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Abstract: This paper presents a novel weight updating algorithm for training of
multilayer neural network (MLNN). The MLNN system is first linearized and then
the design procedure is proposed as an inequality constraint optimization problem.
A well selected Lyapunov function is suitably determined and integrated into the
constraint function for satisfying asymptotic stability in the sense of Lyapunov.
Thus, the convergence capability of training algorithm is improved by using a new
analytical adaptation gain rate which has the ability to adaptively adjust itself
depending on a sequential square error rate. The proposed algorithm is compared
with two types of backpropagation algorithms and a Lyapunov theory based MLNN
algorithm on three benchmark problems which are XOR, 3-bit parity, and 8-3
encoder. The results are compared in terms of number of learning iterations and
computational time required for a specified convergence rate. The results clearly
indicate that the proposed algorithm is much faster in convergence than other
three algorithms. The proposed algorithm is also comparatively tested on a real
iris image database for multiple-input and multiple-output classification problem
and the effect of adaptation gain rate for faster convergence and higher performance
is verified.
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1. Introduction

This study is concerned with the training of a feedforward multilayer neural net-
work (MLNN). The most popular methods for training MLNN are the gradient
based backpropagation (BP) algorithms [9, 10, 15, 19]. The main disadvantage of
gradient descent based method is its inability to guarantee global minimum and
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its slow convergence rate [8]. Theoretically, these algorithms suffer from local min-
ima problem [14, 16, 22]. Meanwhile some algorithms, which are fast or capable
of achieving a global minimum, have been improved but these require intensive
computation and storage [3, 4, 5, 20, 21, 24].

Recently, Lyapunov Stability Theory (LST) based algorithms have been pro-
posed to train the parameters of neural networks due to its global minimum solu-
tion ability [14, 16, 22]. The LST definition and conditions may easily be found
in literature [12]. LST based algorithms are all expressed by utilizing the classi-
cal recursive least square method. Unlike gradient descent based techniques, LST
based algorithms aim to search for a global minimum through an error energy
surface. On the other hand, the determination of adaptation gain rate in these
algorithms is a crucial step. Because, the adaptation gain rate directly affects the
convergence dynamics. In [14, 16, 22], the adaptation gain rate is determined as a
user defined constant parameter after a great number of trials. Hence, an adaptive
determination procedure is necessarily required.

In this paper, we have further investigated a LST based training algorithm
in an optimization framework. A Lyapunov function candidate, Vt (k) = akt e

2
t (k)

with at > 1, is first defined, and then the procedure is formulated as an inequality
constraint optimization problem by using Lagrange multiplier theory similar to
in our previous study [18]. Here, ek (k) and t represent the training error and the
MLNN output index (t = 1, 2, . . . ,m, m is the number of the outputs), respectively.
As a result of optimization problem solution, a new adaptation gain rate, which can
adaptively adjust itself in accordance with the sequential square training error rate,
is obtained. Thus, the weight coefficients are iteratively updated, from the output
layer to the input layer, to make the Lyapunov energy function negative definite
at each iteration, ∆V (k) = Vt (k) − Vt (k − 1) < 0. Therefore, the training error
can asymptotically converge to zero as time goes to infinity. The most attractive
feature of the proposed algorithm is the adjustable adaptation gain rate parameter
improving the convergence ability and accelerating the MLNN learning process.

The performance of the proposed algorithm is measured by comparing with
three existing algorithms. Two of them are backpropagation type algorithms and
the other one is a LST based MLNN algorithm. They are tested on three benchmark
problems which are XOR, 3-bit parity, and 8-3 encoder. It is found that the
proposed algorithm is much faster in convergence than three other algorithms. The
proposed algorithm is also comparatively tested on a real MMU Iris Image Database
[11] and the effect of adaptation gain rate on the faster convergence ability is also
verified for a multiple-input and multiple-output classification problem.

This paper is composed of four sections. In Section 2, the novel algorithm is
formulated and the self-adjustable adaptation gain rate is expressed. In Section 3,
simulation results are comparatively illustrated and discussed. The conclusion is
presented in Section 4.

