
DESIGN OF ACTIVE HEAT DISSIPATION

SYSTEM FOR ADAPTIVE WAVELET

NEURAL NETWORK CONTROL

Yen-Bin Chen∗, Yung-Lung Lee†, Shou-Jen Hsu‡, Yi-wei Chen∗

Abstract: This paper develops an Adaptive Wavelet Neural Network Control
(AWNNC) algorithm for radar active heat dissipation system. The radar core pro-
cessor belongs to a highly precision component which consists of the electronic
device of radio frequency integrated circuit (RFIC) with high power and high per-
formance. The radar core processor should be operated in a narrowly closed envi-
ronment without convection, which will increase the heat sink effect inside the core
processor and further affect its reliability and life-time. The AWNNC comprises a
wavelet neural network (WNN) controller and a robust compensator. The WNN
controller is a principal tracking controller which is utilized to mimic an ideal con-
troller; and the parameters of WNN are online tuned by the derived adaptation laws
based on the gradient descent method. The robust compensator is designed to dis-
pel the approximation error between the ideal controller and the WNN controller,
thus the asymptotic stability of the closed–loop system can be achieved. Based on
National Instruments-PCI extensions for Instrumentation (NI-PXI) system, com-
bined the Thermo Electric Cooler (TEC) with a duct heater, active heat dissipation
intelligent control system is designed to fix the problem of heat dissipation in long
distance in a narrowly closed environment without convection. According to the
amount of thermal source and thermal energy, the smart control system can help
to adjust the rate of heat dissipation by taking advantage of an adaptive control
so that the performance of heat dissipation may be accumulated by its numbers.
Last but not least, compared the traditional analog circuit controller with adaptive
wavelet neural network controller, the research proves that its proposed active heat
dissipation intelligent control system can reach an excellent and accurate temper-
ature control. Speaking more precisely, adaptive wavelet neural network controller
can be easily adaptive to any environment. It is equipped with a good capability of
tracking and searching; and in terms of the effect of temperature control, it never
actually jitters due to an input of voltage saturation compared with traditional
analog circuit controller. All these can make chips able to adjust its adaptive rate
of heat dissipation in accordance with the thermal source of the chips in a narrowly
closed environment without convection.
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1. Introduction

During the past few years, neural network based on control technique has attracted
increasing attentions, for it has provided an efficient and effective way for control-
ling the complex nonlinear or ill-defined systems. The key element to success is
the approximation capabilities of the neural networks (NN). Hence, the parame-
terized NN can approximate any unknown system dynamics or the ideal tracking
controller with arbitrarily accurate degree after learning. The basic concepts in
neural network based on feedback control methods are to provide online learning
algorithms that do not require preliminary offline tuning. Some of these online
learning algorithms are based on the back propagation learning algorithm [3, 7],
and some on the Lyapunov stability theorem [5, 8, 10, 11]. A number of researches
have been done on the applications of wavelet neural networks (WNN) by com-
bining the learning ability of NNs and the capability of wavelet decomposition
[12]. Unlike the sigmoidal functions used in conventional neural networks, wavelet
functions are spatially localized, so that the learning capability of WNN is more
efficient than the conventional sigmoidal function neural network for system iden-
tification and control. The training algorithms for WNN typically converge in a
smaller number of iterations than the conventional NNs [12]. Thus, WNN has been
proved to be better than the other neural networks in that its structure can provide
more potential for enriching the mapping relationship between inputs and outputs
[12]. As a result, there has been considerable interest in exploring the applica-
tions of WNN to deal with the non-linearity and uncertainty of control systems
[1,6]. Many experts and scholars value the neural network (NN) based on smart
control strategy through promotion in recent years. NN mainly does not need an
accurate mathematical model of the system. Meanwhile, it can be similar to any
non-linear system with better efficiency. Among various wavelet artificial neural
networks the excellent dynamic properties allow the structure to be widely used
in a non-linear dynamic system for identification to assist in solving the control
problem. The core idea of the research is to incorporate the wavelet theory into
the traditional NN. The selection with the original NN excitation function shall be
completed by a wavelet function so that it is more equipped with the capability
similar to a better function. Compared with the S-excitation function, wavelet
has more features shared with regional space properties. It can provide a copious
input-output mapping. Therefore, it can be further applied to deal with system
identification and control problem. In a non-linear ergonomic system model with
time variance, the research introduces the adaptive property and learning abilities
into the wavelet neural network. To build up the identification and control of a
system, the research shows the input-output relation of a system so that it is be-
lieved that this method can help to improve the traditional way of identification
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of a system and to cut out the weakness found in control. It also allows many
scholars to dedicate themselves in studying WNN. It is also a way to deal with the
non-linear and uncertain properties found in the control system. The paper makes
use of the wavelet neural network to construct a system. Hopefully, it can be a
way to solve the non-linear heat transfer problem. Finally, a Rader Active Heat
Dissipation system is performed to verify the effectiveness of the proposed control
scheme. Results verify that the proposed AWNNC can achieve favorable tracking
performance without any chattering phenomenon.

