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Abstract: The article describes a neural network-based articulatory feature (AF)
estimation for the Czech speech. First, the relationship between AFs and a Czech
phone inventory is defined, and then the estimation based on the MLP neural
networks is done. The usage of several speech representations on the input of the
MLP classifiers is proposed with the purpose to obtain a robust AF estimation.
The realized experiments have proved that an ANN- based AF estimation works
very reliably especially in a low noise environment. Moreover, in case the number
of neurons in a hidden layer is increased and if the temporal context DCT-TRAP
features are used on the input of the MLP network, the AF classification works
accurately also for the signals collected in the environments with a high background
noise.
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1. Introduction

Speech technology applications are nowadays used in many situations, when a
natural voice input is used in communication between humans and machines or
in the detection of various phenomena using automated speech analysis. As in
other research fields, various subparts of speech technology systems use artificial
neural networks for the classification purposes [3, 9, 25]. ANNs can be found, for
example, as phone classifiers in the TempoRAl Patterns (TRAP) speech feature
extraction [6, 8], as voice activity detectors, as a subpart of the combined Artificial
Neural Network and Hidden Markov Model (ANN/HMM) classifiers, in language
modelling for continuous speech recognition, or as Kohonen self-organized maps
used for selected classification purposes [33], etc.

To improve the robustness of spontaneous or noisy speech recognition, Articu-
latory Features (AFs) were used in various tasks in continuous speech recognition.
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The most important publications describe the basic definition of AFs [1, 16], ap-
plications in continuous speech recognition based on combining standard acoustic
and articulatory features [19, 22, 24, 28], and finally also their estimation for which
the neural network-based classifiers are used most typically [14]. An automatic
estimation of AFs can be used also in the basic phonetic research.

This paper describes the first study of the neural network-based AF estimation
for the Czech language utterances together with the study of the achieved accuracy
in various speech representations used for the AF classification that can be applied
generally for any language. It was proved by the previous research that AFs are
generally language-independent, yet particular features are defined for different
phone inventories in various languages. Moreover, the extensive study [24] describ-
ing the cross-lingual AF detection for English, German, Spanish, Japanese, and
Chinese showed, that the best results were always obtained with the AF detectors
matched to particular language. Expecting an AF application during the recogni-
tion and the phonetic segmentation focused on the Czech spontaneous speech, one
purpose of this work is to define the AFs for the Czech phone inventory, because
most previously published works describe the research done for English [2, 14, 18]
(sometimes also for other languages, but not yet for Czech). The other important
part of this work concerns the optimization of an ANN size, thus a detailed anal-
ysis of the achieved accuracy of the AF estimation depending on an ANN size is
presented here.

Finally, further application of AFs can be expected when the analyzed speech
contains a strong background noise, so another purpose of this paper is to pro-
vide the analysis of an AF estimation accuracy under the clean vs. noisy condi-
tions. Most works do not deal with the data gathered under adverse background
conditions; the experiments in published works are usually conducted with the
TIMIT database which contains speech data recorded under the low noise condi-
tions [13, 14]. Some analysis of the noise robustness can be found in [17], where the
experiments are also performed with the noisy data from the Verbmobil database
using special MODSPEC preprocessing [15] of the input features.

2. Articulatory features

AFs can be represented by some phonological feature sets such as binary features,
multi-valued features, and articulatory gestures etc., see [14, 20]. In this paper
we use the term articulatory features to refer to the multi-valued features rep-
resentation using phonetic categories. In comparison to the standard acoustic
features, e.g. Mel-Frequency Cepstral Coefficients (MFCC) or Perceptual Linear
Prediction (PLP) [10] which provide the information about spectral characteris-
tics of the uttered speech, the AFs imply important information related to the
speech production, mainly to the voicing, manner of articulation, place of artic-
ulation, etc. Since this information is generally suprasegmental, i.e. AFs are the
same across a group of phones, it was proved that it can help in adverse conditions
when phone-based models fail due to more casual speech or present a background
noise. It is described in details in [21], which deals with manual transcription of
the speech at the AF level and where the potential of AF for better modelling
of co-articulation in a conversational speech is also discussed. In [32] the authors
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manner
stop affricates fricatives approximants

plosives nasals trills lateral glides

p
la
ce

labial bilabial p b m
labiodental F f v

alveolar prealveolar t d n t s d z s z Q\ P\ r l
postalveolar t S d Z S Z

palatal c J J\ j
velar k g N x
glottal h\

sonority (sonors/noises) No No So No No No No No No So So So

voicing (voiced/unvoiced) U V V U V N V U V V V V

Tab. I The phonetic categorization of the Czech consonants.