2. LST based learning algorithm for MLNN

In this section, we have first presented the MLNN system and its linearization
process, and then the proposed algorithm is given.
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2.1 MLNN system and its linearization

A structure model of an MLNN is shown in Fig. 1. Its characteristic model is a
nonlinear input-output mapping from ℜn to ℜm, where n is the input dimension
andm is the output dimension, while u represents the number of the hidden neurons
which connects the inputs and outputs [14]. A similar MLNN model for signal
tracking problem is proposed in our previous study [17].
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Fig. 1 A model structure of Multilayer Neural Network [9].

In a feed forward MLNN, let define an M dimensional weight vector wt(k)
including all the weights of each output node as [14]:

wt (k) =
[
w

(2,1)
t (k), w

(1,0)
1 (k), . . . ,w(1,0)

u (k)
]T

(1)

where M = u (n+ 1) + (u+ 1) , t = 1, 2, ...,m. In Eq. (1), upper index (1, 0) is
the weight vector from input neurons to hidden neurons, whereas upper index (2,
1) is the weight vector from hidden neurons to output neurons at time step k (see
Fig. 1). In Fig. 1, Bias1 and Bias2 represent unity bias terms for each hidden
layer and output layer.

Modelling of a finite-dimensional discrete time system is represented by the
following state equations [13, 14]:

wt (k) = wt (k − 1) + vt (k) (2)

dt (k) = f (wt (k − 1) ,x (k)) + ct (k) (3)

where wt (k) is the system state at time k, x (k)={Bias1, x1 (k) , . . . , xn (k)}∈ℜn

is the input data, and f(·): ℜn → ℜm is the nonlinear function of the MLNN. The
stochastic processes {vt (k)} and {ct (k)} containing their each covariance matrices
are zero mean independent Gaussian random variables [13, 14]. We have assumed
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that the unknown state wt (k) has a Gaussian distribution, and hence in Eq. (2),
a priori distribution of wt (k) except desired output {dt (k)} is defined as the state
update from previous values of wt (k − 1). However, Eq. (3) shows the system
response using the desired output, {dt (k)} [13]. Thus, we can get maximum a
posteriori (MAP) estimate ŵt (k − 1) of wt (k − 1) after observing the outputs,
from dt (1) up to dt (k). So, after getting one more observation dt (k + 1), the
updated MAP estimate ŵt (k) of wt (k) will be obtained [13].

Similar to the study in [14], we have linearized the MLNN system as a first step
for design of weight updating algorithm. Initially, the system state wt (k) is taken
fixed, i.e., vt (k) is set to zero, and so its covariance matrix is equal to an identity
matrix [13]. Then, the Eq. (2) can be given as

wt (k) = wt (k − 1) = wo (4)

where wo is the true value (optimal value) of the weight vector [13]. Subsequently,
the nonlinear function f (wt (k − 1) ,x (k)) is expanded into a Taylor series around
the current estimate parameter ŵt (k − 1) to linearize Eq. (3) [1, 6, 7, 13, 14, 25].
After that the desired output is obtained as

dt (k) = f (ŵt (k − 1) ,x (k)) + hT
t (k) (wo − ŵt (k − 1)) + ρ (k) + ct (k) (5)

where ht(k) is the tth column vector of the Jacobian matrix depend upon the
current estimate of ŵt (k − 1) and ρ (k) is higher order terms that may be neglected.

ht (k) =
∂f (w, x (k))

∂w

∣∣∣∣
w=ŵt(k−1)

(6)

After linearization, linearized desired output d̃t (k) is expressed as

d̃t (k) = dt (k)− f (ŵt (k − 1) ,x (k)) + hT
t (k) ŵt (k − 1) = hT

t (k)wo+ct (k) (7)

Then, d̃t (k) is computed for time step k using the weight vector estimate ŵt (k − 1)
[6, 7].

