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Abstract: A convolution sum discrete process neural network (CSDPNN) is pro-
posed. CSDPNN utilizes discrete samples as inputs directly and employs convolu-
tion sum to simulate the process inputs so as to deal with the time accumulation
existing in many time series. Without the procedures of fitting the discrete samples
into continuous functions to generate inputs and then to expand the input functions
by basis functions, CSDPNN is better understandable and is with less precision re-
duction compared with process neural network (PNN) with function inputs. The
approximation capacity of CSDPNN is analyzed in this paper, and it proved that
CSDPNN can approximate PNN and has approximation capacity not worse than
traditional artificial neural network (ANN). Finally, CSDPNN, PNN and ANN
are utilized to predict the Logistic chaos time series and the iron concentration in
the lubrication oil of aircraft engine, and the application test results indicate that
CSDPNN performs better than PNN and ANN given the same conditions.
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1. Introduction

Time accumulation effect widely exists in practical systems, which leads to the fact
that the systems’ responses not only depend on the instantaneous inputs but also
rely on the inputs before the instantaneous moment. In other words, responses
of such systems are time-depending processes. HE proposed the process neural
network (PNN) which has the ability to deal with the time varying process so as to
handle such problems [6]. PNN has a similar structure with the traditional artificial
neural network (ANN), and is composed of weights, aggregate and activation, but
the aggregate operation unit of PNN contains spatial aggregate operation and
time aggregate operation, where the time aggregation operator deals with the time
varying process. Taking the advantages of processing time accumulation effects,
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PNN can often get higher precision in time series prediction compared with NN,
and is widely used in such areas [2], [3], [8], [9], [10].

To simulate the continuous inputs and time accumulation process, PNN re-
quires continuous function inputs and integral operations on the input functions.
However, what we have are always discrete samples in practical applications. The
current solution to such problem is to fit the discrete samples to generate contin-
uous function inputs firstly, then to expand the input functions and the weight
functions based on orthogonal basis functions to simplify the burdensome integral
operations [5]. This solution has some disadvantages: (1) the discrete samples may
not be fitted into analytic functions, and the fitting may cause some precision loss,
(2) while the fitting order is high, there may be Runge oscillation which leads to
distortion, (3) there is no theoretical directions for choosing the basis functions
while decomposing the input functions and the weight functions, (4) the function
decomposing process may cause precision loss too.

In this paper, a convolution sum discrete process neural network (CSDPNN)
is proposed. This new neural network model utilizes the discrete data as input
directly, and adopts the convolution sum to deal with the time varying process
based on signal processing theory. Without procedures of function fitting and
function decomposing, there is less precision loss which can lead to higher precision
while applying the new network to predict time series.

The paper is organized as follows. Section 2 describes basic theory of the CS-
DPNN. Section 3 develops a learning algorithm for CSDPNN. Section 4 analyzes
the approximation capacity of CSDPNN. In section 5, CSDPNN is utilized to pre-
dict the Logistic chaos time series and the iron concentration of the aircraft engine
lubricating oil, and the prediction results are compared with results generated by
PNN and ANN. Discussions and conclusions are given in section 6.

2. The Convolution Sum Discrete Process Neural
Network

2.1 Convolution Sum Discrete Process Neuron

According to the theory of time-invariant system, if the system input is discrete
series x(n), then the response of the system y(n) is given as

y(n) = x(n) ∗ h(n) =
∞∑

k=−∞

x(k)h(n− k) (1)

where h[n] is the system response to the unit pulse series. Equation (1) means
that the response of linear system on time n equals the summation of the system
responses to the whole inputs on time n. If k in Equation (1) begins with 0,
and the input series x[n] is with limited length of n which can be seemed as a
continuous input process, then the system response on time n can be seemed as
the summation of the system responses between time 0 and time n. That’s to say,
the system response depends on the continuous input of a whole period not just
the instantaneous moment n. From the physical meaning of the time-invariant
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system, we can conclude that the convolution sum can be utilized to stimulate the
continuous input process and its corresponding response of the biological neurons.

Based on the aforementioned analysis, the convolution sum discrete process
neuron was developed in this paper. As depicted in Fig. 1, it is composed of three
sections: inputs, an activation unit and an output unit.

Fig. 1 Sketch diagram of CSDPNN neuron model.

The inputs of the CSDPNN neuron are vectors with length of L, which are
composed of discrete sampling points in time interval [0, T ], and the corresponding
weights are also vectors with length of L.

