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Abstract: An artificial neural network (ANN) based on particle swarm optimiza-
tion (PSO) was developed for the time series prediction. This hybrid ANN+PSO
algorithm was applied on Mackey–Glass series in the short-term prediction x(t+6)
and the long-term prediction x(t + 84), from the current value x(t) and the past
values: x(t−6), x(t−12), x(t−18). Four cases were studied, alternating the time-
delay parameter as 17 or 30. Also, the first four largest Lyapunov exponents were
obtained for different time-delay. Simulation shows that this ANN+PSO method
is a very powerful tool for making prediction of chaotic time series.
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1. Introduction

Chaotic time series are an important research and application area. Several models
for time series data can have many forms and represent different stochastic pro-
cesses. The prediction of time series is one of the most important aspects for the
practical usage of scientific and engineering knowledge, including physical science.
In the last decades many different techniques have been developed for the predic-
tion of time series based on artificial neural network (ANN) models that includes
back-propagation algorithm [16], radial basic function [7], recurrent network [26],
genetic algorithms [24], fuzzy system application [14], and wavelet approach [6].

Time series contain much information about dynamic systems [12]. These sys-
tems are usually modeled by delay-differential equations. Some of them, for exam-
ple, the Mackey–Glass equation [22], the Ikeda equation [13], and equation for an
electronic oscillator with delayed feedback [9], are standard examples of time-delay
systems [3].

The principal problem of the time series study consists of predicting the next
value of a series known up to a specific time, using the known past values of the
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series. In time series prediction, this is usually first embedded in a state space
using delay coordinates:

x(t) = [x(t), x(t+ τ), · · · , x(t+ (d− 1)τ)] (1)

where x(t) is the value of the time series at time t, τ a suitable time-delay and
d the order of the embedding. This embedded vector is then used to predict
the next value of the series x(t + τ). Therefore, the non-linear dependence of
the level of a series on previous data points is of interest, partly because of the
possibility of producing a chaotic time series. Also, the potential in short-term
prediction in chaos based models have been widely appreciated, and improving
prediction accuracy of such models by various techniques [16]. However, the long-
term prediction has not been widely studied in the literature.

In this work, chaotic time series data taken from the Mackey–Glass differential
equation were used to develop a neural network. In order to obtain still a more
effective correlation and prediction, particle swarm algorithm has been introduced
to update the weights of all layers of the network. Then, this hybrid algorithm was
used in the short-term prediction and long-term prediction.

2. Hybrid algorithm

A feed-forward neural network was used to represent non-linear relationships among
variables [16]. This ANN was implemented replacing standard back-propagation
algorithm with particle swarm optimization (PSO).

PSO is a population-based optimization tool, where the system is initialized
with a population of random particles and the algorithm searches for optima by
updating generations [20]. In each iteration, the velocity of each particle j is
calculated according to the following formula [21]:

vk+1
j = ωvkj + c1r1

(
ψk
j − skj

)
+ c2r2

(
ψk
g − skj

)
(2)

where s and v denote a particle position and its corresponding velocity in a search
space, respectively. k is the current step number, ω is the inertia weight, c1 and c2
are the acceleration constants, and r1, r2 are elements from two random sequences
in the range (0,1). skj is the current position of the particle, ψk

j is the best one of
the solutions that this particle has reached, and ψg is the best solutions that all
the particles have reached. In general, the value of each component in v can be
clamped to the range [−vmax, +vmax] control excessive roaming of particles outside
the search space [20,21]. After calculating the velocity, the new position of each
particle is:

sk+1
j = skj + vk+1

j (3)

The procedure to calculate the output values, using the input values of the network
were as follows [19]:
The input data were normalized using the following equation:

pi =
(
Xi −Xmin

i

) 2

Xmax
i −Xmin

i

− 1 (4)
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where Xi is the input variables i, Xmin
i and Xmax

i are the smallest and largest
value of the data. Next, the net inputs (N) are calculated for the hidden neurons
coming from the inputs neurons. For a hidden neuron:

Nh
i =

n∑
i

wh
i,jpi + bhi,j (5)

where pi is the vector of the inputs of the training, w
h
i,j is the weight of the connec-

tion among the input neurons with the hidden layer h, and the term bhi,j corresponds
to the bias of the neuron of the hidden layer h, reached in its activation. The PSO
algorithm is very different then any of the traditional methods of training [20]. Each
neuron contains a position and velocity. The position corresponds to the weight
of a neuron

(
ski → wh

i,j

)
. The velocity is used to update the weight

(
vk+1
i → w′

i,j

)
.

Starting from these inputs, the outputs (yi) of the hidden neurons are calculated,
using a transfer function fh associated with the neurons of this layer.

yi = fh

(
n∑
i

wh
i,jpi + bhi,j

)
(6)

To minimize the error, the transfer function f it should be differentiable. In the
ANN, the hyperbolic tangent function (tansig) was used as

f(Ni) =
eNi − e−Ni

eNi + e−Ni
(7)

All the neurons of the ANN have an associated activation value for a give input
pattern, and the algorithm continues finding the error that is presented for each
neuron, except those of the input layer. After finding the output values, the weights
of all layers of the network are actualized wi,j → w′

i,j by PSO, using eqs. (2 and
3) [21]. The velocity is used to control how much the position is updated. On
each step, PSO compares each weight using the data set. The network with the
highest fitness is considered the global best. The other weights are updated based
on the global best network rather than on their personal error or fitness [20]. In
this article, we used the mean square error (MSE) to determine network fitness for
the entire training set:

MSE =

∑n
i=1

(
Y true
i − Y calc

i

)2
n

(8)

where Y true
i is the real data and Y calc

i is the calculated output value obtained from
the normalized output (yi) of the network. This process was repeated for the total
number of patterns in the training set. For a successful process the objective of the
algorithm is to modernize all the weights minimizing the total root mean squared
error (RMSE):

RMSE =

√∑n
i=1

(
Y true
i − Y calc

i

)2
n

(9)

ε = min(RMSE) (10)
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The step-to-step approach of PSO+ANN can be summarized as:

Step 1: Initialize the positions (weights and biases) and velocities of a group of
particles randomly. The particles represents the weight vectors of ANN, including
biases. The dimension of the search space is therefore the total number of weights
and biases.
Step 2: The ANN is trained using the initial particles position in PSO. The
learning error produced from ANN network can be treated as particles fitness value
according to initial weight and bias. The current best fitness achieved by particle
j is set as ψk

j . The ψ
k
j with best value is set as ψg and this value is stored.

Step 3: Evaluate the desired optimization fitness function (Eq. 10) over a given
data set.
Step 4: Compare the evaluated fitness value of each particle (Fj) with its value.
If Fj < ψk

j then ψk
j = skj is the coordinates corresponding to best particle so far.

Step 5: The objective function value is calculated for new positions of each particle.
If a better position is achieved by an agent, ψk

j value is replaced by the current

value. As in Step 1, ψg value is selected among ψk
j values. If the new ψg value is

better than previous value, it is replaced by the current ψg value and this value is
stored. if Fj < ψg then ψg = skj is the particle having the overall best fitness over
all particles in the swarm.
Step 6: The learning error at current epoch will be reduced by changing the
particles position, which will update the weight and bias of the network. Change
the velocity and location of the particle according to movement equations (Eqs.
2 and 3). The new sets of positions (weights and biases) are produced by adding
the calculated velocity value to the current position value. Then, the new sets of
positions are used to produce new learning error in ANN.
Step 7: This process is repeated until the stopping conditions either minimum
learning error or maximum number of iteration are met, then stop; otherwise Loop
to Step 3 until convergence.
Step 8: The optimum weight and biases for ANN model are obtained by PSO.
Best training process is obtained for ANN.