2. Build up a heat dissipation system combing
heat pipe with TEC

Based on NI-PXI as the basic framework, the study combines heat pipe and TEC to
establish an active cooling system which is divided into four systems: 1. Computer
system (NI-PXI-8108, NI-PXI-6229, and NIPXI-4351); 2. Measurement system
B3. Power system (Low power supply, High power supply, Amplifier module); and
4. Cooling system. The system hardware is shown in Fig. 1. The specifications of
each hardware showed in Tab. I and Fig. 2 indicates the connections.

Fig. 1 System hardware.

NI-PXI-8108 computers including NI-PXI-6229, NI-PXI-4351 Temperature Sen-
sor measurements are saved as Excel format in the terminal server (NI-PXI-8108).
Voltage is output through NI-PXI 6229 to CONTROL I/P connection, passes oper-
ational amplifier, provides ± 15V with High Power supply, and uses O/P as output
voltage connection to control TEC voltage (Fig. 3).

The cooling module (Item 8) shows in Fig. 4 whose numbers and names of
components are the same as those in Table II. The heat source end is composed of
Heat source and Heat distributor core plate (1); the thermal conductive interface
is composed of Heat pipe (11) and Heat distributor core plate (3); the cooling end
is composed of TEC (10), Side heat distributor plate (7), Six heat pipe module
(8), Heat sink (9) and Fan (4); the cooling system supported structure is composed
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Fig. 2 Indicates the connections.

Hardware Manufacturer Type Specification
NI-PXI 8108 National Instruments Inter Core 2 Duo 2.53GHz X2

2GRAM
NI-PXI-6229 National Instruments DAQ16Bit, 250KS/s, 32AI,

4AO,48DIO
NI-PXI-4351 National Instruments 16-Channel, 15S/s/channel
Thermocouple Thermocouple Technology K-Type, 30A, 0.6X1.0mm,

Max 260◦

Hi Power Supply EMS Power supply DC 40V, 25A
Low Power Supply GW Power supply DC 18V, 5A
Heat Source Hiintell igence 200W Dimensions 60X30mm,

Copper
Heat source system Hiintell igence PID control, Input AC 220V
Amplifier system MSK Output 1∼10A, 0∼10V

Tab. I The specifications of the hardware.

of Heat distributor plate support (2), Floor support (5) and Contact interface hot
insulation (6); among which Contact interface hot insulation (6) is an insulation
material for isolating heat transfer.
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Fig. 3 Amplification circuit.

Item Name Function
1 Heat Source and Heat Distributor Core Plate Link Heat Source
2 Heat Distributor Plate Support Plate Support
3 Heat Distributor Core Plate Core Plate
4 Fan Cooling
5 Floor Support Support
6 Contact Interface Hot Insulation Heat Insulation
7 Side Heat Distributor Plate Absorbs Heat Area
8 Six Heat Pipe Module Transfer Heat
9 Heat Sink Cooling
10 Thermoelectric Cooler (TEC) Coolant Pump
11 Heat Pipe Transfer Heat

Tab. II Cooling module.

3. Description of smart active heat dissipation
system

First of all, assuming that the active heat dissipation system and the dynamic
formula of its TEC output can be written down as follows, it is assumed that this
formula looks like this.