∑
denotes weighted sums, which imple-

ments the spatial aggregate operation, and K(⊗) denotes convolution sum, which
implements the time aggregate operation. For discrete neuron showed in Fig. 1, we
have

K(⊗) =
∑

(xi ∗wi) =
∑

(wi ∗ xi) (2)

Where ∗ denotes convolution operation. According to the calculation rule of con-
volution sum, we have

Ki(⊗)(n) = xi ∗wi =
∞∑

k=−∞

xi(k)wi(n− k) (3)

Since the length of vector xiis L, the values of variable k in Equation (3) can be
1, 2, · · ·, L, and when the value of n in equation (3) is L, we have

Ki(⊗)(L) = xi ∗wi =
L∑

k=1

xi(k)wi(L− k) (4)

Let ωj(k) = wi(L− k), then Equation (4) can be rewritten as

Ki(⊗)(L) = xi ∗ ωi = ωi ∗ xi =
L∑

k=1

xi(k)ωi(k) (5)

Now, every element of vector xi attributes to the value of Ki(⊗)(L). So, Ki(⊗)(L)
is selected as the time aggregate operation results of the CSDPNN neuron, and
denote the result as Ki(⊗)L. Then, the mapping relation of the inputs and outputs
can be described as

y = f
(∑

K(⊗)L + θ
)
= f

(
n∑

i=1

xi∗ωi + θ

)
= f

(
n∑

i=1

L∑
k=1

xi(k)ωi(k) + θ

)
(6)
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where f(•) is the activation function and θ is the activation threshold. And the
Sigmoid function is utilized as the activation function in this paper.

2.2 The CSDPNN Model

The CSDPNN can be composed by several CSDPNN neurons with a special topo-
logical structure. The CSDPNN utilized in this paper is comprised of three layers.
The topological structure of the CSDPNN is n−m−1, which is depicted in Fig. 2.

Fig. 2 The topological structure of the CSDPNN.

There are n input units, which are vectors with length of L. The hidden layer
has m CSDPNN neurons, and the output layer has 1 ANN neuron. Supposing that
the activation function of the output layer is a linear function, thus the output of
the PPNN model can be expressed as

y =
m∑

k=1

vkf

 m∑
j=1

n∑
i

ωji ∗ xi + θj1

+θ2 =
m∑

k=1

vkf

 m∑
j=1

n∑
i

L∑
l=1

ωji(l)xi(l) + θj1

+θ2

(7)
Whereωji is the connection weight vector between the j-th CSDPNN neuron

in the hidden layer and the i-th unit in the input layer. xi is the i-th unit in the
input layer, θj1 is the threshold of the j-th CSDPNN neuron in the hidden layer,
vkis the connection weight between the k-th neuron in the hidden layer and the
output layer, andθ2 is the threshold of the unit in the output layer.

3. Learning Algorithm

3.1 Learning Algorithm Derivation

Levenberg-Marquardt (LM) is a widely used learning algorithm for neural networks
[1], [4], [7]. Given suitable parameters, the LM algorithm can simulate the Gradient
Descent algorithm and the Gauss-Newton algorithm, so that it can ensure the
convergence speed while avoiding trapping in local minimum. This paper takes
advantages of the LM algorithm to develop learning algorithm for CSDPNN.

Given S learning samples {x1, · · · ,xs; ds}Ss=1, where xs the s-th input vec-
tor with length of L, and dsis the corresponding target. Suppose ysis the actual
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corresponding output of the s-th input of the CSDPNN, then the sum squared
error(SSE) of the CSDPNN output and the actual output can be defined as

SSE =
S∑

s=1

[ds − ys]
2 =

S∑
s=1

[ds −

 m∑
k=1

vkf(
m∑
j=1

n∑
i

L∑
l=1

ωji(l)xis(l) + θj1) + θ2

]2

(8)
For the simplicity of analysis, suppose that ET = [e1, e2, · · · , eS ], where es = ds −
ys, andET denotes the transposition ofE. Suppose thatWT = [ω11(1), · · · , ω11(L),
· · · , ωmn(1), · · · , ωmn(L), θ

1
1, · · · , θm1 , v1, · · · , vm, θ2], where WT is the transposi-

tion of W. Obviously, W is the parameter to be tuned.
According to the LM algorithm, during the training process, the iteration rule

of W can be defined as{
∆W(q) = −[JT (W(q))J(W(q)) + µ(q)I]−1JT (W(q))E(W(q))
W(q + 1) = W(q) + ∆W(q)

(9)