Fig. 1 presents a block diagram of the ANN+PSO algorithm developed in this
study. In PSO, the inertial weight ω, the constant c1 and c2, the number of particles
Npart and the maximum speed of particle summary the parameters to syntonize
for their application in a given problem. An exhaustive trial-and-error procedure
was applied for tuning the PSO parameters. Firstly, the effect of ω was analyzed
for values of 0.1 to 0.9. Fig. 2a shows the values of ω that favored the search of the
particles and accelerated the convergence. Next, the effect ofNpart was analyzed for
values of 10 to 100 particles in the swarm. Fig. 2b shows that the best population
to solve the problem is of 50 particles. Tab. I shows the selected parameters for
this hybrid algorithm.

3. Simulations

The data points were generated from the Mackey–Glass time-delay differential
equation [22,10] which is defined as follows:
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dx

dt
= βx(t) +

αx(t− τ)

1 + x(t− τ)10
(11)

where t is a variable, x is a function of t, and τ is the time delay. The initial values
of the time series are α = 0.2, β = 0.1, and x(0) = 1.2. If τ ≥17, the time series
show the chaotic behaviour [24,10].

The goal of the task is to use known values of the time series up to the point
x = t to predict the value at some point in the future x = t + T . The standard
method for this type of prediction is to create a mapping from d points of the time

Fig. 1 Flow diagram for training of the ANN using PSO algorithm.
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Fig. 2 Convergence graphics. (a) Determination of the best values for ω as: 0.3
(– –), 0.5(- - -), 0.7(– · –), 0.9(– · · –). (b) Effect of Npart for: 25(- - -), 50(—),

100(– –).

series spaced ∆ apart, that is (x(t), x(t−∆), . . . , x(t− (d− 1)∆)), to a predicted
future value x(t+ T ).

In order to solve the Mackey–Glass equation, the fourth-order Runge–Kutta
method was applied to find the numerical solution. The time series was obtained
evaluating the solution of eq. (11) at each integer points. Step size of 0.1 was used
to generate a time series, and x(t) is thus derived for 0 ≤ t ≤ 1500 with x(t) = 0
for t < 0 in the integration. Four non consecutive points in the time series are
given to generate each input vector Xi (where i = 1, 2, . . . , n) of the input matrix
X, defined as follows:
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X =


Xi

...

...
Xn

 =


x(t) x(t−∆) · · · x(t− (d− 1)∆)

x(t+ 1) x(t) · · ·
...

...
... x(t)

x(t+ n− 1) x(t+ n) · · ·
...

 (12)

A similar criterion was used to create the output matrix, defined as follows:

Y =


x(t+∆)

...

...

...

 =


Yi
...
...
Yn

 (13)

Then, the ANN+PSO method was used in the short-term prediction and long-
term prediction. This hybrid algorithm was trained to predict the values x(t+ 6)
and x(t+ 84) from the current value x(t) and the past values, using the standard
form applied in the literature, for d = 4 and ∆ = T = 6 [7,24].

x(t+ 6) = F [x(t), x(t− 6), x(t− 12), x(t− 18)] (14)

x(t+ 84) = F [x(t), x(t− 6), x(t− 12), x(t− 18)] (15)

One thousand data points of the above format were collected. The first 500 were
used for training while the others were used for testing the ANN+PSO method.

Section Parameter Value
ANN NN-type feed-forward

Number of hidden layers 1
Transfer function tansig (Eq. 7)
Number of iterations 1500
Normalization range [–1, 1]
Weight range [–100, 100]
Bias range [–10, 10]
Minimun error 1e–3

PSO Number of particles in swarm (Npart) 50
Number of iterations (kmax) 1500
Cognitive component (c1) 1.494
Social component (c2) 1.494
Maximum velocity (vmax) 12
Minimum inertia weight (ωmin) 0.5
Maximum inertia weight (ωmax) 0.7
Objective function RMSE (Eq. 10)

Tab. I Parameters used in the hybrid ANN+PSO algorithm.
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And the following four cases were simulated with α = 0.2, β = 0.1 and x(0) = 1.2,
as:

• Case 1 : only short-term prediction x(t+ 6) using τ = 17.
• Case 2 : long-term prediction x(t+ 84), with τ = 17.
• Case 3 : short-term prediction (eq. 14), τ = 30.
• Case 4 : long-term prediction (eq. 15) using τ = 30.

