
structure is achieved when the distance between two nodes is

√
3rs [20]. Thus, the

range of the threshold was set to rs < dth ≤
√
3rs, as shown in Fig. 5(a).

When dth ≤ rs as shown in Fig. 5(b), the nodes have less moving distance each
time. This increases the unnecessary energy consumption and sensor movement,
and more time is needed for the sensor network to achieve static equilibrium. In
addition, more coverage overlaps and coverage holes will form in this case. There-
fore, the performance of the sensor deployment is decreased and the sensors cannot
reach uniform distribution when the proposed algorithm is terminated.

When dth >
√
3rs as shown in Fig. 5(c), the nodes are in an unstable state

based on a much larger threshold. This also generates coverage holes and fails to
achieve the maximization of the sensing coverage. Reaching equilibrium is difficultthdcrsr thd(a) sths rdr 3≤< (b) sth rd ≤ (c) sth rd 3>

sr thd
Fig. 5 Three cases of the relationship between dth and rs: the blue dotted lines
represent the boundary of communication range with communication radius rc, and
the red solid lines represent the boundary of sensing range with sensing radius rs.
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for these nodes because the distance threshold is much larger and the nodes will
move if the distance is less than the threshold. As such, the oscillations of the node
are increased.

4.3 Analyzing the Forces on Nodes

If si is an interval node, it is only affected by virtual repulsive forces exerted by
the neighbor nodes. However, if si is a boundary node, it is affected not only by
the virtual repulsive forces from its neighbors, but by the expansion force from its

nearest boundary. Therefore, the total force
−→
F i on si can now be expressed as

F⃗i =

{ ∑ ⇀

F ij si ∈ Sinter∑ ⇀

F ij +
⇀

F ib si ∈ Sbound

(3)

where
⇀

F i is the combined force on si,
⇀

F ib is the force exerted by the boundary,
Sinter is a set of interval nodes and Sbound is a set of boundary nodes.

Let bi be the intersection if a line is drawn through si perpendicular to the
nearest boundary line of si, and d(si, bi) represents the distance between node si

and the boundary which is nearest to the node si
−−→
bisi is a vector from the nearest

boundary to the sensor node si, which is perpendicular to the nearest boundary,
dmax is the moving distance of node si affected by the boundary expansion force
each time.

If dth/2 is not larger than d(si, bi),
⇀

F ib = F⃗ih +
⇀

F iv = dmax · (cos θ, sin θ) where
(cos θ, sin θ) is a vector showing θ degree with the horizontal direction as shown
in Fig. 3 dmax · (cos θ, sin θ) means that node si will move dmax meters each time
towards the direction of θ degree with the horizontal direction In other words, it

calculates the size and the direction of the force
⇀

F ib. So the boundary nodes are
affected by the boundary expansion force and rapidly move toward the boundary.

If dth/2 is larger than d(si, bi),
⇀

F ib =
⇀

F ih+
⇀

F iv = (dth/2−d(si, bi))·
−−→
bisi

/
d(si, bi),

where
−−→
bisi

/
d(si, bi) is the unit vector of direction

−−→
bisi, and (dth/2 − d(si, bi)) is

the size of force. It means that the boundary will exert a repulsive virtual force
to push the node away (dth/2− d(si, bi)) meters from the boundary, thus avoiding
the node move outside the target area, and guaranteeing that it is much closer
to the boundary. Therefore, the distance between any boundary node and its
nearest boundary of the target field is almost dth/2 meters, which is effective for
position adjustment for boundary nodes

⇀

F ib =

{
dmax · (cos θ, sin θ) d(si, bi) ≥ dth/2

(dth/2− d(si, bi)) ·
−−→
bisi

/
d(si, bi) d(si, bi) < dth/2

(4)

In a 50m× 50m target field, we distributed 30 nodes Fig. 6(a) shows the tracks of
nodes under the boundary expansion force in the first two rounds. It shows that
the nodes move toward the angle θ under the boundary expansion force based on
the divided part in the target area. The circles represent the initial location of
nodes and the boxes are the terminated locations of moving under the force. The

318



Nan G. et al.: Distributed deployment algorithm based on boundary . . .

nodes rapidly and effectively move toward boundary based on the combined force
to ensure the effectiveness and fast convergence of the proposed algorithm.