Linearized output of the MLNN, ỹt (k), and hidden layer outputs, s (k), are as
follows [14]

ỹt (k) = hT
t (k)wt (k) (8)

s (k) =


1

F1

(
w

(1,0)
1 (k)x (k)

)
...

Fu

(
w

(1,0)
u (k)x (k)

)

 (9)

After substitution of Eq. (8) and (9) into Eq. (6), we have obtained ht(k) as
follows
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ht (k) =



∂yt(k)

∂w
(2,1)
t (k)

∂yt(k)

∂w
(1,0)
1 (k)

...
∂yt(k)

∂w
(1,0)
u (k)

 =

=


G

′
(sT (k)w

(2,1)
t (k))s (k)

G
′
(sT (k)w

(2,1)
t (k))w

(2,1)
t,1 (k)F

′

1(w
(1,0)
1 (k)x (k))x (k)

...

G
′
(sT (k)w

(2,1)
t (k))w

(2,1)
t,u (k)F

′

u(w
(1,0)
u (k)x (k))x (k)

 (10)

where
G

′
(zr)=1− (zr)

2
, r = 1, . . . ,m

F
′
(zl)=1− (zl)

2
, l = 1, . . . , u

Here, zr and zl represent the summation output of each neurons. Here, F (·) and
G(·) are determined as tangent sigmoid nonlinear functions. Also, F

′
(·) and G′

(·)
represent derivatives. Thus, the linearization procedure is completed. The LST
based algorithm design is presented in the following subsection.

2.2 The proposed LST based algorithm

After the linearization of MLNN system, here, let express a novel adaptive learn-
ing process in an optimization framework by using LST with Lagrange multiplier
theory. A Lyapunov function, Vt (k) = akt e

2
t (k) with at > 1, is first determined

according to Lyapunov stability theory for the “t”th output nodes of the MLNN.
Then, optimal w∗

t values are found by minimizing the cost function Eq. (11):

Φ (wt)=
1

2
δwT

t δwt (11)

subject to inequality constraint, ∆V (k) = Vt (k) − Vt (k − 1) < 0, satisfying neg-
ative definiteness of Lyapunov function, Vt (k) = akt e

2
t (k) with at > 1, which con-

tributes to the asymptotic stability of MLNN algorithm in the sense of Lyapunov.

δwt = wt (k)−wt(k − 1) (12)

The proposed inequality constrained optimization problem is solved by using the
method of Lagrange multipliers [2]. Similar to our previous study in [18], the
minimization problem is presented as follows

w∗
t = argmin

(
1

2
δwT

t δwt

)
subject to

(
akt e

2
t (k)− ak−1

t e2t (k − 1)
)
< 0 , ∀k and at ∈ ℜ+. Here, w∗

t represents
the optimal weight vector. In Eq. (13), the Lagrangian function is written in
accordance with Lagrange method.
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F (wtµ) =
1

2
(wt (k)−wt (k − 1))

T
(wt (k)−wt (k − 1))

+µ

(
akt

(
dt (k)− hT

t (k)wt (k)
)2

− ak−1
t (dt (k − 1)

−hT
t (k − 1)wt (k − 1)

)2)
(13)

where µ is the nonnegative Lagrange multiplier variable. The solution of the in-
equality constrained optimization problem is determined by minimizing Lagrangian
function F (wt, µ) with respect to wt and µ, respectively [17]. After differentiation
of F (wt, µ) with respect to wt and µ, then setting results equal to zero, we obtain
the following two conditions of optimality

Condition 1 :
∂F (wt, µ)

∂wt
= 0 (14)

Condition 2 :
∂F (wt, µ)

∂µ
= 0 (15)

Application of optimality Condition 1 to the Lagrange function in Eq. (13), we
obtain the following updating formula after rearrangement of terms

wt (k) = wt (k−1)+
ht (k)

∥ht (k)∥2

(
1−a−

k
2

t

|et (k−1)|
|αt (k)|

)
αt (k) (16)

where αt (k) is the a priori estimation error

αt (k) = dt (k)− hT
t (k)wt (k−1) (17)