manner
front central back

p
la
ce

close i i: u u:
mid e e: @ o o:
open a a:

rounding unrounded rounded

Tab. II The phonetic categorization of Czech vowels.

proved that by incorporating acoustic-phonetic information, the automatic speech
recognition performance improved; in this study the manner and place of articu-
lation were considered. For the conversational and hyper-articulated speech, the
robustness of AFs against the style of speech was proved in [24].

2.1 Articulatory features for Czech

As any similar study of AFs for Czech has not been published yet, their specific
language definition is presented in the following paragraphs. A standard inventory
of the phones for Czech defined by the SAMPA standard [36] consists of 49 phones
including several rare allophones together with the schwa and glottal stop which
are not in Czech canonical pronunciation. Within this introductory work with AFs
for Czech we use the same set of phones as it is standardized and used for the
Czech speech recognition systems. This set does not contain syllabic variants of
consonants, i.e. phones “m=, l=, r=”, voiced phone “G” which appears only in
very special contexts at word boundaries, and the glottal stop “?” which does not
regularly appear in the Czech pronunciation.

The resulting phone inventory consists of 44 phones which can be categorized
into phonetic classes according to the methodology described in [2, 13, 18] for
English together with the application of standard conventions for Czech defined
by [26, 35]. More particular details of the Czech vowel and consonant categorization
is described in Tabs. I and II and a complete overview of the AFs used for the
complete phone inventory of Czech is presented in Tab. III.
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Phones Voicing Place con Place vow Manner con Manner vow Round Sonor

i + nil front nil high − nil
e + nil front nil middle − nil
a + nil central nil low − nil
o + nil back nil middle + nil
u + nil back nil high + nil
i: + nil front nil high − nil
e: + nil front nil middle − nil
a: + nil central nil low − nil
o: + nil back nil middle + nil
u: + nil back nil high + nil
o u + nil back nil middle + nil
a u + nil central nil low − nil
e u + nil front nil middle − nil
@ + nil central nil middle nil nil

p − bilabial nil stop nil nil −
b + bilabial nil stop nil nil −
t − prealveolar nil stop nil nil −
d + prealveolar nil stop nil nil −
c − palatal nil stop nil nil −
J\ + palatal nil stop nil nil −
k − velar nil stop nil nil −
g + velar nil stop nil nil −
t s − prealveolar nil affricates nil nil −
d z + prealveolar nil affricates nil nil −
t S − postalveolar nil affricates nil nil −
d Z + postalveolar nil affricates nil nil −
f − labiodental nil fricatives nil nil −
v + labiodental nil fricatives nil nil −
s − prealveolar nil fricatives nil nil −
z + prealveolar nil fricatives nil nil −
Q\ − prealveolar nil trills nil nil −
P\ + prealveolar nil trills nil nil +
S − postalveolar nil fricatives nil nil −
Z + postalveolar nil fricatives nil nil −
j + palatal nil glides nil nil +
x − velar nil fricatives nil nil −
h\ − glottal nil fricatives nil nil −
r + prealveolar nil trills nil nil +
l + prealveolar nil lateral nil nil +
m + bilabial nil nasals nil nil +
n + prealveolar nil nasals nil nil +
N + velar nil nasals nil nil +
J + palatal nil nasals nil nil +
F + labiodental nil nasals nil nil +

Tab. III Summary of the articulatory features of particular Czech phones.
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Fig. 1 Structure of the three-layer MLP network.

2.2 Neural network based estimation of articulatory features

There are several approaches which are used for an AF estimation, e.g. the clas-
sifiers based on the Gaussian Mixture Model, Support Vector Machine, Bayesian
Networks, or the classifiers using multi-task learning which were used in [13, 30].
Nevertheless, the most widely used are the classifiers based on ANN [14, 38] that
are very suitable especially in the situations where the classification should be done
with the input acoustic speech feature vector of rather high dimension. This is ex-
actly our case because we also work with the speech features with some context
information.