Let −−→sjsi represent the vector from node sj to node si, and d(si, sj) represent
the distance between node sjand node si. If the distance between node si and sj is
not less than the threshold dth, there is no virtual force between node si and node

sj , that is,
⇀

F ij = 0 and
⇀

F ji = 0. When the distance between node si and sj is less
than the threshold dth, two different cases are discussed:

(a) If sensor si can completely cover all its Voronoi vertexes,
⇀

F ij = 0, which
shows that sensor sj has no virtual force effect on sensor si and sensor si does not
move. Meanwhile, sensor sj will be pushed (dth−d(si, sj)) meters away from sensor
si towards the direction of unit vector −−→sisj/d(si, sj). Thus, we can guarantee that
the distance between any boundary node and its nearest boundary is almost dth
to achieve a uniform distribution that is

⇀

F ji = (dth − d(si, sj)) · −−→sisj/d(si, sj) (5)

(b) If sensor si cannot cover all its Voronoi vertexes, the virtual repulsive force
is exerted by si to the sensor sj and pushes the sensor sj to move (dth−d(si, sj))/2
meters towards the direction of the virtual force from sensor sj . Meanwhile, sensor
sj exerts a virtual repulsive force to push the sensor si away (dth − d(si, sj))/2
meters from sensor sj . Thus, we can guarantee the distance between every two
nodes is almost dth to achieve a uniform distribution that is,

⇀

F ij = (dth − d(si, sj))/2 · −−→sjsi/d(si, sj) (6)

⇀

F ji = (dth − d(si, sj))/2 · −−→sisj/d(si, sj) (7)

We deployed 30 sensors in a 50m×50m target field. Fig. 6(b) shows the tracks
of the nodes affected by the boundary expansion force and virtual force in the first

0 10 20 30 40 50051015
20253035
404550

0 10 20 30 40 50051015
20253035
404550

(a) (b)

Fig. 6 (a) The tracks of boundary nodes affected by the boundary expansion forces
in the first two rounds, (b) The tracks of nodes affected by the combined forces in

the first five rounds.
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five rounds. The red circles represent the initial deployment locations whereas the
blue boxes represent the terminated locations in round five. We can see that the
nodes move toward the direction of the combined forces of the boundary expansion
and the virtual forces based on its location information. The nodes constantly
adjust their location based on the threshold dth to push the nodes away from a
dense area to a sparse area. Eventually, the network reaches a balance state and
achieves a uniform distribution.

4.4 Energy Consumption

In computing the energy consumption of the sensors’ movement, we applied the
model in [10] which represents the total energy consumption of all nodes:

Ei =
∑
j

∆e · dij (8)

where ∆e is the unit energy cost to move a sensor by a distance of one unit, and
dij is the distance of moving node si in the j round.

4.5 Application of BEVF in Sensor Deployment

We executed our proposed algorithm using the following steps. To begin with, we
deployed nodes in the central part of the target area. The nodes constructed their
Voronoi polygons based on the network structure. If node si is the boundary node,
then it is affected by the boundary expansion force and virtual force. However, if
node si is not a boundary node, it is affected by the virtual forces exerted by the
adjacent nodes. Meanwhile, to avoid the movement of the nodes outside the target
area or to an area much closer to the boundary, position adjustment for boundary
nodes is adopted. The proposed algorithm will be terminated when the system
state satisfies the desired criteria Otherwise, the algorithm will be executed once
again until the state of the whole network satisfies the stop criteria. The process
of the proposed algorithm is shown in Fig. 7.

Fig. 8 is a Voronoi diagram with 50 sensors deployed into the central area of a
50m × 50m target field The initial coverage rate is 28.92% because the nodes are
centrally deployed in the target area Every node maintains its Voronoi polygon and
its neighbor nodes are anomalistic. Therefore the network is not uniformly covered

Fig. 9 shows a Voronoi diagram after executing our BEVF for 20 rounds The
coverage is 97.92%. We can see that all the Voronoi polygons are more regular
compared with the initial case. The distance between a node and its neighbor is
approximately equal to the distance threshold dth, which shows the entire network
has reached a relatively stable state. Each node in the network does not oscillate
under the boundary expansion and the virtual force exerted to it. A uniform
distribution and maximization of the coverage area are eventually achieved. A
formal description of the BEVF algorithm is shown in Fig. 10.
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YesIf Si is a boundary node

Satisfy the stop criteria
Fig. 7 The process of BEVF.
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Fig. 8 The initially random
deployment.
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Fig. 9 BEVF 20 rounds.

