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Abstract: This tutorial summarizes the new approach to complex system the-
ory that comes basically from physical – information analogies. The information
components and gates are defined in a similar way as components in electrical or
mechanical engineering. Such approach enables the creation of complex networks
through their serial, parallel or feedback ordering. Taking into account wave proba-
bilistic functions in analogy with quantum physics, we can enrich the system theory
with features such as entanglement. It is shown that such approach can explain
emergencies and self-organization properties of complex systems.
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1. Introduction

Information was interestingly described by George Bernard Shaw: “If you have
an apple and I have an apple, and we exchange apples, we both still only have
one apple. But if you have an idea (a piece of information) and I have an idea,
and exchange ideas (this information), we each now have two ideas (two pieces of
information).” Such example supposes our memory is a basis for system’s specifica-
tion: the system maps inputs into state values, and inputs and states into system’s
outputs.

Understanding the complex system is as if we were building a house. We need
material (or mass), as well as plenty of workers (or energy), but without the knowl-
edge of the plans as for when and how to build, we cannot erect the house. Informa-
tion and knowledge are therefore the things that enrich the complex system theory
and afterwards also natural sciences, enabling them to describe more faithfully the
world around us.

The concept of data means a change of state, for example from 0 to 1 or from 1
to 0, where the state vector is not necessarily only digital or one-dimensional. Every
such change can be described with the use of a quantity of information in bits.
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Information theory was founded by Claude Shannon [12] and his colleagues in
the 1940s and was associated with coding and data transmission, especially in the
newly emerging field of radar systems, which became a component of defensive
systems during the Second World War.

Syntactic (Shannon) information was defined as the degree of probability of
a given event and answered the question how often a message appears. For ex-
ample, by telling you that the solar system will cease to exist tomorrow, I will
be giving you the maximum information possible, because the probability of this
phenomenon occurring is nearly equal to zero. The probability model of informa-
tion defined in this way has been used for the design of self-repairing codes, digital
modulations and other technical applications. Telecommunications specialists and
radio engineers were concentrating on a probabilistic description of the encoded
data and minimizing of probability errors during the data transmission.

There is a lot of approaches of how to extract information or eliminate entropy.
Bayes method [11], which interprets the density of probability not as a description
of a random quantity, but rather as a description of the uncertainty of the system,
i.e. how much information is available about the monitored system. The system
itself might be completely deterministic (describable without probability theory),
but there may be very little information about the system available. When per-
forming continuous measurement, we obtain more and more data, and therefore
more information about our system, and thus our system begins to appear to us
more definite. The elimination of uncertainty therefore increases the quantity of
information we have about the monitored system.

Once uncertainty has been eliminated, one may proceed to the interpretation
of information, or in other words, to the determination of how to reconstruct the
described system, or how to build a more or less perfect model of it using the
information [38]. This task already belongs to the theory of systems, where it is
necessary to identify the status parameters, individual processes of the system etc.
As a result, a knowledge system emerges, which is able to describe the given object
appropriately.

The model-theoretical work of semantic information was done by Carnap and
Bar-Hiller [1]. On the other hand, semantic information asks how often a message
is true. Zadeh [41] introduced the theory of fuzzy sets, specific tool that maps a
value for which an element is or is not a member of a set, expressed as a number
between zero and one.

Models of complex systems are based on knowledge from information science
that has been gathered over the years in classical physics, a specialized part of
which is called information physics [13]. At present, this discipline is still in its
infancy, but many discoveries have already been made, e.g. by Vedral [37] and
some scientists have realized that without basic theories in this area, the further
development of complex system theory will not be possible.

Section 2 presents author’s approach to models of complex information systems
based on physical-information analogies together with additional consequences of
such way of thinking, e.g. information elements, that enables resonances or in-
formation networks with feedbacks, etc. Section 3 extends this approach to wave
probabilistic functions that are more appropriate for models of soft systems. Quan-
tum models can benefit from special features of wave probabilities like, e.g. en-
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tanglement, entanglement swapping or quantisation. Some examples of possible
applications are given in Section 4. Section 5 concludes the paper.