For our AF classification, we used independent Multi-Layer Perceptrons (MLP)
for particular AF classes. The MLP for each class has always the same 3-layer (I-
N-K) structure, shown in Fig. 1. The input layer distributes the acoustic speech
features, and therefore the number of its neurons depends on the size of an input
feature vector (MFCC/PLP/TRAP). Each neuron output in the hidden layer is
defined by a commonly used sigmoid activation function,

fk(zk) =
1

1 + ezk
. (1)

An inner neuron potential zk is computed in a standard way as a general weighted
sum of the neuron inputs, i.e.

zk = bk +
I∑

j=1

wjkxj , (2)

with the weights wjk and bias bk belonging to the k-th neuron. The MLP output
represents a posteriori probability of given AF class with possible value in the
range of 0 ÷ 1. It is computed by a softmax activation function defined for the
k-th output neuron and particular neuron potentials zj as
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fk(zk) =
ezk

K∑
j=1

ezj
. (3)

The size of the output layer is always given by the cardinality of the estimated
AF class, as well as the size of the input layer is given by the size of the input speech
features. The size of the hidden layer was set experimentally for the particular AF
class and two different background environments.

2.3 Acoustic speech features for the AF estimation

All previously published works use a short context information on the input of
the MLP networks in a different way, e.g. in the form of the first and the second
derivatives of the features (delta and delta-delta features), by using the static
features from more neighbouring short-time frames, or by using recurrent time-
delay neural networks [2, 13, 14, 32]. A possible inclusion of the longer context on
the input of the ANN-based AF classifier was discussed in [34].

In our work, MFCC coefficients were used as a general standard for the auto-
matic speech recognition system in the following setup: 12 cepstral coefficients with
the additional zeroth cepstral coefficient, 30 filters in the auditory-based spectral
analysis, the frame length of 25 ms and frame step of 10 ms, preemphasis coeffi-
cient 0.97, and dynamic and accelerations features. The total length of this feature
vector is 39. Similarly, PLP cepstral coefficients were used with the standard setup:
12 cepstral coefficients with the additional zeroth coefficient, 20 filters in the PLP-
based auditory filter bank (for 16 kHz speech data), the frame length of 25 ms and
frame step of 10 ms, and dynamic and accelerations features.

As a contribution on this study, we describe the usage of DCT-TRAP features
for the AF estimation because these features were used successfully in very precise
phoneme recognizers, e.g. [31], same as in other speech recognition applications.
Our setup of the DCT-TRAP features was slightly modified. We used only 22
filters of the auditory spectral analysis, preemphasis coefficient 0.97, a short-time
FFT frame length of 25 ms and the frame step of 10 ms, and a temporal pattern
computed from 31 frames. This setup with a slightly shorter context (than it is
used in [31]) and with the number of bands in the auditory spectral analysis smaller
than within the standard MFCC computation was found to be a good compromise.
It enables to decrease a computational complexity of MLP training due to the lower
dimension of the speech feature vector and gives still sufficient accuracy of the AF
estimation.

Concerning temporal patterns, they are represented by the Discrete Cosine
Transform (DCT) to decrease both the input vector dimensionality and further
decorrelation. In the end, 16 DCT coefficients were used which enabled to work
finally with the dimension of 16×22=352 for the DCT-TRAP feature vector on
the input of MLP.
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3. Experiments

In the experimental part of this study, we first tested the basic accuracy of the AF
estimation for Czech using three different previously chosen speech feature vectors
and made a detailed analysis of the optimum setup of ANN, i.e. the optimum
number of neurons in the hidden layer of the MLP network. In the second phase of
the experiments we tested the robustness of this estimation for the speech collected
under various conditions from the point of view of signal quality.

3.1 Experimental setup

All experiments were conducted with publicly available tools from ICSI Quick-
net Software Package [12] (for ANN training and testing; currently newer TNet
toolkit can be also used), from HTK Toolkit HTK Toolkit [37] (for speech features
extraction and automatic phonetic segmentation), and also with our private tool
CtuCopy [7] (for the feature extraction which supports a DCT-TRAP computation
and p-file format required by the Quicknet toolkit).