5. Performance Evaluation

Our objectives in performance evaluation are twofold. The first is to evaluate the
effectiveness of our algorithm in providing high coverage in the target area. The
second one is to analyze the efficiency of the proposed algorithm in providing cov-
erage in the target area, average moving distance and average energy consumption
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Fig. 10 Pseudocode of the BEVF.

of the nodes. By comparing our BEVF with the existing algorithms based on
Voronoi diagram, we are able to show the characteristics and the superiority of our
algorithm in some aspects.

We evaluate BEVF from the following aspects: (1) Comparing with VEC and
VOR in terms of coverage, average moving distance and average energy consump-
tion in different nodes density. (2) The effects of distance threshold dth in terms
of coverage, average moving distance and average energy consumption in different
nodes density.

We randomly distributed four different numbers of sensors in the central area
in a 50m × 50m obstacle-free target field. The number of sensors ranged from 40
to 70, in increments of 10 sensors. We set the sensing range rs = 5 which is a little
smaller than that in [6]. The communication range is set as rc = 10 which is twice
of rs. The distance threshold dth is set as 7. Finally, the energy consumption for
one sensor to move by a distance of one unit is set to ∆e = 2.
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5.1 Sensing Coverage

Fig. 11 shows the final coverage of the three algorithms in different numbers of
sensors under a randomly central deployment model. We can see that the coverage
is greatly increased by all three algorithms compared to the initial random distribu-
tion. For example, in the case where 60 sensors are deployed, the three algorithms
can increase the coverage rate to more than 95%from 30.4%. When 70 sensors are
deployed in the target area, the VOR increase the coverage rate to more than 97%,
and BEVF increases the coverage rate to 100%.

Fig. 11 Coverage comparison.

Fig. 12 shows the coverage in each round and convergence when the number of
sensors is 50. We can see that the coverage rate by the three algorithms quickly
increased during the first several rounds under the proposed random deployment

Fig. 12 Coverage and Convergence.
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model. In addition, the coverage rate by BEVF and VOR increases much faster
than VEC. For example, after 10 rounds, the coverage rate by the three algorithms
achieved at least 90%. After five rounds, the coverage rate generated by BEVF is
more than 95%.

Among VOR and VEC, VEC performs worse in coverage in all cases of nodes
density in [6], and the speed of covering is faster than VEC. It can be seen from
Fig. 9 and Fig. 10 that between BEVF and VOR, BEVF performs better in
coverage and convergence time. The primary reason is sensitivity of the VEC to
the initial deployment. Assuming a situation in which sensors are located in the
same line with equal spacing, no sensor will move. Thereby, large holes will be
generated. VOR performs better than VEC because it always detects the holes in
its Voronoi polygon, and moves toward the holes to heal them without generating
new holes. The nodes in the network may oscillate for a long time before they
reach the static equilibrium state, which makes the network unstable. Among
the three algorithms, BEVF performs best because it can achieve a maximization
of coverage in all cases of all nodes density, and it is not sensitive to the initial
deployment. From the coverage curve, we can see that the proposed algorithm
can rapidly achieve a uniform distribution, and the coverage rate can reach 96% in
the first five rounds. Therefore, we can conclude that BEVF can achieve the best
coverage performance than VEC and VOR.

5.2 Moving Distance and Energy Consumption

The performance of these three approaches described in the previous sections is
studied in this section in terms of moving distance and energy consumption. Fig.
13 and Fig. 14 show the total moving distance and average moving distance in
different numbers of sensors, respectively. The total moving distance by the three
algorithms increase as the number of sensor nodes is also increased, and the total
moving distance is in proportion to the nodes density.

Fig. 13 The total moving distance.
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Fig. 14 The average moving distance.

