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Abstract: Support vector machine (SVM) has become one of the most popular
machine-learning methods during the last years. The design of an efficient model
and the proper adjustment of the SVMs parameters are integral to reducing the
testing time and enhancing performance. In this paper, a new bipartite objective
function consisted of the sparseness property and generalization performance is
proposed. Since the proposed objective function is based on selecting fewer num-
bers of the support vectors, the model complexity is reduced while the performance
accuracy remains at an acceptable level. Due to the model complexity reduction,
the testing time is decreased and the ability of SVM in practical applications is
increased Moreover, to prove the performance of the proposed objective function,
a comparative study was carried out on the proposed objective function and the
conventional objective function, which is only based on the generalization perfor-
mance, using the Binary Genetic Algorithm (BGA) and Real-valued vectors GA
(RGA). The effectiveness of the proposed cost function is demonstrated based on
the results of the comparative study on four real-world datasets of UCI database.
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1. Introduction

Support Vector Machine (SVM) introduced based on statistical learning theory by
Vapnik [31]. It is one of the supervised learning methods that have been used for
classification, regression and more recently for one-class classifications. The main
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idea of the support vector machine is to create a hyper-plane as the decision-making
surface that can maximize the margin of separation between two classes of positive
and negative data. More specifically, the support vector machine is a discriminate
that can minimize the separation risk by maximizing the margin between the two
classes of data [32].

Unfortunately, there are two problems with the practical applications of SVM.
The first problem concerns the lack of any precise method to adjust SVM parame-
ters, and the other one is related to the prolonged testing time preventing the use
of SVM in real-world applications. The generalization ability of SVM depends on
the appropriate selection of its parameters, i.e. kernel parameter(s) and regular-
ization parameter. The optimal choice of those parameters is called SVM’s model
selection problem [6,28,35].

The kernel parameter(s) implicitly describes the geometry of the data in high-
dimensional space called feature space. In this space, the data become linearly
separable to obtain the highest margin between two classes. The selection of ker-
nel parameter(s) will change the shape of the separating surface in input space.
Selecting extremely large and small values for kernel parameter(s) may lead to the
over-training and under-training of SVM models, respectively. Consequently, the
generalization ability of the SVM is reduced in both cases [17,24,37].

In non-separable problems, the slack parameters are introduced to determine
the margin violation by noisy training data. Thus, a penalty factor, C, is assigned
to control the amount of margin violations. In other words, C is defined to deter-
mine the trade-off between empirical error and structural risk minimization, which
ensures the precise output of the classifier in presence of the noisy data. Higher C
values cause the margin to be hard and the cost of violation to become too high,
so the separating model surface over-fits the training data. In contrast, lower C
values allow the margin to be soft, which results in under-fitting separating model
surface. In both cases, the generalization performance of classifier is unsatisfactory,
so it makes the SVM model useless.

Among all the learning algorithms, SVM is extremely popular for its sparseness
feature. This feature enables SVM to allow only some parts of the training data, i.e.
support vectors, to participate in construction of the optimal hyper-plane. Hence,
the model size will be small and it is expected that SVM consumes less time in the
testing phase.

The model selection parameters not only control the generalization perfor-
mance, but also affect the SVM model size. Large problems generate large data sets
and due to these data sets the SVM’s model size (number of SV) will increase. On
the other hand, the SV’s model size is still increased because of the large dataset;
however, SVM is a sparse machine learning method. The testing phase is slow due
to the large model size, so practical applications of SVM are restricted.