The speech data for our experiments was taken from the Czech SPEECON
database [4, 27] containing utterances from several environments collected by var-
ious microphones. We worked with two data sets, firstly with quite clean speech
signals from the standard office environment (OFFICE subset) and secondly, with
more noisy utterances from the car environment (a CAR subset). For these sets we
have chosen the utterances with digits, and phonetically rich material (sentences
and words) from all available records. Selected data was divided into three parts:
non-overlapping training, cross-validation (CV), and test sets. The sizes of these
sets from the OFFICE and CAR environments are summarized in more details in
Tab. IV.

OFFICE CAR

set speakers sentences hours speakers sentences hours

training 101 3450 4.99 48 4042 4.40

cross-val. 17 585 0.88 4 101 0.16

test 77 94 0.16 4 39 0.07

Tab. IV OFFICE and CAR data subsets.

The necessary phonetic segmentation of these sets was processed automatically
by an HMM-based forced-alignment with available triphone acoustic models. For
the test sets, phone boundaries were determined both automatically and manu-
ally. The manual phonetic segmentation enabled testing with the reference data
with minimized error in the automatic phone boundary placement. The reference
manual segmentation of the testing data was created according to the rules defined
in [23] by engineers practised in phonetics and phonology. Some instances were also
consulted with the experts from the Institute of Phonetics at Charles University,
Prague.

Speech data was available from various input channels, so we were able to test
also the robustness of the AF estimation for the same utterances collected with the
microphones of different quality. In the end, we carried out the experiments with
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Fig. 2 The number of hidden neurons in the MLP optimization for theDCT-
TRAP feature; channel: ⋄ − CS0, ∗ − CS1, ∆ − CS2, ◦ − CS3; environment:

OFFICE.

the signals collected by a high-quality head-set microphone (a close-talk channel
CS0), by a medium quality basic hands-free microphone (a close-talk channel CS1),
by high-quality microphones placed both in medium and far distances in the OF-
FICE environment (channels CS2 and CS3), and by other directional microphones
in a medium distance in a CAR environment (channels CS2 and CS3). SNR levels
strongly vary in these channels, from the average SNR about 26.82 dB (for channel
CS0) representing a clean speech to the average SNR about 6.43 dB (for channel
CS3) corresponding to the speech distorted by both convolutional and additive
noise. SNR levels in all channels are presented in more details in Tab. V.

CS0 CS1 CS2 CS3

OFFICE 26.82 19.51 12.71 6.43

CAR 14.00 6.95 12.06 8.99

Tab. V Average values of SNR [dB].

3.2 Results

The results were presented in percentage of the number of correctly recognized
frames, i.e. the Frame Accuracy (FAcc) defined as

FAcc =
n correct frame labels

total frames
· 100 . (4)

3.2.1 Optimal size of MLP

As mentioned above, we empirically looked for the optimal settings of MLP size
for particular tasks, i.e. we analysed the FAcc of an AF estimation for 10 ÷ 2400
neurons in the hidden layer.

The dependency of the frame accuracy on the number of hidden neurons is
shown in Fig. 2 which contains the illustrative results for Voicing and Manner vow
estimation using DCT-TRAP on the input of MLP. The MLP sizes with the best
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achieved accuracy of particular AF classifiers are summarized in Tab. VI, however,
the optimal MLP sizes for individual AF classes could be lower, typically in the
range of 300 ÷ 500 hidden neurons for Voicing,Rounding, and Sonor, and from
600÷800 forManner vow,Place vow,Manner con, and Place con across all channels
because the increment of FAcc for the higher numbers of hidden neurons lower is
rather small but it also means higher computational costs. Finally, the same setup
was used for both background conditions.

The computational time per one epoch of the MLP training depended on the
size of the particular MLP and it was from 0.12 hours (for ANN with 10 neurons
in the hidden layer) to 1.02 hours (for 2400 neurons in the hidden layer), for the
experiments performed at PCs with CPU Intel(R) Core(TM) 2 Quad CPU Q9550
@ 2.83GHz with 4 cores and with CPU Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
with8 cores. In comparison to [17], we did not use any special pre-processing for
noisy data.