ẍ(t) = f(x, t) + u(t) + d(x, t) (1)

In this formula, x indicates the temperature of the system while f(x, t) indi-
cating a non-linear dynamic formula, and u(t) is the input of TEC control whereas
d(x, t) indicates the external jitters. Supposing that the temperature heat dissi-
pation system and the parameters of its TEC featured as f(x, t) and d(x, t) are
unknown functions, it is believed that it is hard to acquire a figure in fact.
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Fig. 4 Active cooling system.

3.1 Implementation of WNN

A WNN is proposed and shown in Fig. 5. This WNN is composed of input layer,
mother wavelet layer, product layer, and output layer. The signal propagation and
the basic function in each layer are introduced as follows.

(a) Input layer: For every node i in this layer, the net input and the net output
are represented as

net
(1)
i = x

(1)
i (2)

y
(1)
i = net

(1)
i , for i = 1, 2, . . . , ni (3)

where x
(1)
i represents the i-th input to the node of input layer and ni is the

number of the input variables. The link weights at this layer are all set as
unity.

(b) Other wavelet layer: Each node of this layer has a mother wavelet. The first
derivative of a Gaussian function ϕ(ω) = −ω exp((−1/2)ω2) is selected as
a mother wavelet function, which has the universal approximation property
[12]. Each node is derived from its mother wavelet. For the j-th node of the
i-th input
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Fig. 5 A structure chart of Wavelet Neural Network (WNN).

net
(2)
ij =

(
x
(2)
i − cij

)
vij

=

(
y
(1)
i − cij

)
vij

(4)

y
(2)
ij = ϕ

(
net

(2)
ij

)
, for j = 1, 2, . . . , np (5)

where x
(2)
i represents the i-th input to the node of mother wavelet layer, cij is

the translation factor and σij is the dilation factor of the mother wavelet node
in the j-th term of the i-th input variable, respectively; σij is the output of
mother wavelet node; and np is the total number of the node in the product
layer.

(c) Product layer: The node in this layer is given by the product of the mother
wavelets as follows:

net
(3)
j =

ni∏
i=1

x
(3)
i =

ni∏
i=1

y
(2)
ij =

ni∏
i=1

−
(
y
(1)
i − cij

)
vij

 exp

−

(
y
(1)
i − cij

)2
2v2ij


(6)

y
(3)
j = net

(3)
j , for j = 1, 2, . . . , np (7)

where x
(3)
i represents the i-th input to the node of product layer.

(d) Output layer: The output node in this layer is labeled as Σ, which computes
the output as the summation of all incoming signals
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net(4)o =

np∑
j=1

θjox
(4)
j =

np∑
j=1

θjoy
(3)
j (8)

y
(4)
j = net

(4)
j , for o = 1, 2, . . . , n0 (9)

where θjo is the connection weight between j-th product node and o-th output

node and x
(4)
j represents the j-th input to the node of output layer, y

(4)
o is

the output of the WNN, no is the number of the output node. The overall

representation of the i-th input of x
(1)
i and the o-th output y

(4)
o is

y(4)o =

np∑
j=1

θjo

ni∑
i=1

−
(
y
(1)
i − cij

)
vij

 exp

−
(
y
(1)
i − cij

)2
2v2ij

 (10)

uWNNo = y(4)o =

nP∑
j=1

θjoy
(3)
j (x

(1)
i , cij , vij) (11)

The o-th output of WNN can be represented as Define the matrix and vectors
Θ, c and v to collect all parameters of the connection weight and mother
wavelets of WNN as

Θ =


θ11 θ12 · · · θ1no

θ21 θ22 · · · θ2no

...
... · · ·

...
θnp1 θnp2 · · · θnpno

 ∈ ℜnp×no (12)

c = [ c11 · · · cni1, c12 · · · cni2, c1np · · · cninp ]T ∈ ℜninp (13)

v = [ v11 · · · vni1, v12 · · · vni2, v1np · · · vninp ] T ∈ ℜninp (14)

In summary, the outputs of WNN expresses in a vector notation as

uWNN (x, c,v,Θ) = ΘTβ(x, c,v) (15)

c = [ c11 · · · cni1, c12 · · · cni2, c1np · · · cninp ] T ∈ ℜninp

v = [ v11 · · · vni1, v12 · · · vni2, v1np · · · vninp ]T ∈ ℜninp

uWNN = [uWNN1 , uWNN2 , · · · , uWNNno
]T

x = [x
(1)
1 , x

(1)
2 , x(1)ni

]T ,β = [y
(3)
1 , y

(3)
2 , y(3)np

]T

402



Yen-Bin Chen et al.: Design of active heat dissipation system for adaptive. . .