Adaptation gain function, gt (k), is also defined as

gt (k) =
ht (k)

∥ht (k)∥2

(
1−a−

k
2

t

|et (k−1)|
|αt (k)|

)
(18)

Weight vector update law in Eq. (16) can then simply be rewritten using gt (k)
and αt (k) terms as below

wt (k)=wt (k−1)+gt (k)αt (k) (19)

The inequality constraint ∆V (k) is represented in terms of the adaptation gain
rate “at” and the training error “et(k)” in order to clearly recognize the negative
definiteness of the Lyapunov function, as follows

∆V (k) = Vt (k)− Vt (k − 1)

= akt e
2
t (k)− ak−1

t e2t (k − 1)

...

= akt [αt (k)− αt (k) g
T
t (k)ht (k)]

2 − ak−1
t e2t (k − 1) (20)
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Using the adaptation gain function Eq. (18) and could be rewritten Eq. (20) as
follows

∆V (k) = akt

αt (k)− αt (k)

(
ht (k)

∥ht (k)∥2

(
1−a−

k
2

t

|et (k−1)|
|αt (k)|

))T

ht (k)

2

− ak−1
t e2t (k − 1)

...

= e2t (k − 1)− ak−1
t e2t (k − 1)

= e2t (k − 1)
(
1− ak−1

t

)
< 0, for all k > 1 and at > 1. (21)

As a result of implementing the optimality Condition 2 in Eq. (15), we get the
adaptation gain rate at as

at =
e2t (k − 1)

e2t (k)
(22)

at in Eq. (22), represents the adaptation gain rate at current step, k. Therefore,
we have rewritten the Eq. (22) as in Eq. (23) in an appropriate iterative form such
as at(k) for using in computational algorithm.

at(k) =
e2t (k − 1)

e2t (k)
(23)

As seen from Eq. (21), the computational algorithm should be started with an
initial “at(0)” value which is greater than 1 (one) for satisfying asymptotic stability
in the sense of Lyapunov. Therefore, Eq. (23) is reformulated by just adding “1” to
the right side of it satisfying at (k) > 1. Thus, the error et (k) can asymptotically
converge to zero with the last form of the adaptation gain rate given in Eq. (24).

at (k) = 1 +

(
e2t (k − 1)

e2t (k)

)
(24)

Consequently, the “at (k)” in Eq. (24) can be used in the proposed computational
algorithm by choosing any arbitrary positive initial value providing, at (0) > 1.

To prevent singularities in proposed computational algorithm, we have also
added sufficiently small positive slack variables to adaptation gain function Eq.
(18) as follows:

gt (k) =
ht (k)

λ+ ∥ht (k)∥2

(
1− |et (k−1)|

λ+ a
k
2
t (k − 1) |αt (k)|

)
(25)

where λ≪ 1 and, λ ∈ ℜ+. Here, the argument of adaptation gain rate is taken as
(k − 1) in Eq. (25) for initializing of algorithm in accordance with et (k−1). This
condition can easily be checked and verified by following the flow diagram given in
Fig. 2.
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Fig. 2 Flow diagram of the proposed LST based MLNN algorithm.
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3. Simulation results and discussion