Out OFFICE
units Channel CS0 Channel CS1 Channel CS2

hids CV Epoch test hids CV Epoch test hids CV Epoch test

Voicing 3 2000 94.9 4 94.3 300 94.2 4 93.6 2200 92.5 4 91.6
Place con 9 1800 85.6 5 83.9 2200 83.8 5 82.0 1500 82.3 5 80.7
Place vow 5 1500 88.5 5 88.3 1000 87.1 5 86.9 2200 85.5 5 85.2
Manner con 9 1800 87.2 5 86.5 1800 85.6 5 84.2 2400 84.0 5 83.0
Manner vow 5 2400 87.0 5 86.9 1300 85.8 5 85.6 1800 84.1 5 83.7
Rounding 4 1300 89.3 5 89.1 2400 88.0 5 87.8 1000 86.5 5 86.4
Sonor 4 1300 89.0 5 88.9 2200 88.0 5 87.5 1500 86.1 5 85.8

CAR

Voicing 3 1000 94.6 4 87.0 1300 92.9 3 85.3 2200 91.9 4 83.9
Place con 9 1500 85.6 8 77.8 2400 83.0 7 75.7 2000 82.0 7 74.6
Place vow 5 2200 88.8 4 80.1 1500 87.2 5 79.2 500 86.2 5 77.7
Manner con 9 2400 86.2 7 79.1 2000 84.0 6 77.0 1500 82.9 7 75.7
Manner vow 5 1800 87.5 4 79.0 2200 86.3 5 78.4 2400 84.8 5 77.0
Rounding 4 2000 89.4 5 81.3 2000 87.6 5 80.4 2000 86.5 5 78.8
Sonor 4 1000 87.9 6 80.8 2000 86.2 4 78.7 2200 85.5 6 78.0

Tab. VI Best setup size of MLP for the best results with DCT-TRAP features.

3.2.2 Robustness of an MLP-based AF estimation

The previously published results obtained by other authors for English presented
in [5] can be summarized in the following numbers:

– voicing: average accuracy 90.3%, the best 93.0%,

– place: average 75.4%, the best 85.9%,

– manner: average 85.3%, the best 88.5%,

– rounding: average 86.2%, the best 92.0%,

– front-back: average 83.7%, the best 87.4%.
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These values, however, were not always obtained under the absolutely same condi-
tions. Some authors also measured the accuracy at a phone level, others at a frame
level (as in our case), so the exact comparison is difficult. Also we distinguished
between the vowels and consonants for the manner and place of articulation.

Our results obtained for the OFFICE environment are summarized in Fig. 3.
These results for the MFCC and PLP features proved a reliable standard estimation
of AFs for Czech, which is comparable to the results of other authors. Our best
results for all AF classes were obtained for DCT-TRAP features. For a high-quality
CS0 channel it was 94.3% for the classiffication of the voicing class, 83.9% for the
place of a consonant, 88.3% for the place of a vowel, 86.5% for the manner of a
consonant, 86.9% for the manner of a vowel, 89.1% for rounding, and 88.9% for
sonoring. As concerns individual AF classes, the best results were obtained for the
voicing detection, whereas the most difficult seemed to be the estimation of the
place of articulation for the consonants. Using DCT-TRAP features, only slightly
worse results were obtained for other more noisy channels (CS1, CS2 and CS3).

The results achieved in the evaluations with manually-labelled reference data
are presented in Tab. VII using the average FAcc (calculated across AFs). Better
results were always achieved in the evaluations with automatically labelled refer-
ence data. The AF evaluation with manually-labelled reference data represented
mismatched conditions because the data with automatic phonetic segmentation
were used for the training. However, these results have the similar trend as those
obtained by the reference data labelled automatically.

The results for a more noisy CAR environment, see Fig. 4 and Tab. VII, prove
the robustness of an MLP-based AF estimation, especially, when the DCT-TRAP
features were used as an output of the acoustic analysis. We can see only small
decrease in FAcc in comparison to the results obtained for clean speech data from
the OFFICE environment. However, when comparing the results from these two
environments, we must note that channels CS2 and CS3 contain the speech of
slightly different quality.

MFCC PLP DCT-TRAP
CS0 CS1 CS2 CS3 CS0 CS1 CS2 CS3 CS0 CS1 CS2 CS3

OFFICE 81.4 79.7 78.4 73.6 81.6 79.9 78.6 73.5 82.3 81.3 80.3 74.5

CAR 85.2 83.6 81.3 81.6 85.3 83.4 81.4 81.6 85.0 85.3 83.8 83.5

Tab. VII Average FAcc of an AF estimation for the manually labelled data.