3.2 Online adaptation laws for WNN

In SMC, the sliding condition is derived as σT (t)σ̇(t) < 0 such that the stability
can be guaranteed for the closed-loop system [2]. In order to train the WNN
effectively, the online parameter learning algorithm is a gradient descent method
that aims to minimize σT (t)σ̇(t) for achieving fast convergence of σ(t). Therefore,
σT (t)σ̇(t) is selected as the cost function. Taking the derivative of σ(t) and using
Eq. (1), it can be obtained that

σ̇(t) = ë+K1ė+K2e = −f(x, t)− u(t)− d(x, t) (16)

Substituting Eq. (1) into Eq. (16) and multiplying both sides by σT (t), it is
obtained

σT (t)σ̇(t) = −σT (t)f(x, t)− σT (t) [uWNN (t) + uRC(t)] (17)

According to the gradient descent method, the connection weights are updated
by the following equation:

˙̂
θjo = −λ1

∂σT σ̇

∂θ̂jo
= −λ1

∂σT σ̇

∂uAWNCo

∂uAWNCo

∂uWNNo

∂uWNNo

∂θ̂jo
= λ1σo(t)y

(3)
j (18)

where uAWNCo and uWNNo are the o-th element of uAWNC and uWNN , respec-
tively. Selection of parameters for the translation factor and dilation factor of
the mother wavelet functions will significantly affect the performance of WNN,
and inappropriate mother wavelet functions will degrade the learning performance.
Considering the mother wavelet functions, the adaptation laws of translation factor
mij and the dilation factor σij can also be derived via the gradient descent method
as

˙̂cij = −λ2
2∑

o=1

∂σT σ̇

∂uWNNo

∂uWNNo

∂y
(3)
j

∂y
(3)
j

∂y
(2)
ij

∂y
(2)
ij

∂net
(2)
ij

∂net
(2)
ij

∂ĉij
=

= λ2

2∑
o=1

σo(t)θ̂jo

(∏
n

y
(2)
nj

∣∣∣∣ if i = 1,⇒ n = 2
if i ̸= 1, ⇒ n = 1, n ̸= i

)

exp

−1

2

(
y
(1)
i − ĉij

)2
v̂2ij


 1

v̂ij
−

(
y
(1)
i − ĉij

)2
v̂3ij

 (19)

˙̂vij = −λ3
2∑

o=1

∂σT σ̇

∂uWNNo

∂uWNNo

∂y
(3)
j

∂y
(3)
j

∂y
(2)
ij

∂y
(2)
ij

∂net
(2)
ij

∂net
(2)
ij

∂v̂ij
=

= λ3

2∑
o=1

σo(t)θ̂jo

(∏
n

y
(2)
nj

∣∣∣∣ if i = 1,⇒ n = 2
if i ̸= 1, ⇒ n = 1, n ̸= i

)

exp

−1

2

(
y
(1)
i − ĉij

)2
v̂2ij



(
y
(1)
i − ĉij

)
v̂2ij

−

(
y
(1)
i − ĉij

)3
v̂4ij

 (20)
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This training scheme will increase the learning speed of WNN, where r1, r2the
learning is rates with positive constants.

3.3 Control design of adaptive wavelet neural network

This research proposes a block diagram of adaptive wavelet neural network control
as shown in Fig. 6. The aim of control is to find out a way to allow x(t) being able
to track the referential signal xd(t).

Fig. 6 Active heat dissipation system applied to adaptive wavelet neural.