Where, q is the iteration number, I is the unit matrix, and µ is the learning rate.
At the beginning of the training process, µ is given a small value. If SSE is not
reduced in the iteration, then set µ with a new value according to µ = µ · λ(λ > 1)
and repeat the iteration until SSE is reduced, and if SSE reduced in the iteration,
then the value of µ can be set according to µ = µ/λ. This means that SSE can be
reduced every iteration of the LM learning algorithm. J(W) is the Jacobi matrix
of W with dimensions of S × L, and it can be written as

J(W) =



∂e1
∂ω11(1)

, · · · , ∂e1
∂ω11(L)

, · · · , ∂e1
∂ωmn(1)

, · · · , ∂e1
∂ωmn(L)

,

∂e2
∂ω11(1)

, · · · , ∂e2
∂ω11(L)

, · · · , ∂e2
∂ωmn(1)

, · · · , ∂e2
∂ωmn(L)

,

...
...

...
...

...
...

...
...

...
∂eS

∂ω11(1)
, · · · , ∂eS

∂ω11(L)
, · · · , ∂eS

∂ωmn(1)
, · · · , ∂eS

∂ωmn(L)
,

∂e1
∂θ11

, · · · , ∂e1
∂θm1

, ∂e1
∂v1

, · · · , ∂e1
∂vm

, ∂e1
∂θ2

∂e2
∂θ11

, · · · , ∂e2
∂θm1

, ∂e2
∂v1

, · · · , ∂e2
∂vm

, ∂e2
∂θ2

...
...

...
...

...
∂eS
∂θ11

, · · · , ∂eS
∂θm1

, ∂eS
∂v1

, · · · , ∂eS
∂vm

, ∂eS
∂θ2


(10)

Let Uk =
m∑
j=1

n∑
i

L∑
l=1

ωji(l)xis(l) + θj1, then the elements of the Jacobi matrix J(W)

can be calculated as 

∂es
∂ωji(l)

= −vjf ′(Uk)xis(l)

∂es
∂θj1

= −vkf ′(Uk)

∂es
∂vk

= −f(Uk)

∂es
∂θ2

= −1

(11)
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while the Jacobi matrix J(W)can be calculated based on Equation (11), the CS-
DPNN can be trained with parameters updating according to Equation (9).

3.2 Learning Algorithm Description

The LM learning algorithm for CSDPNN can be described as follows

Step1 Determine the structure of the CSDPNN.

Step2 Determine the learning error precision ε, the max learning iteration
number M , and initialize the training parameters ωji, vk, θ1, θ2 and the iter-
ation number q.

Step3 Input all the training samples into the network, and calculate the
actual outputs based on the Equation (7), then the training error with es =
ds − ys, finally SSE according to Equation (8).

Step4 Calculate the Jacobi matrix based on Equation (10) and Equation
(11).

Step5 Calculate SSE based on Equation (8). If the new value of SSE is
bigger than the value of SSE calculated in step4, then set µ = µ · λ, and
repeat Step5, else if the new value of SSE is small than the value of SSE
calculated in step4, then set µ = µ/λ,q = q + 1 turn to step6.

Step6 If SSE is less than ε or q > M , turn to step7, else turn to step5.

Step7 Output the learning results and terminate the learning process.

4. Approximation Capacity Analysis

In this section, the approximation capacity is described by two theorems as follows,
also with their proofs.

Theorem 1. CSDPNN is a special case of PNN and CSDPNN has the ability of
approximating the PNN with continuous function inputs.

Proof. The topology structure of PNN with continuous function inputs which has
n inputs and m neurons in the hidden layer and 1 neuron in the output layer can
be described as n−m− 1, and the map relationship between the input layer and
the output layer can be described as

y =
m∑
j=1

vjf

 T∫
0

m∑
j=1

n∑
i=1

wji(t)xi(t)dt− θ1j

− θ2 (12)

where y denotes the output of the network, xi(t)(xi(t) ∈ C[0, T ]) is the i-th in-
put unit in the input layer, and wji(t)(wji(t) ∈ C[0, T ]) is the connection weight
function between the j−th unit of the hidden layer and the i−th unit in the input
layer.
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Let uj =
T∫
0

n∑
i=1

wji(t)xi(t)dt, then according to the definition of integration, we

can conclude than the integration on the defined interval [0, T ] can be approximated
by weighted sums as∣∣∣∣∣∣

T∫
0

m∑
j=1

n∑
i=1

wji(t)xi(t)dt−
L∑

k=1

m∑
j=1

n∑
i=1

T

L
wji(k)xi(k)

∣∣∣∣∣∣
2

< ε (13)

