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Abstract: A robust prediction model is developed for reliably estimating vehicular
consumption. This model is distinguished from other models proposed so far for the
following reasons: it detects the factors contributing into vehicular consumption,
it applies machine learning functionality for approximating the nonlinearities and
the specificities between the contributing factors, and it is capable of implicitly
adapting to the characteristics of the vehicle, the road network and the contextual
conditions through its learning process. The authors validated its efficiency by
applying it on measurements collected during a data acquisition campaign, which
was performed by a fully electric vehicle (FEV) in an urban road network.
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1. Introduction

Nowadays, there is a growing interest in reliably estimating a vehicle’s energy con-
sumption (either fuel or electrical consumption) towards a specific destination. The
pre-trip knowledge of the expected energy consumption along a route may affect
the decision of selecting a particular route among the available ones considering
the constantly rising price of energy, as well as due to ecological reasons [2, 4, 5].
Furthermore, such knowledge is necessary in order to calculate the reachability of
a destination before settling towards it. The outcome of this calculation is very
important especially in cases of vehicles consuming alternative fuels, which have
limited reserves and certain restrictions regarding their refuelling process. For ex-
ample, the FEVs’ recharging process is significantly time consuming, while the
compressed natural gas (CNG) vehicles’ refuelling network is very limited. Thus,
the accuracy and reliability of the energy consumption estimation is of high signif-
icance when planning the routing and refuelling strategies of such vehicles.
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Several techniques have been proposed for vehicular energy consumption es-
timation. In [8] authors formulated a fuel consumption model using only engine
efficiency characteristics as part of an ecological vehicle control system. An eco-
logical route search mechanism that generates routes requiring the least amount
of fuel by considering many factors such as traffic information, geographic infor-
mation, and vehicle parameters is introduced in [11]. Another analytical model is
presented in [12] where link energy consumption is calculated based on the actual
power needed to overcome the driving resistance for each link using link travel
speeds and volume/capacity-ratios. In all these studies, authors try to develop a
deterministic formula for fuel consumption estimation adopting a different factor
analysis. However, the complexity and the nonlinearities prevailing in the relations
between the factors contributing in vehicular consumption impose a lower bound
in the estimation error of these models.

In order to overcome this limitation, we propose a prediction model based on
machine learning (ML) functionality. ML involves searching a very large space
of possible hypotheses to determine one that best fits the observed data. Then,
this optimal hypothesis can be used to estimate the energy consumptions in case
of future and possibly yet unseen contextual instances. ML functionality has al-
ready been applied successfully in a model predicting the torque and brake-specific
fuel consumption of a gasoline engine (the rate of fuel consumption divided by the
power produced) [9]. The spark advance, the throttle position and the engine speed
constitute the inputs of the artificial neural network (ANN) based formulation de-
veloped in the context of this study. In a similar manner, the make of car, the
engine style, the weight of car, the vehicle type and the transmission system type
are used as input information for an ANN based predictive system introduced in
[19]. The developed model comprises three parts (i.e. the information acquisition
system, the fuel consumption forecasting algorithm and the performance evalua-
tion process) and provides reliable forecasts of the vehicular consumption rates in
different environments (city, highway or mixed mode). Although the implementa-
tion of ML functionality proved to be successful in the reviewed studies, exploiting
the average rates that are generated by these models (i.e. the brake specific fuel
consumption and the fuel consumption rates in city, highway or mixed mode) can
lead only to a rough estimation of the expected vehicular consumption along a
specific road segment. Thus, the present paper proposes the development of a ML
based model that estimates directly the vehicular consumption along a specific road
segment based on the current contextual instance.

The rest of this paper is organized as follows. In Section 2, the proposed model
for vehicular consumption prediction is introduced. Section 3 presents the contex-
tual parameters identified as major contributors in vehicular consumption. Section
4 describes the validation process and analyzes the generated results. Finally, Sec-
tion 5 summarizes the work and concludes the paper.