To achieve the purpose of control, it is assumed that the tracking error must
be defined at first.

e(t) = xd(t)− x(t) (21)

Next, a slide plane shall be defined in the following formula.

s(t) = ė(t) + ke(t) (22)

In this formula, a fact that shows k > 0 shall be noted. Assuming that the dynamic
function of controlled system, f(x, t) and d(x, t), are both known functions, it is
believed that the best control can be acquired in the following formula.

u∗(t) = −f(x, t)− d(x, t) + ẍd − kė(t) (23)

Provided that substituting Formula (18) into Formula (1), it is possible that a
formula can be acquired as follows.

ë(t) + kė(t) = 0 = ṡ(t) (24)

Furthermore, the above formula can acquire a result of lim
t→∞

e(t) → 0 due to a fact

that k > 0 to achieve the purpose of control. However, in actual system, f(x, t) and
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d(x, t) are two unknown non-linear time variance functions. Thus, u∗(t) in Formula
(23) cannot be clearly defined. Accordingly, this research controls the system to
perfect the best control u∗(t) in a similar way.

First of all, Formula (1) can be written down in a simplified way and the
following formula can be acquired.

ẍ(t) = f(x, t) + u(t) + d(x, t)

= F (t) + u(t) (25)

In this formula, the non-linear time variance function written down as F (t) cannot
be clearly acquired in this formula F (t) = f(x, t) + d(x, t). Thus, this research
makes use of adaptive wavelet neural network system written down as F̂ (x, c, v, θ)
to estimate approximation. In addition, it adds a collision control ub(t) to this
formula conquer the approximation error of adaptive wavelet neural network system
written down as F̂ and actual non-linear time variance system written down as F (t).
The control by design is stated as follows.

u(t) = uWNN (t) + ub(t) (26)

In this formula, uWNN (t) indicates the main control and ub(t) stands for the control
force that keeps the track in the system on the slide plane. The main control is
stated as follows.

uWNN (t) = −F̂ (x, c, v, θ) + ẍd(t) + kė(t) (27)

Where
F̂ (x, c, v, θ) = ΘTβ(x, c, v) (28)

In this formula, it shows the output of wavelet neural network system. At this point,
x, c, v, θ indicates the adjustable variable vectors and F̂ refers to the exciting vector
of membership function. In this formula, c indicates connection weight values,
and v indicates the parameter control of mother wavelet function. The definition
is acquired and depicted as follows. A new formula is acquired by substituting
Formula (26) and Formula (27) into Formula (25) by making use of Formula (22).

ṡ(t) =
[
F̂ − F (t)

]
− ub(t) (29)

Supposing that the best variable vector known as θ∗ does exist, it is believed that
F̂ (x, c, v, θ̂) can be extremely closed to a similar non-linear time variance function
known as F (t). And a small approximation error is defined as the following.

ωF = F (t)− F̂ (x, c, v, θ̂) (30)

A new formula is thus acquired by substituting Formula (30) into Formula (29).

ṡ(t) = (θ
∗T
β) + ωF − θ̂Tβ + ub (31)

Formula (32) can be written down in a simplified way.

ṡ(t) = (θ̃Tβ) + ωF + ub (32)
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In this formula, θ̃ =
∗
θ −θ̃ is defined as Lyapunov function.

V1(t) =
1

2

(
s2 +

1

r1
θ̃T θ̃

)
(33)

In this formula, r1 indicates a positive constant. According to V1(t) > 0 and
V̇1(t) < 0 as defined in the Lyapunov Stability Criterion, it is possible that an
adaptive law can be acquired through derivation.

θ̇F = r1s(t)β(x, c, v) (34)

ub = −∆sgn(s(t)) (35)

In this formula, it shows a fact that ∆ > |ωF |max. This boundary value of ap-
proximation error may have produced a ∆ value that needs to be tested on a
positive constant through selection in advance. The adaptive wavelet neural net-
work system control in this research can be acquired in Formula (26). It consists of
Formula (27) and Formula (34). Here, the adjustable parameter known as θ in the
adaptive wavelet neural network system can be adjusted by using Formula (35).
Consequently, it is assumed that Lyapunov Stability Criterion is able to assure the
stability of its system.