4. Results and discussion

The most basic architecture normally used for the analysis of chaotic time series
involves a neural network consisting of three or four layers [16,12]. The input
layer contains one neuron for each input parameter: x(t), x(t − 6), x(t − 12),
and x(t − 16). The output layer has one node generating the scaled estimated
value of the chaotic time series: x(t + 6) or x(t + 84). The number of hidden
neurons needs to be sufficient to ensure that the information contained in the data
utilized for training the network is adequately represented [19]. There is no specific
approach to determine the number of neurons of the hidden layer, many alternative
combinations are possible. The optimum number of neurons was determined by
adding neurons in systematic form and evaluating the MSE and RMSE of the sets
during the learning process [20]. For the Case 1 the optimum architecture was
4-6-1. In the Case 2, the best architecture was 4-12-1. For the Case 3 was 4-16-1.
And for the Case 4 was 4-24-1.

The results obtained with the ANN+PSO method were presented using the eqs.
(8 and 9). Tab. II show the average errors for all data set used in the proposed
model. These results show that the ANN+PSO model can be accurately trained
and that the chosen architectures can estimate the short-term x(t + 6) and long-
term x(t+ 84) with acceptable accuracy.

Simulation Best architecture Output
Training set Prediction set
MSE RMSE MSE RMSE

Case 1 4-6-1 x(t+ 6) 0.000029 0.0054 0.000028 0.0053
Case 2 4-12-1 x(t+ 84) 0.000063 0.0079 0.000065 0.0080
Case 3 4-16-1 x(t+ 6) 0.000063 0.0079 0.000064 0.0080
Case 4 4-24-1 x(t+ 84) 0.000092 0.0096 0.000091 0.0095

Tab. II Average errors for all data set used in the ANN+PSO method.

Fig. 3 shows a comparison between recorded and calculated values of the stan-
dard configuration applied in the Mackey–Glass time series (Case 1 ). Fig. 3a shows
the training set for x(t + 6) as a function of the time t. For this training set, the
correlation coefficient R2 was 0.99952. Fig. 3b shows the MSE of training as a
function of the time t, with a MSEmax of 0.00032. Fig. 3c shows the prediction set
of x(t + 6). Note that for the prediction set, R2 was 0.99953. Fig. 3d shows the
MSE obtained for the prediction set with MSEmax of 0.00027.

Tab. III shows a comparison between some computational methods found in
the literature [5, 6, 11, 14, 17] and the ANN+PSO method proposed in this work.
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Fig. 3 Calculated values (circles) obtained for the Mackey–Glass time series –
Case 1 (solid line). (a) Training set for x(t+6); (b) MSE for the training set; (c)

Prediction set for x(t+6); (d) MSE for the prediction set.

Method RMSE
Linear model 0.5503
Auto regressive model 0.1900
Cascade correlation NN 0.0624
Genetic algorithm and fuzzy system [17] 0.0490
Six order polynomial 0.0402
Back-propagation NN 0.0262
RBFNNa [8] 0.0114
ANFISb and fuzzy system [14] 0.0084
ARFNN+SVRc model 1 [11] 0.0080
ARFNN+SVRc model 2 [11] 0.0073
WNNd model 1 [6] 0.0071
Neural tree [5] 0.0069
WNNd model 2 [6] 0.0059
This work Case 1 0.0053

aRadial basis function neural network
bAdaptive neuro-fuzzy inference system
cAnnealing robust fuzzy neural network with support vector regression
dWavelet neural network

Tab. III Comparison between computational methods found in the literature for
the short-term prediction.
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The low errors found with the proposed method (MSE = 0.000028, and RMSE =
0.0053) indicate that it can estimate the Mackey–Glass time series x(t + 6) with
better accuracy than other methods.