2. Models of complex information systems

2.1 Information – physical analogies

In [22] the extended Frege’s concept of information the image was presented based
on results [9, 27, 39]. In Fig. 1 basic information quantities are given:

Oi(t) – a set of rated quantities on an object,
Pi(t) – a set of states,
Φi(t) – a set of syntactic strings (data flow),
Ii(t) – a set of information images of state quantities.

In physics, the state is a complete description of a system in terms of parameters
at a particular moment in time. Thermodynamic state is a set of physical quantities
(e.g. temperature, pressure, and composition) describing variable properties.

Other parameters representing links between information quantities:

aOP – identification,
aPO – invasivity,
aPΦ – projection in a set of symbols and syntactical strings,
aΦP – uncertainty correction and identification,
aΦI – interpretation, information origin,
aIΦ – language constructs reflection,
aIO – relation of functions and structural regularity,
aOI – integrity verification.

Fig. 1 Frege’s functional concept of information image origin and action.
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Fig. 2 Chua’s concept of electrical quantities.

The circuit theoretician Chua [2] introduced the basic concept of electrical com-
ponents together with the relations between them as it is shown in Fig. 2. There
are six different mathematical relations connecting pairs of the four fundamental
circuit variables:

q(t) – charge,
φ(t) – magnetic flux,
i(t) – electric current,
v(t) – voltage.

From electrical variables definition we know that the charge is the time inte-
gral of the current. Faraday’s law tells us that the flux is the time integral of
the electromotive force, or voltage. There should be four basic circuit elements de-
scribed by relations between variables: resistor, inductor, capacitor and memristor.
Chua’s concept is famous due to an envisioned new electrical component named
“memristor” that provides a functional relation between charge q(t) and flux φ(t).

Let us use the analogies between Chua’s electrical and Frege’s information con-
cepts. Electrical charge q(t) is measured in coulombs [c] and can be understood
as basic electrical unit in analogy with the information unit measured in bits [bit].
Quantum physics really defines the quantum information unit called q-bit. We
speak of (input/output) data changes Oi(t) through which the system’s model can
be estimated.

Magnetic flux φ(t) is naturally related to the system states Pi(t) which should be
viewed as the piece of extracted knowledge (e.g. parameters estimated based on the
observed data, understanding why system behaves in such a way, etc.). Magnetic
flux is measured in webers [wb] corresponding to Joule multiplied by second and
divided by coulomb [J.s/c]. In agreement with our analogy the states Pi(t) are
measured in [J.s/bit] which notes how much energy can be extracted/delivered
based on one bit of information within one second.
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Electrical current i(t) measured in coulomb per second [c/s] is related to the
information (syntax) flow Φi(t) that describes dynamical property of data changes
in bits per second [bit/s]. The information flow Φi(t) typically represents the
system input/output data flows per time.

Electrical voltage v(t) leads to the analogical definition of the information (se-
mantic) content Ii(t) which characterizes the knowledge content measured in Joule
per bit [J/bit]. For information systems (IT/ICT), the information content in
[J/bit] can be alternatively defined as the number of “success events” caused by
the receipt of one bit of information [39].

2.2 Information elements

The data Oi(t) carries a piece of knowledge available in states Pi(t) or vice versa,
the piece of knowledge Pi(t) can be represented by the data set Oi(t). Linear rela-
tion tells us that the more data sets Oi(t) are available the more knowledge can be
extracted. Non-linear relation yields to conclusion that data overwhelming need
not bring us additional knowledge. Such attribute can be modelled by informa-
tion memristor – a component that possesses a knowledge memory (e.g. a priori
information from historical data).