Where xi(k) and wji(k) are the value of the i-th input function and the weight
function between the j-th unit in the hidden layer and the i-th unit in the input
layer on time k respectively, L is the total number of the sub-intervals generated
by equally dividing the interval [0, T ], and εis a arbitrarily small positive number.
Because wji(k) is the weight to be tuned, we can define a new weight as ωji(k) =
T
Lwji(k), then Equation (13) can be rewritten as

uj =
L∑

k=1

n∑
i=1

ωji(k)xi(k) =
n∑

i=1

L∑
k=1

ωji(k)xi(k) (14)

So, the Equation (12) has the following transformation

y =
m∑
j=1

vjf

 m∑
j=1

n∑
i=1

L∑
k=1

ωji(k)xi(k)− θ1j

− θ2 (15)

It has similar formation as the Equation (7) which the mapping relationship be-
tween the inputs and the output of CSDPNN. So we can conclude that CSDPNN is
a special case of PNN with continuous function inputs, and CSDPNN can approx-
imate PNN with continuous function inputs within arbitrarily precision by giving
the input vector with enough length.

Theorem 2. Traditional artificial neural network is a special case of CSDPNN.

Proof. LetL = 1, then the mapping relationship between the inputs and the
output of CSDPNN can be written as

y =
m∑
j=1

vjf

 m∑
j=1

n∑
i=1

ωjixi − θ1j

− θ2 (16)

Obviously, Equation (16) is the mapping relationship between the inputs and the
outputs of ANN.

5. Application Test

5.1 Logistic time series prediction

Logistic time series is a kind of chaos series, which is widely used to test the
performance of predicting algorithms. In this section, CSDPNN proposed in this
paper is utilized to predict the Logistic time series.
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Logistic time series can be generated according to the following equation

x(n+ 1) = kx(n) (1− x(n)) 0 < k ≤ 4 (17)

when k ≈ 3.5, the logistic system begins to generate chaos series. Let k = 3.6,
and the initial value of x which is x(0) = 0.4, then a series with length of 1206
based on Equation(17) can be generated, and the later 206 data of the series are
selected as test samples, which can be denoted as {xk}206k=1. (xi, xi+1, · · · , xi+5)
can be selected to form the input vector IVi, i = 1, · · · , 200, and xi+6 to be the
corresponding output. Then, we can get 200 couples of samples which can be
denoted as {IVi, xi+6}200i=1, and the former 100 couples are selected to train the
CSDPNN and the left 100 couples are selected to test out model. The topological
structure of the used CSDPNN is 1− 10− 1, the error goal is set to 0.001, and the
max iteration number is set to 1000. The prediction results are depicted in Fig. 3,
it indicates that CSDPNN has very high precision on predicting the Logistic chaos
time series in this paradigm.

0 10 20 30 40 50 60 70 80 90 100
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n

x

 

 

Actual Value Prediction Results by CSDPNN

Fig. 3 Logistic Time Series Prediction Results by CSDPNN.

PNN and multilayered ANN are utilized for comparison of performance in this
section. For PNN, We choose (xi, xi+1, · · · , xi+5) to be an input function IFi,
i = 1, · · · , 200, and xi+6 to be the corresponding output. Then, we can get 200
couples of samples which can be denoted as {IFi, xi+6}200i=1. As the same with
the CSDPNN, the former 100 couples are used to train the PNN and the left 100
couples are used to test the PNN. Also, the parameters for PNN are set as the same
with CSDPNN. For ANN, the network structure is different from CSDPNN and
PNN, since ANN cannot use functions of vectors as inputs, and topology structure
of ANN used in this section is 6-10-1.

The prediction errors of the results are presented in Tab. I. It can be concluded
from Tab. I that CSDPNN has the best performance in this paradigm, since CS-
DPNN has smaller mean absolute error (MAE) and smaller max absolute error
than its counterparts.
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Absolute error
Max MAE

CSDPNN 0.011 0.002
PNN 0.012 0.004
ANN 0.015 0.005

Tab. I Prediction errors of logistic time series.

5.2 Fe concentration time series prediction

Aircraft engine is a complicated nonlinear system, which is always working under
extreme conditions such as high temperature, high pressure and high speed leading
to the result that the performance of its components and subsystems will degrade
with time. So condition monitoring is essential in terms of flight safety and also for
reduction of the preventive maintenance cost. Lubrication oil monitoring is one of
the most important aspects of condition monitoring for aero-engine. Analysis of the
lubricating oil taken from the aircraft engine gives an indication of its suitability
for continued use and provides important information about the health condition
of the lubricated components within the aircraft engine. In this section, the CS-
DPNN is utilized to predict the iron (Fe) concentration of the lubricating oil in the
aircraft engine condition monitoring to highlight the approximation capability of
the CSDPNN.