There are several methods for reducing the number of support vectors and
reducing the size of the network, which can transform SVM into a practical in-
strument. Among these algorithms, reference [2] integrates SVM algorithm with
fast nearest neighbor condensation algorithm (FNNC) algorithm. A hybrid strat-
egy algorithm that combines PSO and EGA algorithms for simplification of SVM
solution proposed in [25]. Reduced support vector machine (RSVM) [2] and its
different types [15] and [19] are other ways to achieve this goal. In [3] cross valida-
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tion algorithm proposed to overcome this problem. Clustering algorithm based on
SVM (CB-SVM) introduced in [39]. The selection of adaptive feature vector based
on correlation principle and greedy algorithm for simplification of SVM solution
is another method introduced in [22]. The strengthening of sparseness by remov-
ing support vectors that are linearly related to SVM solution is another method
proposed in [9].

Although a variety of appropriate algorithms have been proposed to reduce the
number of support vectors, none of them take an action to solve the model selection
problem and reduce the SVM model size at one. There are a variety of the meth-
ods accounting different criteria including Jaakkola-Haussler Bound [14] Opper-
Winther Bound [27], Span Bound [33], Radius/Margin Bound [16] and analysis of
Distance Between Two Class in the feature space (DBTC) [3], and generalization
performance (cross validation) [12] to select the optimal SVM’s model.

In general, the methods for selection of optimal SVM models based on the ex-
isting criteria can be divided into two categories: the classic methods and methods
based on evolutionary strategies. The classic methods such as [11,16,28,3,33] use
the gradient descent technique to optimize the model selection criterion. The opti-
mization based on the gradient methods is rather fast; however, if the object func-
tion is uniform, the optimization algorithm will be trapped in the local minimum.
Similarly, if the objective function is not uniform, it will be non-differentiable,
thus making it impossible to use gradient method. The problems associated with
all other gradient-based methods include the memory occupation, inverting Gram
Matrix, and solving a quadratic optimization problem [11,17,24,28].

To overcome the problems of the first group, the second group is introduced
based on the evolutionary strategy. In this group, the global search methods like
PSO [21,34,36], chaos adaptive PSO [7], quantum PSO [26], simulated annealing
[40], ant colony [4] and genetic algorithms [10,13,38] are used to find the best
solution of the objective function.

SVM is a sparse machine-learning algorithm. However, the sparseness of the
solution in SVM is not as good as we expect and making it extremely slows in
testing stage. Furthermore, the best generalization performance depends on the
appropriate model selection. In this paper, a bipartite objective function composed
of sparseness property and generalization performance is proposed. The proposed
objective function selects the best efficient model with an acceptable level of perfor-
mance accuracy. Such model has smaller network size, and thus lower testing speed,
which is highly important to real-world applications. The evolutionary strategies
of the genetic algorithm of binary representation and real-valued vector are used to
evaluate the performance of the proposed objective function in comparison with the
conventional objective function, which only consists of generalization performance
[6,12,21,35,36,38].

The Section 2 of this paper states the problem and discusses how to use an evo-
lutionary algorithm to select the model and how to encode it. SVM formulation
is elaborated on in Section 3. The evolutionary strategies of the genetic algorithm
of binary representation and real-valued vector are described in Section 4. The
main idea of the proposed objective function is discussed in Section 5 where it is
evaluated using real-world data set as well as BGA and RGA algorithms, prov-
ing the performance of the objective function. Finally, some conclusions are made
in Section 6.
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2. Problem Statement

There are two key points in using evolutionary algorithms to solve model selection
problem and enhance the sparseness property at once. The first one is how to
encode the problem, i.e. how to display the model parameters as chromosomes.
The second is how do define the objective function as a way of evaluating the
performance of each chromosome. These two factors are as follows:

Encoding: Each parameter of the model selection problem is considered as one
of the dimensions of the candidate solution. The final optimal solution of the
evolutionary algorithms includes kernel and SVM regularization parameters.

Objective function: The objective function is the sum of generalization perfor-
mance and sparseness property of SVM.

Although the SVM draws on the minimization principle of structural risk to
minimize the upper bound of generalization error, it still suffers from over and under
training as well as sizable network in real-world applications. By considering the
sparseness as the second part of the objective function, the over and under training
problems can be resolve. Also, the sparseness of the solution is strengthened and
the testing time is reduced. To evaluate the proposed objective function, it is
compared with the conventional objective function. Fig. 1 shows the procedure of
comparing both objective functions using the BGA and the RGA.