It is evident that information resistor gives us relation between the informa-
tion flow Φi(t) and the information content Ii(t). Information capacitor explains
links between the measured data changes Oi(t) and the information content Ii(t).
The bigger data set is observed the better system description is available (analogy
with capacitor charging). Information capacitor can be understood as a knowledge
storage component.

Information inductor describes relation between the information flow Φi(t) and
the knowledge piece available in the states Pi(t). The more knowledge in states
Pi(t) the more significant the information flow Φi (t). Similarly we can speak about
an information inductor as the storage component of the information flow (analogy
with coil property).

2.3 Information resonance

We can continue in our way of thinking and define basic principles of information
resonance. For example, we can imagine two hemispheres of our brain. The left
hemisphere plays the role of an information inductor – the source of information
flow Φi(t) based on identified knowledge. To the contrary, the right hemisphere
could be described as an information capacitor – the source of information content
Ii(t) based on the observed data – analytical part that try to interpret the avail-
able data. The resonance principle can be modeled by the means of co-operation
between both hemispheres. The bigger data flow Φi(t) is generated by the left hemi-
sphere the higher knowledge Ii(t) can be extracted by right hemisphere. Higher
knowledge Ii(t) then encourages higher data flow Φi(t) and so on.

We can suppose that the information flow Φi(t) represents a number of different
evolution variants/stories/conclusions that are afterwards analyzed/interpreted/
modeled as the information content Ii(t). The result of this resonance principle is
maximizing the link between the two hemispheres and achieving the best balance
between the syntactical and semantic part of the information.
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We can then ask the following questions: Is the resonance principle a funda-
mental rule of self-organization? Are different components organized (structured)
through the links so that the knowledge in each of them is maximized? Are such
rules of self-organization compatible to minimal energy principle known in physics?

2.4 Information power

From the information flow Φi(t) and information content Ii(t), one can define other
quantities. One of the important quantities is the information power PI, defined by
[22] as the product of information flow Φi(t) times the information content Ii(t).
Dimensional analysis easily reveals that the unit of information power is given in
Joule per second [J/s] realized thanks to the received bit of information. By in-
troducing the quantity of information power, one can demonstrate that the impact
of information is maximized if the received information flow Φi(t) is appropriately
processed by the recipient and transformed into the best possible information con-
tent Ii(t). If there is a flow of valuable information that the recipient is incapable of
processing, the information power level is low. On the other hand, if the recipient
is able to make good use of the information flow, but the flow does not carry the
needed information, the result is likewise a low level of information power.

We can continue with these ideas even further introducing a phase shift between
the information flow Φi(t) and the content Ii(t), thereby arriving at the definition
of an active and a reactive information power [23]. We can imagine the active infor-
mation power as a power caused by information, which is transformed directly into
concrete physical events. The reactive information power represents our emotions,
which of course do not perform any work, but which support our decision making.
Worth mentioning in this context is a well-known Bible story: the King Solomon
proposes to have a child split in halves when two women are fighting over it, but
because of her emotions, the real mother would rather give up her child than let it
be killed.

An interesting area of the information power is the perception of time, which
we can imagine as the number of biological events taking place in our bodies with
a given frequency. If the information power intake (measured in success events per
second) is slower than our biological clock, we have the feeling that time is moving
slowly, but if the intake is faster, we have the feeling that time is being well used.

2.5 Information gates

For the sake of simplicity, let us imagine an information subsystem as an input-
output information gate shown in Fig. 3.

Between the input ports, the input information content is available, and input
information flow enters the system. Between the output ports, it is possible to
obtain an output information content, and output information flow leaves the sys-
tem. The input and output information power PIin, PIout should be assigned to
this information gate.

We can furthermore assume that this subsystem is open and is capable of using
its surroundings as a source for drawing energy. Kauffman [6] introduced the term
autonomous living agents, which are characterized by the ability to direct and

10



Sv́ıtek M.: Towards complex system theory
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Fig. 3 Information gate (Φ – information flow of data measured in bits per second,
I – information content measured in Joule per bits).

release energy. Kauffman is also the originator of the idea that the self-organization
that is characteristic for living systems is defined by a series of actions leading to
the dissemination of macroscopic work.