Fig. 4 shows other comparison between recorded and calculated values of the
long-term prediction x(t+ 84). Fig. 4a shows the training set for the Case 2 as a
function of the time t. For this figure, R2 was 0.99877. Fig. 4b shows the MSE for
training set as a function of the time t, with MSEmax of 0.00059. Fig. 4c shows the
prediction set for the x(t+84), with R2 of 0.99853. Fig. 4d shows the errors for the
prediction set with MSEmax of 0.00057. Tab. IV shows a comparison between some
computational methods found in the literature [1,2,23,25] and the result obtained
with the ANN+PSO method. This comparison was made using the normalized
root mean squared error (NRMSE), defined as follows:

NRMSE =

√√√√∑n
i=1

(
ytruei − ycalci

)2∑n
i=1 (y

true
i − yi)

2 (16)

The low errors found with the proposed method (MSE = 0.000065, RMSE =
0.0080, and NRMSE = 0.0383) indicate that it can estimate the long-term x(t+84)
of the Mackey–Glass time series with better accuracy than other methods.

Fig. 4 Calculated values (circles) obtained for the Mackey–Glass time series –
Case 2 (solid line). (a) Training set for x(t+84); (b) MSE for the training set; (c)

Prediction set for x(t+84); (d) MSE for the prediction set.
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Method NRMSE
Linear model 1.504
Cascade correlation NN 0.170
Fuzzy system [2] 0.103a

RBFNNb [1] 0.097a

Six order polynomial 0.085
Back-propagation NN 0.060
Genetic algorithm and RBFNNb [25] 0.050a

Neural gas [23] 0.050
This work Case 2 0.038
along-term: x(t+ 85)
bRadial basis function neural network

Tab. IV Comparison between computational methods found in the literature for
the long-term prediction.

Fig. 5 shows a comparison between recorded and calculated values for the
Case 3. Fig. 5a shows the training set as a function of the time t, with R2 of
0.99930. Fig. 5b shows the MSE for this training set with a MSEmax of 0.00061.

Fig. 5 Calculated values (circles) obtained for the Mackey–Glass time series –
Case 3 (solid line). (a) Training set for x(t+6); (b) MSE for the training set; (c)

Prediction set for x(t+6); (d) MSE for the prediction set.
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Fig. 5c shows the prediction set with R2 of 0.99919. Fig. 5d shows the MSE obtained
for this prediction set with MSEmax of 0.00058. Fig. 6 show the results for the Case
4. Fig. 6a shows the training set with R2 of 0.99900. Fig. 6b shows the MSE of the
training set with MSEmax of 0.00109. Fig. 6c shows the prediction set with R2 of
0.99877. Fig. 6d shows the MSE for this prediction set with MSEmax of 0.00078.

Fig. 6 Calculated values (circles) obtained for the Mackey–Glass time series –
Case 4 (solid line). (a) Training set for x(t+84); (b) MSE for the training set; (c)

Prediction set for x(t+84); (d) MSE for the prediction set.

The time series study consists of predicting the next value of a series using the
known past values of the series, because all relevant information about the next
event is conveyed by a few recent events contained within a small time window.
Thus, short long-term is able to solve many time series tasks unsolvable with fixed
size time windows. Tab. V shows some relations to a mean period of short long-term
obtained with the proposed method.

Fig. 7 shows a representation of the chaotic attractor for all cases studies.
This Figure shows that with the above parameters, the system operates in a high-
dimensional regime. The Mackey–Glass system is infinite dimensional (because it
is a time-delay equation) and, thus, has an infinite number of Lyapunov exponents
(λi) [10]. The Lyapunov exponents of dynamical systems are one of a number of
invariants that characterize the attractors of the system in a fundamental way [4].
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Output
Training set Prediction set
MSE RMSE MSE RMSE

t+ 10 0.000034 0.0058 0.000033 0.0057
t+ 20 0.000040 0.0063 0.000036 0.0060
t+ 30 0.000042 0.0065 0.000040 0.0063
t+ 40 0.000045 0.0067 0.000045 0.0067
t+ 50 0.000052 0.0072 0.000052 0.0072
t+ 60 0.000054 0.0073 0.000055 0.0074
t+ 70 0.000058 0.0076 0.000060 0.0077
t+ 80 0.000061 0.0078 0.000065 0.0081

Tab. V Some relations to a mean period (Case 1) obtained with the ANN+PSO
method.