3. Support Vector Machine

This section reviews the theory behind the support vector machine. We have
a limited number of training dataset with D-dimensional feature vector and the
maximum size of l with corresponding class label yi ∈ {−1,+1}. The objective is
to optimally solve a two-class classification problem. The optimal hyper-plane in
SVM is achieved by solving a convex quadratic problem which is formulated as
follows:

minφ (w, ξ) =
1

2
∥w∥2 + C

l∑
i=1

ξi (1)

s.t.

yi
(
wT.xi + b

)
≥ 1− ξi, i = 1, 2, . . . , l (2)

ξi ≥ 0, i = 1, 2, . . . , l

where ξi(s) are the slack parameters to determine the classification error of each
data points. The regularization parameter, C is determined by the user. It controls
the trade-off between maximization of separable margin and the error of classifi-
cation. The data is mapped on the feature space by a function called kernel k(., .)
in which it is inner product of φ in form of k (xi, xj) = φ(xi).φ(xj). The functions
which comply with the Mercer conditions [5,24] can be used as kernel function.
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Fig. 1 The procedure of comparing both objective functions using BGA and RGA.

By developing the Lagrangian equation and taking the derivative based on KKT
optimal conditions, the dual form of SVM problem is obtained as follows:

maxQ (α) =
1

2

l∑
i=1

l∑
j=1

αiαjyiyjk (xi, xj)−
l∑

j=1

αj

s.t.
l∑

j=1

αiyi = 0 (3)

0 ≤ αi ≤ C, i = 1, . . . , l

where α = (α1, α2, . . . , αl) are non-negative Lagrangian parameters. The xi(s)
corresponding to non-zero solutions of dual equation are called Support Vectors
(SVs). Many of the solutions for dual equations are equal to zero. Thus, they are
not included in the construction of the final hyper-plan.

Assume ν as the set that include all indices of support vectors, the final optimal
separator hyper-plane is as follows:
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#sv∑
i∈ ν

αiyik (xi, xj) + b = 0 (4)

and the final decision-making function is defined as follows:

y (x) = sign

[
#sv∑
i∈ν

αiyik (xi, xj) + b

]
(5)

where the bias value can be easily calculated based on KKT conditions.

4. Genetic Algorithms

Genetic algorithm is a population-based iterative algorithm inspired by Darwin’s
evolution theory [1,23,38]. Given its specific features, genetic algorithm is a pop-
ular global search method. In summary, GA algorithm consists of a population of
individuals who try to find the optimal solution through the iterations based on the
evolutionary rules. In each iteration, which is called a generation, the best parent
are chosen by a selection mechanism from all the individuals based on the objec-
tive function evaluation. Then the descendants are produced from these parents by
crossover and mutation operations respectively. These descendants constitute the
next generation population of the GA, and this process is repeated until the stop-
ping condition is met. GA population algorithm has two binary and real-valued
representations which are called BGA and RGA. In this study, the BGA and RGA
are used to compare the effectiveness of the proposed and the conventional objective
functions.

4.1 Model selection using BGA

The binary representation of genetic algorithm consists of a binary vector with the
length of l. In BGA, the population of chromosomes is formed by binary vectors
of gi = (gi1,...,gil) ∈ (0, 1). Each chromosome represents an individual and each
individual is representative of a candidate solution. Fig. 2 shows the form of
a bipartite chromosome used in this paper to select optimal SVM model. The
binary chromosomes in BGA are transformed into a set of individuals based on
equation (8) for objective function evaluation process. This conversion process and
its opposite are called encoding/decoding process. It should be noted that the
representation accuracy of parameters depends on the length (l) of binary string.