Let us now examine the input-output information gate we have created. Input
quantities can describe purely intellectual operations. The input information con-
tent includes our existing knowledge, and the input information flow describes the
change of the environment in which our gate operates and the tasks we want to
be carried out (target behavior). All of the valuable, long-term information gained
in this way can be used for the targeted release of energy, where at the output of
the input-output gate, there may be an information content in the order of Joules
per bit (or profits in dollars). The output information flow serves as a model to
provide such services or knowledge.

The basis of information systems is the ability to interconnect individual infor-
mation subsystems, or in our case, input-output information gates. It is very easy
to imagine the serial or parallel ordering of these gates into higher units. A very
interesting model is the feedback of information gates, because it leads to a non-
linear characteristics, to an information systems defined at the limit of stability
and other interesting properties.

In this manner one may define for example information filters which are able
to select, remove or strengthen a particular component of information.

2.6 Student-teacher interaction

In the context of information systems, it is also necessary to deal with the problem
of teaching, because the information subsystem called a teacher may be regarded as
a source of information content. The teacher has been preparing this information
content for years with respect to both the content as such (optimizing the infor-
mation content) and its didactic presentation (optimizing the information flow),
so that the knowledge can be passed on to a subsystem known as a student. If
we assume that the teacher subsystem has greater information content than the
student subsystem, after their interconnection, the information flow will lead from
the teacher to the student, so that the information content of the two systems will
gradually balance out.

The students receive the information flow and increase their information con-
tent. If the students are not in a good mood, or if the information flow from the
teacher is confused, the students are unable to understand the information received
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and to process it, so as to increase their information content. With the help of the
reactive information power mentioned above, which concerns the emotional aspects
of the recipient and the source, i.e. the student and the teacher, it is possible to
create a situation where the students’ sensitivity to the received information flow
is maximized, so that they are able to process it appropriately and transform it
into information content. Analogously, the teacher being in a good mood can lead
to the creation of better information flow.

The individual components and subsystems of information systems can behave
in different ways, and their behavior can be compared to everyday situations in
our lives. A characteristic of politicians is their ability to use even a small input
of information content to create a large output information flow. They posses the
ability to take a small amount of superficially understood content to interpret and
explain it to the broadest masses of people. On the other hand, a typical profes-
sor might spend years receiving the input information flow and input information
content, and within her/his field, he/she may serve as a medium for transmitting
a large quantity of output information content. The professor, however, might not
spread the content very far, sharing it perhaps only with a handful of enthusiastic
students.

It is hard to find an appropriate system to combine the characteristics of the
different information subsystems described above, but it is possible to create a
group of subsystems (system alliances), where these characteristics can be combined
appropriately. In this way, one can model a company or a society of people who
together create an information output that is very effective and varied, leading to
improved chances for the survival and subsequent evolution of the given group.

Through an appropriate combination of its internal properties, our information
alliance can react and adapt to the changing conditions of its surroundings. Sur-
vival in alliances thus defined seems more logical and natural than trying for a
combination of all necessary processes within the framework of one universal infor-
mation subsystem. If we have part of an alliance copied or if we have it divided into
two more operative groups that will continue developing and do not lose their con-
nection, we arrive at interesting stimuli for the modeling of the natural emergence,
spread or extinction of organisms, companies or societies.

3. Wave models of complex information systems

Currently, a number of interesting results have been discovered in the field of
quantum information science [4], taking as their basis the foundations of quantum
physics and using for modeling of complex systems those principles that do not
arise in classical physics, such as entanglement and quantization [14].

The quantum information quantity in bits can be measured, e.g. by von Neu-
mann entropy which measures the amount of uncertainty contained within the
density operator also taking into account some wave probabilistic features such as
entanglement.