2. Prediction Model

The first step in designing a learning system involves choosing the training expe-
rience through which the system will learn. Herein, we propose to exploit training
data collected by vehicles while travelling along everyday routes (i.e. energy con-
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Fig. 1 The MLP network used for energy consumption prediction.

sumption along road segments, together with contextual attributes such as weather
characteristics). In this way, the developed system tries to infer the relations un-
derlying real collected data and, subsequently, after training, it is rendered capable
of running in an autonomous fashion. The second step involves selecting the target
function of the learning system. Here, as target function, we choose a function f
that calculates the energy consumed after travelling a road segment based on the
current context (f : C → R). Next step involves choosing an ideal representation

f̂ for the target function. Considering that the energy consumption calculated by
the target function is a real value and that the relations dominating among the
context factors are non-linear, we propose the use of artificial neural networks, and
specifically multilayer perceptrons (MLP), for representing the target function.

MLPs are proved to be an effective tool in several application areas. According
to the literature survey conducted in [20], which evaluates the recent applications of
artificial intelligence-based modelling studies in the environmental engineering field,
the three-layer feed-forward and back-propagation MLP networks are considered
as one of the simplest and the most widely used ML networks. Their performance
either in estimating the effectiveness of various biological and chemical treatment
processes or in forecasting the levels of various air pollutants (e.g. NO2, SO2, etc.)
or in modelling the weight of solid waste generation is proved to be significant.
Quite astonishing is also the performance of the ML based model that is proposed
in [3] as a tool for measuring the speech quality in Voice over Internet Protocol
(VoIP) networks. Other application areas where the usage of MLP networks re-
sulted in significant performance results include photovoltaic power plant ouput
prediction models [17], time series forecasting in stock markets [15], prediction of
shear strength of reinforced concrete beams [1] and prediction of monthly natural
gas consumption [13]. In addition to the previously cited achievements, the appli-
cation of MLP techniques in image processing technology gave also a major boost
to the successful interpretation of medical images and the early diagnosis of serious
diseases [6]. Thus, the reported prediction capabilities of the MLP networks render
their usage a quite promising solution in environmental applications, and herein
we employ them for reliably estimating vehicular consumption.
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The structure of the designed MLP is depicted in Fig. 1 and consists of the
input layer, one hidden layer and the output layer. According to the MLP net-
work structure, the representation f̂ for the target function can be written in the
following nested form:

f̂(c⃗, w⃗) = ϕ

∑
k

wokϕ

∑
j

wkjϕ(wjcj)

 (1)

where ϕ(.) is a sigmoid activation function, wok is the synaptic weight from neuron
k in the hidden layer to the single output neuron o, wkj is the synaptic weight from
neuron j in the input layer to the neuron k in the hidden layer and cj is the jth
element of the input vector c⃗.

The sigmoid activation function ϕ(.) applied to the MLP network is:

ϕj(uj(n)) = α · tanh(b · uj(n)), (a, b) > 0 (2)

i.e. the hyperbolic tangent function where a and b are constants and uj is the
weighted sum of all synaptic inputs of neuron j.

The design of the learning system is completed with the adoption of a learning
algorithm. The most widespread choice in case of MLPs is the backpropagation
algorithm [18], which searches the space of possible hypotheses using gradient de-
scent to iteratively reduce the error in the network fit to the training dataset.
However, in order to accelerate the typically slow rate of convergence experienced
with the method of gradient descent, we propose the use of the conjugate gradient
descent method [14] that handles the supervised learning as a numerical optimiza-
tion problem. The objective of the learning process is to adjust the weights of the
MLP network to minimize the average squared error energy function Eav over all
(N) examples of the training set:

Eav =
1

N

N∑
n=1

E(n) =
1

N

N∑
n=1

1

2
e2o(n) =

1

N

N∑
n=1

1

2
(do(n)− yo(n))

2 (3)

where eo is the error signal at the output neuron, do is the desired response of the
output neuron and yo is the function signal appearing at the output neuron.