Fig. 2 Chromosome in BGA.
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x = xmin + (xmax − xmin)× n
/
(2l − 1) (6)

where n, is the value of genotype parameter and x is the value of phenotype pa-
rameter within the range of [xmin , xmax]

4.1.1 Selection mechanism

In each generation, the selection mechanism is essential for choosing the best par-
ents that are likely to produce the best descendants with higher efficiency. In
this study, the Roulette wheel selection is used, as it offers higher probability of
choosing the individuals with greater efficiency.

4.1.2 Crossover operator

Crossover is one of the evolutionary operators used in GA algorithm to produce
descendants from selected parents. In this study, one-point crossover has been used
as crossover operator. Pc is the probability of crossover occurrence.

4.1.3 Mutation operator

Mutation is another evolutionary operator in GA. Bitwise mutation is used in this
study. Bitwise mutation selects a bit of chromosomes randomly, changing its value
from one to zero or vice versa.

4.1.4 Stopping condition

Several criteria can be assumed for stopping condition of GA algorithm. In this
study, to establish corresponding conditions, access to the max generation is used as
stopping condition in two GA algorithms. The general process for BGA algorithm
is shown in Fig. 3.

4.2 Model selection using RGA

The real-valued vector (RGA) is more common than BGA algorithms. These al-
gorithms do not require encoding/decoding process. RGA represents directly all
parameters or variables in form of a real-valued chromosome. Thus, the repre-
sentation of chromosomes in the RGA is straighter than BGA algorithm. A two-
dimensional vector encodes SVM parameter in form of a chromosome. Fig. 4 shows
the chromosome used in this paper for RGA. In RGA similar to BGA algorithm
the selection mechanism of crossover and mutation operators are used to produce
descendants and the next generation.

4.2.1 Selection mechanism

Tournament selection was used to determine which chromosome could be trans-
ferred to the next generation.
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Fig. 3 The working process of BGA algorithm.

Fig. 4 Chromosome representation in RGA.

4.2.2 Crossover operator

In this study, the crossover operator with linear combination was used. Pc is the
probability of crossover operator occurrence. Two individuals selected for crossover
operator are considered as xold

1 = (x11, . . . , x1n) and xold
2 = (x21, . . . , x2n) . By ex-

amining the value of Pc, one of the (9) or (10) equations is applied to the individuals
for producing the next generation.
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xnew
1 = xold

1 + σ(xold
1 − xold

2 )
xnew
2 = xold

2 − σ(xold
1 − xold

2 )
(7)

and
xnew
1 = xold

1 + σ(xold
2 − xold

1 )
xnew
2 = xold

2 − σ(xold
2 − xold

1 )
(8)

xold
1 and xold

2 are chromosomes prior to the application of the crossover operator
and the new chromosome are represented by xnew

1 and xnew
2 . To control the variance

(σ) of each crossover operator, a random number with micro range is produced.
As σ value increases, the descendants lose their similarity to the parents. There-
fore, the exploration ability of individuals in the feasible space of the problem is
strengthened, and as the σ value decreases, the descendants become more similar
to their parents, thus increasing the exploitation ability of population individuals.

4.2.3 Mutation operator

Uniform mutation is one of the most common forms of mutation operator in RGA,
which is used in this study based on [1,38]. Pm is the probability of the muta-
tion operator occurrence. By considering each individuals xold = (x1, . . . , xn), the
uniformed mutation is defined as follows:

xold
k = LBk + r(UBk − LBk) (9)

xnew = (x1, x2, . . . , x
new
k , . . . , xn) (10)

where r is a random number with uniform distribution between 0 and 1 (r ∈
[0, 1]). K is the position of mutation operator occurrence in the chromosome and
n represents the number of dimension in the chromosomes. LBk and UBk are
respectively the upper and lower bounds of the parameters in k position. The
general process of the RGA is shown in Fig. 5.