Suppose that the studied system does not possess any quantum features, the
von Neumann entropy converges into classical Shannon entropy [37]. Referring to
this result the wave probabilistic models can be seen as the extension of classical
approach presented in Session 2.
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3.1 Two (non-)exclusive observers

Now let us imagine that we are flipping a coin, so that every toss comes out as
heads or tails. Someone else, who is assigned the role of an observer, is counting
the frequency of the individual coin tosses and is estimating the probability of
the phenomenon of it landing heads or tails in a simple manner, by counting the
number of times it has fallen as heads or tails in the past, and by dividing that
number by the number of the observed or registered tosses. If the observer performs
this activity for a sufficient length of time, the resulting probability will be tossing
heads fifty percent of the time, while the probability of tossing tails will also be
fifty percent, if all of the tosses are done in a proper manner and if the coin has a
perfect shape (disk) and uniform density.

Now let us try to extend further this simple example for possible variants involv-
ing errors by the observer, and let us imagine what would happen if our observer
were imperfect and made errors when observing. The observer, for example, might
wear thick glasses and have difficulty telling heads from tails, with the result that
from time to time, he/she would incorrectly register a toss as heads or tails, and
this would then show up in the resultant probability as a certain error. Because
there is only one observer, we automatically, and often even unconsciously, assume
that his/ her observations are exclusive. Exclusivity means that when our observer
registers a toss of heads, he/she automatically does not register a toss of tails, and
to the contrary, when registering a toss of tails, he/she does not at the same time
register a toss of heads. Thanks to this property, the sum of the resultant proba-
bilities of heads and tails always equals one hundred percent regardless of the size
of the observer’s error. The error of the observer shows up only by increasing the
probability of one side of the coin, while at the same time lowering the probability
of the opposite side by the same value.

Now let us assume that we are observing the same phenomenon of coin tossing,
but now with two observers who are not consulting each other about their obser-
vations. There might be two persons, one of whom watches for and registers only
tosses of heads and the other only tails. Each of our two observers is counting the
frequency of tosses of his or her own side of the coin, meaning that they each divide
the number of their respective sides of the coin by the total number of tosses. The
results are the probabilities of tossing heads or tails, and if both observers work
without any errors, the result will be the same as in the case of one observer, except
that more people will be participating in getting the result.

Now let us expand our case with two observers so that it reflects errors on their
parts. Just as in the last case, both observers might be wearing thick glasses and
might have difficulty telling heads from tails. In the case of two observers, we can
no longer assume that their observations are exclusive, because as we said, we are
assuming that they are not consulting their observations with each other.

What might happen in this situation? At a given moment, one observer could
see a toss of heads registering that phenomenon, and the second observer might
independently evaluate the coin toss as tails registering tails. Or the other way
round: the first observer will see that the toss was not heads, and the other that
the toss was not tails. In that situation, a coin toss is registered, but it is registered
neither as heads nor as tails. Logically, as an outcome of these two situations, the
sum of the resulting probabilities will not equal the desired one hundred percent,
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but will be either greater than one hundred percent in the first case, or less than one
hundred percent in the second. From a mathematical perspective, this would mean
violation of the fundamental law of probabilities, that the sum of the probabilities
of all possible phenomena in a complete system must equal one hundred percent.

How can we get around this problem? We can help ourselves by imagining the
geometry of a triangle and its use in the theory of probability. Let us first assume,
in accordance with Fig. 4, that the triangle is a right-angled triangle, and that
the length of the square root of the probability of tossing heads is depicted on the
x-axis, the length of the square root of the probability of tossing tails being shown
on the y-axis.

Tossing heads: H Tossing experiment: H,T, T,H,H, T, T, T,H, T
Tossing tails: T Number of registered tossing: 10
P observer registered: 4 O observer registered: 6

p(H) =
4

10
p(T ) =

6

10
β =

π

2

.