The conjugate gradient descent method tries to iteratively minimize the quadratic
part of the Taylor series expansion of Eav (eq. 4) and is briefly described by the
set of equations (5)-(9):

Eav(w(n)) + gT (n)∆w(n) +
1

2
∆wT (n)H(n)∆w(n) (4)

s(0) = r(0) = −g(0) (5)

w(n+ 1) = w(n) + η(n)s(n) (6)

r(n+ 1) = −g(n+ 1) (7)

β(n+ 1) = max(
rT (n+ 1) · (r(n+ 1)− r(n))

rT (n) · r(n)
, 0) (8)
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s(n+ 1) = r(n+ 1) + β(n+ 1)s(n) (9)

where g(n) is the local gradient vector and H(n) is the local Hessian matrix.

The result of the learning process is finding the hypothesis that best fits the ob-
served data and thus reliably predicts the vehicle’s energy consumption (according
to the inductive learning hypothesis).

3. Measurements

A data acquisition campaign was carefully planned and conducted in order to gen-
erate the necessary dataset for verifying and validating the proposed model. The
objective of the planning was twofold: first, to collect a number of consumption
measurements corresponding to several contextual instances and generate an effi-
cient training dataset; and, second, to define validation routes and generate the
appropriate validation dataset. The campaign was performed by a FEV [16] in
the town of Chieri, Turin area, Italy (approx. 1275km travelled). The training
instances were recorded by an on-board computer connected both to the vehicle’s
controller area network bus socket and to external sensors (i.e. GPS, temperature
and humidity sensors).

Five groups of context parameters have been detected as contributors to ve-
hicular consumption, namely the Vehicle Context, the Traffic Context, the Road
Context, the Weather Context and the Driver Profile. The Vehicle Context in-
cludes the vehicle characteristics that affect the vehicular consumption in a direct
(e.g. the usage of electric auxiliaries or the vehicle gross weight) or in an indi-
rect manner (e.g. the battery’s state-of-charge or state-of-health indicators). The
Traffic Context describes the traffic conditions prevailing in the considered road
segment at a given point in time. In general, traffic density, velocity and flow
constitute the macroscopic parameters used for describing the traffic status of a
specific road segment. Several complicated models have been developed for identi-
fying traffic congestion based on them (such as [10]) or on traffic images’ processing
(for instance, [7]). As using one of them would result in increased complexity, the
periodic trends of the traffic conditions (recurrent traffic) are identified in the pro-
posed model by considering the time window (i.e. the month of the year, the day of
the week and the hour of the day) when the vehicle travels along the road segment.
The Road Context refers to structural characteristics of the road segment that af-
fect directly (e.g. moving uphill leads to increased consumption) or indirectly (e.g.
travelling along a highway at high speed leads to increased consumption) the vehic-
ular consumption. The Weather Context, on the other hand, describes the weather
conditions that affect indirectly the vehicular consumption (e.g. electric auxiliaries
that consume energy are turned on during warm or rainy days). Finally, describing
the Driver Profile is not straightforward, as it refers to the current driving atti-
tude of the driver (e.g. aggressive driving vs. eco-driving). Authors propose the
comparison of the driver’s average consumption rate (calculated by the vehicle’s
trip computer) with the vehicle’s nominal average consumption rate (specified by
the vehicle manufacturer) as the proper parameter for adequately describing the
Driver Profile.
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According to the previous analysis, each instance of contextual attributes com-
prises observed values of the following set of variables:

−→
C = (hb, lb,

−→s aux, wv, td, tmo, thr, θrs, κrs, T,RH, c̄d) (10)

where hb and lb are the battery’s state-of-health and state-of-charge, respectively,
−→s aux is the vector describing the status of the vehicle’s electric auxiliaries, wv is
the vehicle’s weight, td is the current day of the week, tmo is the current month, thr
is the current hour of the day, θrs is the slope of the road segment, κrs is the class
of the road segment, T is the temperature, RH is the relative humidity and c̄d is
the driver’s average consumption rate calculated by the vehicle’s trip computer.

4. Experimental Results

After training the learning system with the collected measurements, we proceeded
to its functional performance evaluation. The proposed system’s performance is
evaluated with actual measurements collected while travelling on a set of validation
routes (approx. 551km travelled). More specifically, the target of the evaluation
process is twofold, i.e. the validation of the system’s reliability and the verification
of the system’s superiority against a reference model.