In this study, a three-layered neural network is used for evaluating the performance
of the proposed LST based MLNN learning algorithm. Unity bias terms are ap-
plied to each neuron. The proposed algorithm is performed on three benchmark
problems such as XOR, 3-bit parity and 8-3 encoder. Additionally, the proposed
algorithm is tested on a real iris recognition database to verify the effect of pro-
posed adaptation gain rate for multiple-input and multiple-output classification
problem. Tangent sigmoid function is selected as an activation function for each
problem. The proposed algorithm is compared with two types of conventional BP
algorithms and a LST based MLNN algorithm which has fixed adaptation gain
rate parameter [14]. For benchmark problems, the patterns are presented to the
network sequentially during the training procedure. The training process for each
benchmark problems is finished when mean-square error (MSE) per epoch reaches
at 10−5. Due to the weight updating algorithm performed with small random
initial different values, convergence time varies from run to run in an acceptable
accuracy interval. Therefore, the convergence time for each algorithm is calculated
by averaging fifty different runs for a better comparison. Each run means that
the network is trained with any arbitrary random weight vector. In our simula-
tion examples, we used gradient descent BP algorithm with adaptive learning rate
which is taken to be η = 0.5 and η = 0.95, respectively but BP algorithm with
its fixed learning rate which is taken to be only η = 0.95. For LST based MLNN
algorithm [14], its fixed adaptation gain rate parameter is taken to be at = 1.01. In
our proposed algorithm, initial value of adaptation gain rate, at(0), is also chosen
as at(0) = 1.01 which is the same with other LST based algorithm’s parameter
for an objective evaluation. The initial posterior error et(0) is set to be 0.01. All
algorithms used in this study have been performed on a personal computer with
the speed of 2.53 GHz by using MATLAB R2009a software. The algorithm codes
can also be obtained from correspondence author via e-mail.

3.1 XOR problem

This application is indeed a basic classification problem. For the XOR problem, the
input series are presented as [00; 01; 10; 11] and output series are taken as [0; 1; 1; 0].
A network which has two inputs, one output and four neurons in the hidden layer
is constructed for the simulation. Training set includes four patterns in one epoch.

Training Computational
Algorithm Epochs Time Time For One Parameters

(sec) Epoch (sec)
BP 3134 32 0.01039 η = 0.5 (Adaptive)
BP 2569 26 0.01050 η = 0.95 (Adaptive)
LST based
MLNN [14]

189 1.232 0.00652 at = 1.01 (Fixed)

Proposed 71 0.537 0.00757 at(0) = 1.01 (Adaptive)

Tab. I Comparison of the algorithms for XOR problem.
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The simulation results for XOR problem are presented in Tab. I. It can be seen
that the proposed algorithm with its adjustable adaptation gain rate, at(k), takes
minimum number of epochs to converge predefined MSE value (10−5) as compared
to BP algorithms and LST based MLNN [14] algorithm. In this case, the proposed
algorithm is about 2.5 times faster than LST based MLNN [14] in terms of number
of epochs. Moreover, it can also be seen that the proposed algorithm is nearly two
times faster than the same LST based algorithm in terms of training time. BP
with its fixed adaptive learning rate η = 0.95 does not converge to the MSE of
10−5 within 20 000 epochs, therefore, it is excluded from comparison process.

(a)

 a
t

 a
t

(b)

Fig. 3 Convergence time (in terms of iteration) comparison among three algorithms
for XOR problem. a) BP algorithm (η = 0.95 (Adaptive)), b) LST based MLNN
algorithm (at = 1.01 (Fixed)) and Proposed algorithm (at(0) = 1.01 (Adaptive)).

Fig. 3(a) and (b) shows the performance of three algorithms performed with
different initial conditions. It is clear from the figures that the number of epochs for
convergence fluctuates very much for BP and LST based MLNN algorithms [14].
This fluctuation is reduced in case of proposed algorithm and it behaves stable.
The proposed algorithm with the obtained adjustable adaptation gain rate, at(k),
provides a tangible improvement over LST based MLNN algorithm [14] both in
terms of training time and training epochs (See Fig. 3(b)).
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 a
t

 a
t

Fig. 4 Comparison of training error in terms of MSE among three algorithms for
XOR problem.

The improvement with the proposed algorithm in error convergence can be
clearly seen in Fig. 4. It is observed that as the number of epochs increases the
proposed algorithm with its adjustable adaptation gain rate, at(k), gives a better
accuracy as compared to other algorithms. The adaptation gain rate parameter,
at(k), adaptively adjusts itself depending on a sequential square error rate for a
better convergence at each iteration. Thus, the training error of the proposed al-
gorithm asymptotically converges to zero as time goes to infinity and this situation
can easily be observed in Fig. 4.