5. Experiments and simulation

5.1 Experimental and simulation conditions

To evaluate the performance of the proposed objective function, a computer set
with the hardware specifications listed in Tab. I was used. The implementation
of the proposed objective function and evolutionary strategies was undertaken in
MATLAB R2008b. Tab. II shows the characteristics of the dataset. Four differ-
ent sets of real-world data that are frequently used in the literature are used to
challenge the proposed objective function in comparison with the conventional ob-
jective function in terms of selecting optimal SVM model. The proposed objective
function is a combination of generalization performance and sparseness property.
There are several methods for evaluating the performance of SVM. In this study,
K-fold cross validation method is used K-fold cross validation is an iterative and
robust evaluation method for measuring the performance. It divides the training
data set randomly into K equal subsets. In each iteration, K-1 subset is selected
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Fig. 5 The working process of RGA algorithm.

AMDTurionTM64 CPU
2GB RAM
Vista32bit OS

Tab. I The hardware specifications of the computer.

Data Set Name # Data #Feature
Diabetes 768 8
Breast Cancer 699 10
Wine 178 13
Iris 150 4

Tab. II Characteristics of the data set.
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Wine data set
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Fig. 6 Surfaces of the objective functions for experiment datasets, a) Conventional
objective function, b) Proposed objective function.
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as training set and the remaining subset is chosen as the test set. Cross validation
method is repeated for K times, thus all subsets are once selected as a test subset.

After K iterations, Kperformance is achieved with the overall generalization
performance being the average of all performances. K-fold validation is a method
for evaluating the robust generalization performance, for each subset of data is
not only dependent from other subsets, but also dependent from all training sets.
In all experiments, K is equal to 10. In conventional objective function, only the
generalization performance that is achieved by K-fold cross validation is considered
as the objective function. This form of the objective function not only creates
under/over training in the modeling, but also increases the size of model in real-
world problems. The under/over problem reduces the generalization ability of SVM
on the testing data set.

SVM has data-driven structure (numbers of SVs) that is automatically orga-
nized based on the training data through the training stage. Thus, the way the
optimal model is selected plays an important role in navigation (formation) of the
structure of SVM. A large dataset generates a complex model. As such, testing
SVM on complex dataset will be a time-consuming process that poses a major
challenge to use in the practical application. These evidences limit the use of SVM
in the real-world problems.

In general, SVM sparseness property means that only a part of the data called
SVs is involved in producing decision-making surface. In essence, SVM is a sparse
machine-learning algorithm compared to other learning methods such as neural
network. However, the sparseness of the solution in SVM is not as good we imag-
ine. Thus, it is necessary to improve this property in the model. Despite the
fact that the accuracy of the performance achieved from K-fold cross validation
method guarantees a model with high performance accuracy, it neither prevents
the complexity of the models and over/under training problem nor tries to boost
the sparseness feature in SVM.

Accordingly, the second part of the proposed objective function plays an impor-
tant role in the simplification of the model and solving the over training problem
that occurs in large data due to the selection of many SV.

If the number of SVs is shown by #SV, then the SVM sparseness property is
defined as the ratio of SVs to l.

Sparseness =
#Nsv

l
(11)

where l is the total number of data. Finally, the bipartite objective function is
formulated in Equation (11)

Objective Function (i) = α1K-fold Error+ α2Sparseness (12)

where α1 = 0.8 and α2 = 0.2 are the significant coefficients of K-fold Cross Vali-
dation Error and Sparseness in the objective function, respectively. The range of
model selection search for C and Sigma is respectively [0.01, 100] and [1, 1000],
respectively. The performance of SVM model test is achieved by averaging 1000
optimal models made out of optimal parameters.

All experiments were conducted using RBF kernel due to the following reasons:
First, the RBF kernel maps dataset on the feature space nonlinearly. Thus, when
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the relationship between the optimal output and their input features is nonlinear,
the data set can be used. Secondly, the number of parameters in the model selection
affects the complexity of the model. A polynomial kernel has more parameters
than the RBF kernel does. Finally, the RBF kernel has less numerical problems
[5,17,24,30]. In Appendix 1, all parameters needed to implement BGA and RGA
algorithms are shown in Tabs. VII and VIII, respectively.