However, the average moving distances has great differences. We can see from
Fig. 13 that the average moving distance by VEC only slightly increased with the
increase in node density. Under the proposed initial deployment model, the average
distance between the two nodes decreases as the number of nodes increase, which
also demonstrates that VEC is not sensitive to the node density [6] and the effect
of node density on the average moving distance has no obvious difference.

VOR always detects coverage holes in its Voronoi polygon, and moves toward
the farthest vertex of polygon with a moving distance of dmax, unless the hole
is healed. As the node density decreases, the size of the coverage holes becomes
larger, which leads to more movements of the nodes to heal the holes. For example,
when the number of nodes is 40, the average moving distance of VOR is 17.62. As
the node density increases in the target area, the coverage holes decreases, and
the average moving distance becomes smaller as well. In the case of N = 70, the
average moving distance is 13.89, which shows that the moving distance by VOR
is sensitive to the node density.

In our BEVF, the boundary nodes rapidly move toward the boundary, and
the internal nodes self-organize to achieve a uniform distribution under the virtual
force. The number of boundary nodes decreases because the node density in the
target area is low. Therefore, the average moving distance of the nodes is smaller.
For example, when the number of nodes is 40, the average moving distance of
BEVF is 12.72. As the node density increases, the number of boundary nodes
which can move toward the boundary increases as well. Therefore, the average
moving distance increases compared to VOR and VEC. The network reaches a
balance state because it is affected by the existing virtual force between the nodes.
The network avoids node oscillations and is more stable by BEVF than that by
VOR.

Fig. 15 and Fig. 16 show the total energy consumption and average energy
consumption, respectively, in different numbers of nodes by the three algorithms.
We can see that the total energy consumption of BEVF is the lowest and that
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Fig. 15 The total energy consumption.

of VOR is the highest when the nodes density is smaller in Fig. 15. That is
because the nodes in the target field will not move if the network comes to stable
state, the nodes in VOR always detects coverage holes in its Voronoi polygon, and
moves toward the farthest vertex of polygon with a moving distance of dmax, unless
the hole is healed. Thus, VOR consumes more energy than BEVF in lower node
density. In higher node density mode, though the total energy consumption of
VOR is lower than BEVF, BEVF performs better in the coverage and convergence
time than VOR. In addition, the energy consumption of BEVF is lower than that
of VEC.

Fig. 16 The average energy consumption.

From Fig. 16 we can see that the average energy consumption of VOR decreases
as the nodes density increases, and becomes the smallest among that of three al-
gorithms when the number of nodes is 70. The average energy consumption is
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similar in most cases because VEC is not sensitive to the nodes density. BEVF
performs the best in lower node density, and the average energy consumption in-
creases smoothly which is much lower than that of VEC in all cases.

Based on the above discussion, we can come to the conclusion that the average
moving distance and average energy consumption of BEVF is the smallest in a
node with low density. BEVF also obtains a better sensing coverage performance
in different nodes densities, as described in Section 5.1.

5.3 The Effect of dth on BEVF Performance

From Section 4.2, we know that the threshold dth must meet the condition of
rs < dth ≤

√
3rs, that is 1 < dth/rs ≤

√
3 We set λ = dth/rs, and the proposed

algorithm terminates at round 20.

From Fig. 17 we can see that when the threshold is controlled within a certain
range, the sensing coverage increases as the nodes density is increased. After the
threshold exceeds the range, the sensing coverage decreases as the nodes density
is increased. In the case of λ = 1.4, the sensing coverage is approximately the
optimal one in most cases. For example, when the number of nodes is 50, the
sensing coverages ofλ = 1.3, λ = 1.4 and λ = 1.6 are 92.64%, 97.92%, and 99.1%,
respectively. When the number of nodes is 60, the sensing coverages ofλ = 1.3,
λ = 1.4 and λ = 1.6 are 97.68%, 99.04%, and 98.4%. When the number of nodes
is 70, the coverages of λ = 1.3, λ = 1.4 and λ = 1.6 are 99.99%, 99.99%, and
98.2%, respectively. The primary reason is that a larger threshold can affect the
balance of the network. The nodes will move as the distance between the two
nodes is smaller than the threshold. Moreover, as the nodes density increases, the
distance between two nodes decreases. Therefore, the distance between two nodes
may be smaller than the threshold with nodes of high density, where the balance
state under the combined forces is difficult to reach. As the value of the threshold
increases, the number of unstable nodes also increases. These nodes will move in

Fig. 17 The effect of dth (λ) on coverage.
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each round, thus, the network cannot easily reach a stable state. Although the
maximization of coverage can be reached, it will lead to an unstable network and
cause the deployment process to fail in ultimately meeting the system requirements.