3.2 3-bit parity problem

This application is chosen as another classification problem. For the 3-bit parity
problem, the input series are presented as [000; 001; 010; 011; 100; 101; 110; 111] and
output series are taken as [0; 1; 1; 0; 1; 0; 0; 1]. A three-layered network which has
three inputs, one output and seven neurons in the hidden layer is constructed for
simulation. There are eight patterns in one epoch for this problem.

Training Computational
Algorithm Epochs Time Time For One Parameters

(sec) Epoch (sec)
BP 4227 43.48 0.01022 η = 0.5 (Adaptive)
BP 3729 38.14 0.01023 η = 0.95 (Adaptive)
LST based
MLNN [14]

1449 12.6 0.00812 at = 1.01 (Fixed)

Proposed 1013 8.33 0.00822 at(0) = 1.01 (Adaptive)

Tab. II Comparison of the algorithms for 3-bit parity problem.

Tab. II shows the simulation results for 3-bit parity problem. As seen from
Tab. II, the proposed algorithm outperforms both BP and LST based MLNN al-
gorithm [14] in terms of training time as well as number of training epochs. In this
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example, the proposed algorithm is about 1.5 times faster than LST based MLNN
algorithm in terms of training epoch numbers. BP with its fixed adaptive learning
rate η = 0.95 is also performed for 3-bit parity problem but this algorithm does
not converge to the MSE of 10−5 within 20 000 epochs and thus, it is excluded
from Tab. II.

From the Fig. 5 (a) and (b), it can clearly be observed that the proposed
algorithm performs better than LST based MLNN algorithm [14] and BP type
algorithms both in terms of training time and training epochs.

(a)

 a
t

 a
t

(b)

Fig. 5 Convergence time (in terms of iteration) comparison among three algorithms
for 3-bit parity problem. (a)BPalgorithm (η=0.95(Adaptive)),(b)LST basedMLNN
algorithm (at=1.01 (Fixed)) and Proposed algorithm (at(0)=1.01 (Adaptive)).

The MSE convergence improvement is shown in Fig. 6. It can be observed
that as the number of epochs increases the proposed algorithm with its adjustable
adaptation gain rate, at(k), gives better accuracy as compared to other algorithms.

3.3 8-3 encoder problem

This experiment is chosen to solve the multiple-input multiple-output (MIMO)
problem. For the 8-3 encoder problem, the input series are presented as [10000000;
01000000; 00100000; 00010000; 00001000; 00000100; 00000010; 00000001] and output
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 a
t

 a
t

Fig. 6 Comparison of training error in terms of MSE among three algorithms for
3-bit parity problem.

series are taken as [000; 001; 010; 011; 100; 101; 110; 111]. The network architecture
is composed of eight inputs, three outputs, and 16 hidden neurons.

Tab. III shows the simulation results of 8-3 encoder problem. There are eight
patterns in one epoch for this experiment. As shown in Tab. III, the proposed
algorithm with its adjustable adaptation gain rate, at(k), outperforms other algo-
rithms. The proposed algorithm is nearly 1.5 times faster than LST based MLNN
algorithm [14] both in terms of convergence time and training epochs for MIMO
problem. BP algorithm with its fixed learning rate does not converge to MSE of
10−5 for this problem and that is why it is excluded from Tab. III.

Training Computational
Algorithm Epochs Time Time For One Parameters

(sec) Epoch (sec)
BP 3622 29.9 0.01029 η = 0.5 (Adaptive)
BP 3352 29.1 0.01023 η = 0.95 (Adaptive)
LST based
MLNN [14]

84 2.1 0.02521 at = 1.01 (Fixed)

Proposed 57 1.5 0.02632 at(0) = 1.01 (Adaptive)

Tab. III Comparison of the algorithm for 8-3-encoder problem.

As shown in Fig. 7, the proposed algorithm performs better than all other
algorithms both in terms of training time and training epochs for MIMO problem.
The proposed algorithm also reduced the epoch fluctuations with respect to run.
It oscillates (performs stable) between 40 and 70 epochs (Fig. 7 (b)). Reduction in
convergence time and training epochs in case of the proposed algorithm provides
tangible improvement over other algorithms as seen from Fig. 7 (a) and (b).