Fig. 2 depicts the results extracted for validating the proposed model’s reliabil-
ity. The horizontal axis represents the actual energy consumption values measured

Fig. 2 Estimation accuracy of the proposed prediction model.
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on the validation routes, while the vertical axis represents the values predicted
beforehand through our model. Obviously, the closer the scattered points are to
the 1:1 line (45-degree line) the better the prediction accuracy. According to these
results, the proposed prediction model is quite accurate and reliable and provides
only few energy consumption estimations deviating more than ±10%. In other
words, the majority of the validation points are quite close to the 45-degree line.

In the next diagram (Fig. 3), the corresponding performance of a reference
model is depicted, for comparison purposes. As a reference model, we consider a
system that estimates the energy consumption by multiplying the vehicle’s average
consumption rate per length unit with the length of the route. In the case of our
testing vehicle [16], the average consumption rate per length unit is calculated by
dividing the values for the battery’s nominal capacity and the vehicle’s range that
are provided by the manufacturer (22kWh/140km ≈ 157Wh/km). According to
the validation results depicted in Fig. 3, the deviation between the reference model’s
predictions and the measured consumptions is more than 10% in the large majority
of the tests. Thus, the reference model is not as accurate as the model proposed
in the present paper.

Fig. 3 Estimation accuracy of the reference model.

In order to further verify this conclusion, we generate the stem diagram pre-
sented in Fig. 4. This figure is a comparative diagram of the estimation error for
the proposed MLP model and the reference model. The vertical axis represents the
measured estimation error for each model, while the horizontal axis corresponds
to distinct validation tests. It should be mentioned that the scale of the vertical
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axis is limited to ±100%, although some error values cannot be bounded by these
limits. This restriction, however, is necessary in order to make the diagram more
readable, without significant loss of information. Based on the generated diagram,
the proposed vehicular consumption model outperforms the considered reference
model as it presents lower estimation error in almost all of the examined tests.

Fig. 4 Comparative stem diagram of the estimation error for the proposed MLP
model and the reference model.

Finally, in order to quantify the comparison of results between the proposed
model and the reference model, the mean percentage error (MPE) and the mean
absolute percentage error (MAPE) performance indicators are calculated for both
models. Thus, the MPE of the proposed prediction model is 1.22%, which means
that it produces very slight overestimations, while the MAPE is 12.36%. On the
other hand, the MPE of the reference model is -66.07% (meaning that it features
severe negative bias, i.e. produces underestimations) and the MAPE is 189.59%.
This means that our model achieves an improvement for the MPE of more than 50
times over the conventional system, and of more than 15 times for the MAPE. This
outcome can be attributed to the fact that the conventional system, in contrast
to the developed learning system, cannot accurately predict neither the incurred
negative consumptions (i.e. the FEV may generate energy while braking) nor the
different consumptions occuring when travelling through the same route in different
contextual conditions (e.g. different traffic conditions).

5. Conclusion

A context-aware model for predicting vehicular energy consumption is presented
in the current paper. The proposed model implements ML functionality and per-
forms energy consumption estimations based on previously collected experience.
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The initial results extracted after applying the proposed model on real measure-
ments collected using a FEV are quite promising. In particular, the achieved
estimation error of 12.36% on average (less than 10% in the majority of the tests)
renders the introduced model quite reliable for predicting vehicular consumption.
Furthermore, the introduced model is suitable for supporting a destination reach-
ability assessment tool, because on average it does not understimate the vehicular
consumption (as indicated by the computed MPE value of 1.22%).

On the other hand, the present paper uses the same validation dataset in or-
der to evaluate the performance of a reference model. According to the computed
MPE value of -66.07%, the reference model severely underestimates the vehicu-
lar consumption and, therefore, it is not safe to use it for assessing destination
reachability. After the evaluation of the reference model, the extracted results are
also compared against the corresponding ones generated by the proposed model.
Such a comparison is allowed as the same validation dataset is used for both model
evaluations. Thus, the comparison of the MAPE indicators computed for the ref-
erence and the proposed models suggests that the latter outperforms the former
(15 times better). This outcome is significant since it verifies the robustness of the
proposed model, namely its capability of predicting different consumption values
for the same road segment when the contextual parameters change (e.g. different
traffic conditions).
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