Fig. 7 Chaotic attractors for the Mackey–Glass time series studies: (a) short-
term representation with τ = 17; (b) long-term representation with τ = 17; (c)
short-term representation with τ = 30; (d) long-term representation with τ = 30.
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Tab. VI shows a comparison of the first four largest Lyapunov exponents of the
Mackey–Glass system reported in ref. [10], with the Lyapunov exponents obtained
for the ANN+PSO method for different τ .

τ λi, ref. [10] λi, ANN+PSO
17 0.00860 0.00900

0.00100 0.00132
–0.03950 –0.04100
–0.05050 –0.05000

23 0.00940 0.00938
0.00000 0.00002
–0.01200 –0.01400
–0.03400 –0.04000

30 0.00710 0.00730
0.00270 0.00300
0.00000 0.00004
–0.01670 –0.01900

Tab. VI Comparison of the first four largest Lyapunov exponents of the Mackey–
Glass system reported in ref. [10], with the Lyapunov exponents obtained for the

ANN+PSO method.

An approach to determining an appropriate cutoff value for the number of ex-
ponents can be related to the Lyapunov dimension [4]. This idea was originally
explored by Kaplan and Yorke [15]. Thus, Kaplan and Yorke conjecture that this
dimension (DKY) is equal to the information dimension [18]. Tab. VII present a
comparison of the fractal dimension and Lyapunov dimension calculated by the
Kaplan–Yorke conjecture [15] for the Mackey–Glass system reported in ref. [10],
with the Lyapunov dimension calculated for the Mackey–Glass system generated by
the ANN+PSO method. Fig. 8 shows a comparison of the dimension as a function
of the τ (from 17 to 30, and at increments of 0.5) between the Lyapunov dimen-
sion calculated for the Mackey–Glass system reported in ref. [10], and Lyapunov
dimension simulated for the Mackey–Glass system by the ANN+PSO method.

τ DF, ref. [10] DKY, ref. [10] DKY, ANN+PSO
17 2.13 2.10 2.10
23 2.76 2.82 2.80
30 ≈3.00 3.58 3.50

Tab. VII Comparison of the fractal dimension and Lyapunov dimension calculated
by the Kaplan–Yorke conjecture for the Mackey–Glass system reported in ref. [10],
with the Lyapunov dimension calculated for the Mackey–Glass system generated by

the ANN+PSO method.
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Fig. 8 The dimension as a function of the delay (τ = 17 to 30), at increments of
0.5. Lyapunov dimension [15], is shown as: dotted line, taken from ref. [10], and

solid line, calculated for the ANN+PSO method.

5. Conclusions

In this work, a hybrid algorithm based on artificial neural network and particle
swarm optimization (ANN+PSO) was used in the short-term prediction and long-
term prediction, with data taken from the Mackey–Glass time series.

Based on the results and discussion presented in this study, the following main
conclusions are obtained: i) ANN+PSO method proposed in this work can be
properly trained and used in the short-term prediction and long-term prediction of
time series with acceptable accuracy; ii) the current value x(t) and the past values
used have influential effects on the good training and predicting capabilities of the
chosen network; and iii) simulation shows that this hybrid ANN+PSO algorithm
is a very powerful tool for making prediction of chaotic time series, and the low
deviations found with the proposed method shows a better accuracy than other
methods available in the literature.
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Lazzús J. A., Salfate I., Montecinos S.: Hybrid neural network. . .
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