5.2 Analysis of experiment and simulation results

The parameters of the optimal model obtained from BGA and RGA for all data
sets are presented in Tabs. IX to XII of Appendix 2, respectively. Tabs. III to
VI present the performance of the tested SVM with the obtained optimal model
applied to the dataset of this study. In Fig. 6 the surfaces of objective functions
for the set of experiment data is shown.

Iris Dataset

According to Tab. III and the comparative study, the evolutionary algorithms have
the same performance accuracy, i.e. 100, in both models using the conventional
and proposed objective functions. The model achieved using the proposed objec-
tive function was an efficient one compared to the other model. Fig. 7 draws a
comparison between the accuracy of the best model obtained from the conventional
objective function and the best efficient model achieved from the proposed objec-
tive function. Iris dataset has a simple model, thus the advantage of the efficient
model in reducing the model complexity and testing time is not remarkable.

Model Selection
Method

Accuracy Model Size Testing Time
Based on (%) (#SV) (Sec.)
Conventional BGA-SVM 100 8.778 2.37788
objective function RGA-SVM 100 6.562 2.32474
Proposed BGA-SVM 100 7.360 2.34089
objective function RGA-SVM 100 5.431 2.32314

Tab. III Comparison of the model achieved form the proposed objective function
with the conventional objective function in Iris dataset.

Wine Dataset

Fig. 8 draws a comparison between the performance accuracy of the best model
obtained from the conventional objective function and the performance accuracy
of the best efficient model using the proposed objective function.

In addition to the reduction of the model complexity, a significant reduction in
testing time is also observed. Given the importance of the model simplicity in the
practical applications, a slight decrease in the performance accuracy is negligible
(See Tab. IV).
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Model Selection
Method

Accuracy Model Size Testing Time
Based on (%) (#SV) (Sec.)
Conventional BGA-SVM 98.4500 15.425 2.77984
objective function RGA-SVM 98.9841 12.464 2.51253
Proposed BGA-SVM 98.3210 13.242 2.65673
objective function RGA-SVM 98.5830 11.162 2.47043

Tab. IV Comparison of the model achieved form the proposed objective function
with the conventional objective function in Wine dataset.

Breast CancerDatasets

According to Tab. V and the results of the comparative study, a significant simpli-
fication was achieved in the model complexity as well as a considerable reduction
in the testing time (See Fig. 9).

Diabetes Dataset

According to Tab. VI and the results of comparative study, this dataset has a
more complex model than other data set models. Similar to the result of the other
data sets, the proposed cost function achieves an efficient model. This model has
a lower model size and testing time in comparison to the model which is obtained
by using conventional objective function (See Fig. 10).

In general, the results demonstrate that considering the sparseness property in
the model selection problem, can effectively reduce the model size, improve the

Model Selection
Method

Accuracy Model Size Testing Time
Based on (%) (#SV) (Sec.)
Conventional BGA-SVM 96.9977 32.008 4.32661
objective function RGA-SVM 97.0355 37.337 4.4193
Proposed BGA-SVM 96.7721 27.509 4.1399
objective function RGA-SVM 96.9569 30.563 4.2874

Tab. V Comparing the model achieved from the proposed objective function and
the conventional objective function in Breast Cancer dataset.