A
C = 1

B

C2 = 1 = A2 +B2 =
∣∣A+B · ej·π2

∣∣2
p(H) + p(T ) =

∣∣∣√p(H) +
√
p(T ) · ej·π2

∣∣∣2 = 1

Fig. 4 A right triangle – in this case of tossing coins, it must be true that ‘C’ = 1
(i.e. 100%). ‘A’ is the probability of tossing heads p(H), and ‘B’ is the probability
of tossing tails p(T ).

If we use the Pythagorean theorem that the sum of the squares of the legs equals
the square of the hypotenuse, we can say that the length of the hypotenuse of the
right triangle in this case must equal one (i.e. 100%). This would correspond to a
geometrical interpretation of the required property that the sum of the probabil-
ities of tossing heads and of tossing tails must equal one. At the same time, this
geometric analogy characterizes probabilities as squares of the lengths of sides of a
triangle. The right angle of the triangle is then an indication of the exclusivity of
the observations.

Now let us deal with the geometric interpretation of the errors of our two
observers. Under the condition that the length of the hypotenuse of a right triangle
must always equal one, we can model the error rates of our observers using the angle
between the triangle’s legs, so that the square root of the probability determined
by the first observer (including his or her errors) will be depicted on the x-axis and
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the square root of the probability found by the second observer (including that
observer’s errors) will be depicted on the y-axis. Mathematically, we can apply
the law of cosines to whatever kind of a triangle this produces as it is shown in
Fig. 5, instead of using the Pythagorean theorem that applies only to exclusive
observations resulting in a right-angled triangle.

Tossing heads: H Tossing experiment: H,T, T,H,H, T, T, T,H, T
Tossing tails: T Number of registered tossing: 10
P observer registered: 2 O observer registered: 5

p(H) =
2

10
p(T ) =

5

10
β = 1.076

B

ß

A

C = 1

C2 = 1 = A2 +B2 ± 2 ·A ·B · cos(β) =
∣∣A+B · ej·β

∣∣2
p(H) + p(T )± 2 ·

√
p(H) ·

√
p(T ) · cos(β) =

∣∣∣√p(H) +
√
p(T ) · ej·β

∣∣∣2 = 1

Fig. 5 In this non-right-angled triangle, in our case of coin tosses, ‘C’ still must
equal 1. ‘A’ represents the probability of tossing heads as registered by the first
observer p(H), and ‘B’ is the probability of tossing tails as registered by the second
observer p(T ). The angle β models the errors of the observers.

What does this situation mean, and how can it be interpreted generally? The
two observers are independent of each other, without being aware of the fact and
without sharing any information with each other. Their (virtual) interconnection
is represented geometrically by the angle between the x- and the y-coordinate,
representing the mutual imperfection of their observing. The more perfect their
observing is, the less they are dependent. In the case of perfect observers, this
dependence disappears completely, corresponding geometrically to a right triangle.

Now let us examine the parallel between a signal breakup into harmonic com-
ponents and the probability theory. Probability values have analogies to energies
and can be modeled as the squares of the values assigned to individual phenomena
(concrete values). By the square roots of the probability of event phenomena, one
may interpret how dominant a given phenomenon is in a random process, or how
often the phenomenon occurs. In this conception, phase indicates the degree of
structural links between the individual phenomena [32], i.e. by analogy the shift
with respect to the defined beginning. This beginning may be a phenomenon with
a zero phase, to which we relate all of the structural links of the other phenomena.

Unlike classical information science, where the state of a system, or more pre-
cisely, information about its state, is described with the use of a probability func-
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tion, in quantum information science, the information about the state of the system
is described using a wave probabilistic function.