The robustness of the MLP-based AF estimation was also observed when the
training and testing conditions were not the same, since it is a common situation
in real deployed systems having a significant influence on the speech recognition
accuracy [29]. These analyses are presented using the average FAcc trend (aver-
age was computed across all AFs) and the results for the channel mismatch and
environment mismatch are summarised in Fig. 5. The impact of switching from
the close-talk microphone to the far-talk one is presented in Figs. 5A and 5B. The
robustness of a DCT-TRAP AF estimation is demonstrated by very small decrease
in an average FAcc, when the training was performed on the CS0 channel only,
especially in case of the CAR environment. The highest decrease was observed
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Fig. 3 FAcc of an AF estimation for an automatically labelled OFFICE test set;
features: MFCC – light gray, PLP – dark gray, DCT-TRAP – black.
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Fig. 4 FAcc of an AF estimation for an automatically labelled CAR test set; fea-
tures: MFCC – light gray, PLP – dark gray, DCT-TRAP – black.

for the CS3 channel in the OFFICE environment, however, it was the result when
significantly degraded speech with SNR of about 6 dB only was analysed. An en-
vironmental mismatch represents higher influence on the reached AF classification
accuracy, see in Fig. 5C. The decrease in average FAcc of an AF estimation in the
CAR environment was about 6÷9% for individual channels, when the training was
performed on the OFFICE data.

OFFICE CAR
CS0 CS1 CS2 CS3 avg CS0 CS1 CS2 CS3 avg

Voicing 94.3 93.6 91.6 84.7 91.1 87.0 85.3 83.9 83.5 84.9
Place con 83.9 82.0 80.7 71.4 79.5 77.8 75.7 74.6 74.7 75.7
Place vow 88.3 86.9 85.2 77.1 84.4 80.0 79.2 77.7 76.9 78.5
Manner con 86.5 84.2 83.0 70.8 81.1 79.0 77.0 75.7 75.5 76.8
Manner vow 86.9 85.6 83.7 75.9 83.0 79.0 78.4 77.0 76.6 77.8
Rounding 89.1 87.8 86.4 78.2 85.4 81.3 80.4 78.8 78.3 79.7
Sonor 88.9 87.5 85.8 77.1 84.8 80.8 78.7 78.0 77.8 78.8

Tab. VIII FAcc of DCT-TRAP AF estimation for speech degraded by car noise.
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Fig. 5 Average FAcc (across all AFs) for mismatched condition: A – channel
mismatch in OFFICE environment (dashed line – matched training, solid line –
training on CS0); B – channel mismatch in CAR environment (dashed – matched
training, solid – training on CS0); C – environmental mismatch in CAR environ-
ment (dashed – matched training in CAR; solid – training on OFFICE data).

Finally, the decrease in FAcc for the individual AFs influenced by the car noise
is presented in Tab. VIII. As regards the individual AFs, the decrease was about
4÷ 6% only when DCT-TRAP acoustic features were used on the input of MLPs.

4. Conclusions

In this paper, we analysed the MLP-based estimation of AFs and we proposed its
robust approach based on DCT-TRAP acoustic features. One of the contributions
of this paper lies in creating the basic design of the computation of the articulatory
features for the Czech speech. The basic classes of AF features were defined in
the same way as defined for English, with respect to the specific peculiarities for
Czech.

Secondly, the fundamental study of the MLP-based AF estimation accuracy for
the Czech speech was carried out. The optimal setups of MLPs for all AFs and
all analysed acoustic inputs were found, and the achieved results for the best MLP
setup under clean conditions were compared with the results for English published
by other authors. We have achieved similar values as average results as it was
published for English. After increasing the size of the hidden layer and after using
the DCT-TRAP features, almost the same accuracies were obtained also for the
AF estimation in the car noise conditions.

Finally, this approach using DCT-TRAPs seems to be a very good and robust
way of the AF estimation, so the combination of the standard features and AFs
obtained by this approach is supposed to have a positive influence on the accuracy
of the recognition or automatic phonetic segmentation of degraded speech [11].

Within further work we suppose to perform the optimization of AF estimation.
For this purpose the modern approaches based on DNN or articulatory bottleneck
features are supposed to be used. AFs should be then used for AF-based phone
recogniton, the phonetic segmentation, and AF-TANDEM-based ASR as particular
steps to the target spontanoeus and informal speech recognition with the special
focus on Czech.
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