Similar to above applications, it can be observed that as the number of train-
ing epochs increases the proposed algorithm with its adjustable adaptation gain
rate, at(k), gives better accuracy as compared with other algorithms for 8-3 en-

631



Neural Network World 6/14, 619-636

(a)

a
t

a
t

(b)

Fig. 7 Convergence time (in terms of iteration) comparison among three algorithms
for8-3encoder problem. (a)BPalgorithm (η=0.95(Adaptive)), (b)LSTbasedMLNN
algorithm (at=1.01 (Fixed)) and Proposed algorithm (at(k) = 1.01 (Adaptive)).

 a
t

 a
t

Fig. 8 Comparison of training error in terms of MSE among three algorithms for
8-3 encoder problem.

coder problem in Fig. 8. By the virtue of adjustable adaptation gain rate, at(k),
the convergence rate of the proposed algorithm is accelerated efficiently. Thus,
the proposed algorithm provides a faster convergence for all cases at given above
benchmark examples.
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3.4 IRIS recognition problem

Iris recognition is considered as a real world MIMO classification problem for eval-
uating the performance of the proposed algorithm. In experiments, the Multimedia
University (MMU) database of iris images are used [11]. MMU iris database con-
tributes a total number of 450 iris images. There are five iris images for each eye
in this database. We used only right eyes’ data in the experiments (Totally, 135
training images and 90 testing images obtained from 45 different persons). With
5 iris images available for right eyes, the algorithm has been performed randomly
using three images of each person for training, and the remaining two images for
testing the network.

Due to the high dimensional input data, a feature extraction technique which is
PCA (Principal Component Analysis) [23] is firstly used to reduce the iris image’s
dimension for the experiments. Then, these features are fed to the network. Feature
vector size consists of 60 PCA features, which was determined after many trials
involving the adjustment of size from 10 to 100.

In the experiments, the size of network input is set to the number of 60 (num-
ber of PCA features) and the number of output neurons is set to 45 (number of
classes to be recognized). The number of hidden layer neurons is fixed to be 60.
Each experimental result is obtained after five simulation runs. For performance
evaluation, an average recognition rate [1] is defined as Rave;

Rave =

q∑
i=1

nic

qntot
(26)

where q is the number of simulation runs, nic is the number of correct recognitions
for i-th run, and ntot is the total number of the testing data for each run.

As shown in Fig. 9(a), the proposed training algorithm has been reached to
the expected minimum MSE point within about 50 epochs. It is confirmed that
the proposed MLNN training algorithm has faster error convergence ability than
other algorithms. The training error exponentially converges to zero as the training
epochs increase.

Fig. 9(b) shows the training recognition rate plotted versus the training epochs.
The proposed MLNN classifier algorithm can achieve 94% of training recognition
with a faster rate at about 50 epochs, as compared with other algorithms. There-
fore, the proposed LST based recognition system provides a rapid training process.
In the meantime, the proposed algorithm has also been performed for testing im-
ages. As a result, the proposed algorithm achieves a higher and faster testing
recognition rate at about 83% within 50 epochs (Fig. 9(c)). As a result, it is ver-
ified that the proposed algorithm can be used as a perfect classifier in real world
problem solutions.

4. Conclusion

In this study, a novel LST based algorithm for training the feedforward MLNN is
presented. The convergence capability of the LST based algorithm is improved by
using a new adaptation gain rate “at(k)” which has the ability to adaptively adjust
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Fig. 9 (a) Training error versus epochs, (b) Training recognition rate versus epochs,
(c) Testing recognition rate versus epochs.

itself depending on a sequential square error rate. Experimental results show that
the proposed algorithm is faster than both popular two BP algorithms and a LST
based MLNN algorithm in terms of convergence time as well as training epochs.
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The proposed algorithm is also comparatively tested on the Multimedia University
(MMU) real Iris Image Database for MIMO classification problem and the effect
of adaptive gain rate for faster convergence and higher performance is verified.
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