The Fe concentration time series is from an airline company in China, which is
depicted in Fig. 4. The sampling interval of the data used in this paper is about
143.5 hours and the sampling interval is not equal. Thus, the time series need to
be preprocessed before the prediction. So, the cubic spline interpolation method
is utilized to generate a new time series. And after the interpolation, we get a Fe
concentration time series with 141 discrete points denoted as {Fej}141j=1.
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Fig. 4 Fe concentration time series.
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In order to generate the training samples, we choose (Fei, F ei+1, · · · , F ei+5) to
be an input vector IVi, i = 1, · · · , 135, and Fei+6 to be the corresponding output.
Thus, we can get 135 couples of samples which can be denoted as {IVi, F ei+6}135i=1.
Then, the former 80 couples are selected to train the CSDPNN and the left 55
couples are used to test the CSDPNN. The topological structure of the CSDPNN
is 1 − 30 − 1, the error goal is set to 0.1, and the max iteration number is set
to 1000. To make comparisons, PNN and ANN are also utilized to predict the
same time series. We choose (Fei, F ei+1, · · · , F ei+5)to be an input function IFi,
i = 1, · · · , 135 and Fei+6 to be the corresponding output. Then, we can get 135
couples of samples which can be denoted as {IFi, F ei+6}135i=1. As the same with
CSDPNN, the former 80 couples are used to train the PNN model, and the left 55
couples are used to test the PNN. The parameters for PNN are set as the same
with CSDPNN. And the topological structure of the ANN is again 6− 30− 1. The
prediction results are presented in Fig. 5.
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Fig. 5 Fe concentration time series prediction results, where CSDPNN is with 1
input node.

Since CSDPNN can have multi-inputs, we also utilized a multi-inputs CS-
DPNN with structure of 2-30-1 to predict the same Fe concentration time se-
ries. In this situation, the inputs of CSDPNN is a matrix with 2 rows, with each
row as an input. Given an input vector as in the single input mode, such as
x = [x1, x2, x3, · · · , x5, xn], with an embedded dimension m,x can be converted
into a matrix

M =


x1, x2, · · ·, xm
x2, x3, · · ·, xm+1

...
... ...

xn−m+1, x3, · · ·, xn

 (18)

The matrix M is used as an input matrix of CSDPNN. In this paradigm, we set
m = 5 to construct a 2-row input matrix from a vector with length of 6 used
as input in the single input mode. Then, the training samples for multi-inputs
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CSDPNN can be denoted as {Mi, F ei+6}135i=1, where Mi is the i-th input matrix.
The prediction results are shown in Fig. 6, and the prediction errors are presented
in Tab. II.

Absolute relative error
Max Average

CSDPNN (1 input node) 2.27% 0.74%
CSDPNN (2 input nodes) 1.99% 0.53%

PNN 3.62% 1.52%
ANN 4.45% 1.77%

Tab. II Fe concentration time series prediction results, where CSDPNN is with 2
input node.
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Fig. 6 Fe concentration time series prediction results, where CSDPNN is with 2
input nodes.

The results presented in Fig. 5, Fig. 6 and Tab. II indicate that CSDPNN has
better performance than PNN and ANN in this paradigm. Moreover, since multi-
inputs CSDPNN has a slightly smaller max relative absolute error and a mean
relative absolute error than single-input CSDPNN, we conclude that the multi-
inputs CSDPNN performs better. However, it also should be mentioned that the
training of CSDPNN with multi-inputs costs more time.

6. Discussion and Conclusion

This paper proposed a convolution sum discrete process neural network (CSDPNN)
for time series prediction. CSDPNN utilizes the discrete samples as inputs directly,
and adopts the convolution sum operation to deal with the time accumulation
effects in the time series. Compared with the PNN with continuous functions as
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inputs, CSDPNN need not to fit the discrete samples to get the input functions,
either to expand the input functions based on orthogonal basis functions, which
can reduce precision loss and get higher precision. The theoretical analysis given
in the paper shows that CSDPNN has approximation capacity between ANN and
PNN. And the results of chaos time series prediction and iron concentration time
series prediction proves that CSDPNN can get higher precision than PNN and ANN
given the same conditions, which meets the theoretical expects. Also, CSDPNN
with multi-inputs performs better than CSDPNN with single input.
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