Model Selection
Method

Accuracy Model Size Testing Time
Based on (%) (#SV) (Sec.)
Conventional BGA-SVM 75.0247 260.835 17.1451
objective function RGA-SVM 75.1185 237.261 14.5767
Proposed BGA-SVM 74.9503 220.896 13.5882
objective function RGA-SVM 75.0732 221.961 13.6187

Tab. VI Comparing the model achieved from the proposed objective function and
the conventional objective function in Diabetes dataset.
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Fig. 8 Comparing the best model
achieved from conventional objective
and the proposed objective functions
using BGA and RGA in Iris dataset.
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Fig. 9 Comparing the best model
achieved from conventional objective
and the proposed objective functions us-
ing BGA and RGA in Diabetes dataset.
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Fig. 10 Comparing the best model
achieved from conventional objective
and the proposed objective functions us-
ing BGA and RGA in Wine dataset.

model exploitation in practical applications, and decrease the testing time. Given
the effect of model simplicity in reducing the training time, a slight decline in
performance accuracy is negligible. It should be noted that by increasing the size
of training data in real-world applications, the efficient model had a significant
impact on reducing the complexity and testing time of the SVM model.

Although the optimization time of the evolutionary algorithms has not been
included in GA model, the RGA algorithm has shorter optimal time and faster
convergence compared to BGA.
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6. Conclusion

SVM is a popular algorithm because of its high generalization performance. Despite
this significant feature, the practical applications of SVM depend on the generaliza-
tion performance and the simplicity of the model. In this paper, a new objective
function based on a generalization performance and sparseness property of SVM
was proposed to select an efficient model. The edge of the proposed objective func-
tion over the conventional objective function, which is only based on generalization
performance, was proved in selection of the optimal SVM model. The testing time
and prolonged exploitation of the complex models in the real-world dataset is one
of the practical limitations of SVM. Thus, an efficient model is useful for practical
applications and can enhance the sparseness features of SVM. To evaluate the pro-
posed objective function in comparison with the conventional objective function,
two well-known GA algorithms namely BGA and RGA were used. The results
confirm the superior performance of the proposed objective function in selecting
the efficient model of SVM. Consequently, the size of the model and the test speed
were decreased with a slight drop in the performance accuracy of the model, though
this reduced performance accuracy was negligible compared to the increased test
speed and model size of SVM model.

Appendix 1

In this appendix, the parameters of the genetic algorithms with binary and the
real-valued vector representations are presented in Tabs. VII and VIII.

Population Size 30
Max Generation 50
Chromosome length 16
Selection Type Roulette wheel
Crossover Type One point
Crossover Rate 0.8
Mutation Type Bitwise
Mutation Rate 0.05

Tab. VII The parameters of genetic algorithms with binary representation.

Population Size 30
Max Generation 50
Selection Type Tournament
Crossover Type Linear combination
Crossover Rate 0.8
Mutation Type Uniform
Mutation Rate 0.05

Tab. VIII The parameter of the genetic algorithm of the real-valued vector.
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Appendix 2

The optimal parameters of the efficient model selection derived from BGA and
RGA algorithms for each dataset is presented in Tab. II.

Iris C Sigma

Conventional objective function
BGA-SVM 485.0657 60.7237
RGA-SVM 828.5386 63.1849

Proposed objective function
BGA-SVM 477.0017 52.1726
RGA-SVM 599.0141 44.1571

Tab. IX The optimal parameters of model selection for Iris dataset.

Wine C Sigma

Conventional objective function
BGA-SVM 358.3165 42.5870
RGA-SVM 441.6113 38.0516

Proposed objective function
BGA-SVM 802.0445 34.4128
RGA-SVM 709.0551 9.6558

Tab. X The optimal parameters of model selection for Wine dataset.

Breast Cancer C Sigma

Conventional objective function
BGA-SVM 638.9265 58.8300
RGA-SVM 408.4685 69.9766

Proposed objective function
BGA-SVM 855.4120 36.6086
RGA-SVM 765.7207 54.2733

Tab. XI The optimal parameters of model selection for Breast Cancer dataset.

Diabetes C Sigma

Conventional objective function
BGA-SVM 176.4862 93.7179
RGA-SVM 427.6439 86.9857

Proposed objective function
BGA-SVM 779.7038 41.0568
RGA-SVM 829.6394 65.6860

Tab. XII The optimal parameters of model selection for Diabetes dataset.
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