Fig. 18 and Fig. 19 show the effects of the threshold dth on the average moving
distance and the average energy consumption in different nodes density respectively.
We can see that when the nodes density is determined, the average moving distance
and the average energy consumption increase as the value of λ is also increased.
For instance, if the number of nodes is 50, the average moving distances of λ = 1.2,
λ = 1.3 and λ = 1.5 are 12.55, 12.99 and 15.43 respectively. The average energy
consumptions are 25.101, 25.98 and 30.86, respectively When the number of nodes
is 60, the average moving distances of λ = 1.2λ = 1.3, and λ = 1.5 are 13.48, 14.30

Fig. 18 The effect of dth(λ) on average moving distance.

Fig. 19 The effect of dth(λ) on average energy consumption.
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and 17.48 respectively. The average energy consumptions are 26.96, 28.61 and
34.96 respectively When the number of nodes is 70, the average moving distances
of λ = 1.2λ = 1.3, and λ = 1.5 are 14.71, 15.80 and 18.46, respectively. The
average energy consumptions are 29.42, 31.59 and 36.93 respectively The reason is
that the number of moving nodes increases as the threshold is also increased for
a certain node density, which thereby increases the total moving distance and the
total energy consumption, as shown in Fig. 20 and Fig. 21.

Fig. 20 The effect of dth(λ) on total moving distance.

Fig. 21 The effect of dth(λ) on total energy consumption.

We can also see from Fig. 18 and Fig. 19 that the average energy consumption
and average moving distance of nodes increase smoothly by a small amount when
λ is smaller than 1.4, while they increase sharply when λ is larger that 1.4 Because
the increase of λ implies the increase of dth, the smaller threshold (λ < 1.4) reduces
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the unnecessary move of the nodes and make it easy for a WSN to be in stable
state, thereby reducing sensor move and energy consumption while larger threshold
(λ > 1.4) increases the unnecessary move of the nodes and make it hard for a
WSN to be in stable state. Thus, combined with the analysis of effect of dth (λ)
on coverage, λ = 1.4 is effective in terms of coverage performance and energy
consumption.

6. Conclusion

This paper addressed the problem of sensor deployment to achieve coverage perfor-
mance after a random deployment of sensors into the central area of a large-scale
target field. Considering the high cost and inconvenience in the traditional de-
ployment approaches, we introduce an initially random deployment model in the
central area of target field, which is not only easy to carry out but cost effective as
well. For the proposed deployment model, we also present a distributed algorithm
based on boundary expansion and virtual force, which only needs the location in-
formation of each node and the boundary. By making full use of the data structure
and characteristics of the Voronoi diagram, the motion of the nodes is determined
by the angle of the combined force and horizontal direction, the moving length and
the distance threshold

Simulation results demonstrate the effectiveness of our BEVF in terms of sens-
ing coverage and energy consumption by comparing it with the existing algorithms
based on Voronoi diagram. The proposed algorithm can achieve a maximum sensing
coverage, the lowest moving distance and energy consumption in scenarios involv-
ing nodes with low density. In the case when the nodes have a higher density, the
proposed algorithm can achieve a complete coverage with lower energy consump-
tion. Therefore, our BEVF can achieve the optimal deployment than VEC and
VOR. Simulation also discusses the impact of the distance threshold dth on sensing
coverage, average moving distance and average energy consumption.

Our future work will focus on the application of the proposed algorithm to
a more complicated environment Our network model will be extended to process
any arbitrary obstacles in the target region. We will optimize the destinations
of the mobile sensors from the perspective of the overall network to achieve the
minimization of the moving distance and energy consumption. We will also derive
the relationship of the distance threshold with coverage level and the lower bound
of sensors required to achieve an m-coverage and n-connectivity scenario.
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