4. Experimental method of active heat dissipation
smart control system

Radar inner core processor belongs to a component with high precision. It means
that the component consists of the Radio Frequency Integrated Circuit (RFIC)
electronics with high-power and high-effect. Core processor needs to be worked in
a narrow closed environment without convection, and dissipates heat problem in
long distance of a narrow closed environment without convection by the simulate
chip. While operate the chip, the highest temperature provides thermal source 20W
to replace calorific value of the chip. The actual best controllable temperature is
about 75◦. The measuring Curie point distribution is drawn in Fig. 7.

No. 1 and No. 2 of the figure indicate a measuring the surface temperature of
thermal source and heat pipe respectively. No. 1, 2, 3, 4, and No. 5 all refer
to the temperature of the measuring heat pipe. No. 5 and No. 6 indicate the
temperature of heat pipe at the bending point. No. 6 and No. 7 mean the surface
temperature of measuring heat pipe and heat slug. To expect the design of active
heat dissipation smart control system could achieve well and accurate temperature
control. Through comparing in this experiment with traditional analogy circuit
controller (contains relay, temperature switch, and control circuit) and adaptive
wavelet neural network control. The temperature is controlled at the degree of
80◦, 75◦, and 70◦ respectively, and spaces at intervals about 1000 seconds for
each. Settle the cooling system with wind sweeps at speeds 2300rpm, 24◦ for
room temperature, input voltage section ranged from 0∼10V to 0∼10A, and heat
the temperature to 4500 seconds. In this way, to prove the proposing of research
that an active heat dissipation smart control system can achieve well and accurate
function of lowing controllable temperature.
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Fig. 7 Temperature Points Distributed Measurement.

5. Analysis of research findings

Fig. 8 displays the active heat dissipation system applied to a traditional analogy
circuit controller. The temperature was settled at a degree of 80◦, 75◦, and 70◦

respectively. Assuming the actual temperature exceeds the set point, it is sug-
gested that this research starts to provide voltage to cool down the temperature.
It happens that voltage resulted in a frequent switch mode. It turns out to be a
saturation voltage phenomenon. In addition, the response to control voltage reac-
tion is not dealt with properly at once. Or perhaps, it may end up with an over
control phenomenon, a decrease in voltage due to providing voltage, or the instabil-
ity due to power supply for system use. Fig. 9 displays the active heat dissipation
system application to adaptive wavelet neural network control. The temperature
was settled at a degree of 80◦, 75◦, and 70◦ respectively. Assuming the actual
temperature exceeds the set point, it is suggested that this research is capable of
giving orders to tracking through good searching device. In addition, as far as the
cooling effect is concerned, nothing does happen to this control compared to unlike
the traditional analogy controller since no detect of frequent jitters while switching
the control voltage input has occurred. It is possible to increase the heat dissipa-
tion effect according to chip thermal source by rendering adaptive, adjustable heat
dissipation speed. It and can achieve the purpose to reach a good and accurate
temperature control performance to deal with the heat dissipation problem in long
distance where convection is not allowed.
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Fig. 8 Coventional controller.

Fig. 9 Active heat dissipation system applied to adaptive wavelet neural network
control.

6. Conclusion

This paper is based on NI-PXI system as the basic structure and combines TEC
with heat pipe to work out a new active heat dissipation system so that the heat
dissipation problem can be solved in long distance in a narrow closed environment
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without convection. To compare with an experiment of controller, this research
adopts the adaptive wavelet neural network control and the traditional analogy
controller. It proved that this research proposed an active heat dissipation smart
control system which achieves a well accurate temperature control performance.
Adaptive wavelet neural network control has the good capability of searching and
tracking. In addition, its cooling control performance is far better than a tradi-
tional analogy circuit controller. There is nothing happened in a saturation voltage
phenomenon while controlling the input of voltage. It ends up with a result that the
chip can increase its heat dissipation effect in a narrow closed environment without
convection according to the chip thermal source to give adaptive, adjustable heat
dissipation speed. It helps to solve the heat dissipation problem in long distance
without convection. It proves that this system is effective and practical. It also
proved that the system can provide feasibility applied to a radar heat dissipation
system with high power. Hopefully, the structure of the control can be provide
d some solution to solve the key problems of the development of heat dissipation
techniques in terms of livelihood, medical treatment, military affairs, and industry
in the long run.
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