Let us define discrete events A and B of a sample space S, with defined prob-
abilities P (A), P (B). The quantum state |ψ⟩ represents the description of the
quantum object given by superposition of these events [3]:

|ψ⟩ = ψ (A) · |A⟩+ ψ (B) · |B⟩ , (1)

with wave probabilistic functions defined as

ψ (A) = αA · ej·υA , ψ (B) = αB · ej·υB , (2)

where αA =
√
P (A), αB =

√
P (B) are modules, and υA, υB are the phases of a

wave probabilistic function. In accordance with the general principle, we can see
that we obtain the classical theory of probability by raising the complex wave func-
tion to the second power, whereby we automatically lose the phase characteristic
of our model.

What do these ideas have to do with quantum physics? In the case of quantum
physics, there is a definite model of behavior of a studied system, which we affect
by our method of measurement. This means that the result of the measurement
is not a description of the original system, but of a new behavior of the system
influenced by our measuring. We get something that can be compared with our
observer with thick glasses, i.e. a model that is dependent on the observer. In
order to find a model of the behavior of the original system (without intervention
by measuring), we must eliminate the error of the observer, that is to say, we
must introduce phase parameters to our model that correct the intervention of the
method of measurement.

3.2 Two binary quantum subsystems

Let us define the first quantum binary subsystem and suppose it can reach two
values A = 0 and A = 1. The second quantum binary subsystem can achieve values
B = 0 and B = 1. We assume the phase to be the linear function of quantized
phase m ·∆. The wave probability function takes the form ψ ∝ ej·k·(θ+n·360), where
the symbol ∝ means equality up to the normalization factor and ‘j’ represents an
imaginary unit. The phase function must achieve single-valuedness also for the
phases (∆ + 2 · π · k) where k is an integer [20].

Additional assumption is distinguishability of each system [4]. Mathematically
we arrive at following wave probabilistic functions:

ψ (A = 0) =
√
P (A = 0), ψ (A = 1) =

√
P (A = 1) · ej·m·(∆+2·k·π), (3)

ψ (B = 0) =
√
P (B = 0), ψ (B = 1) =

√
P (B = 1) · ej·m·(∆+2·k·π). (4)

We can suppose that observer No.1 monitors the state A = 0 and observer No.2
the state B = 1. The probabilities union that A = 0 or B = 1 is given as:

P ((A = 0) ∪ (B = 1)) =
∣∣∣√P (A = 0) +

√
P (B = 1) · ej·m·(∆+2·k·π)

∣∣∣2 =

= P (A = 0) + P (B = 1) + 2 ·
√
P (A = 0) · P (B = 1) · cos (m · (∆ + 2 · k · π))

(5)
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which is the quantum equivalent of the classical well-known probabilistic rule:

P ((A = 0) ∪ (B = 1)) = P (A = 0) + P (B = 1)− P ((A = 0) ∩ (B = 1)) . (6)

The quantum rule (5) enables both a negative and a positive sign due to a phase
parameter. It is evident that the intersection of probabilities in quantum world can
be also negative P ((A = 0) ∩ (B = 1)) < 0 despite of the fact that probabilities
P (A = 0) ≥ 0, P (B = 1) ≥ 0 are positive.

The quasi-spin was firstly introduced in [22]. If the quasi spin is integer
m ∈ {0,±1,±2,±3, . . .} we can guarantee the positive sign in (5). Such quan-
tum subsystems are called the information bosons. The information fermions are
characterized with half-integer quasi-spin m ∈

{
0,± 1

2 ,±
3
2 ,±

5
2 , . . .

}
and we must

admit the negative sign in (5). We can also deduce the information quarks analo-
gous to quantum physics with its special properties [24].

3.3 Quantum entanglement

One of the most remarkable phenomena of quantum physics is quantum entangle-
ment. This phenomenon has no parallel in classical physics, and it cannot even
be generated using classical methods, because it uses the principle of the mutual
disruption of certain states of a system thanks to wave probability functions.

We can take a closer look at this phenomenon using our simple example with
coin tossing. Suppose we have two parallel systems, and that the outcome of each
system is either throwing heads or tails. If the probability from measuring the
first system is a fifty-percent chance of throwing heads or a fifty-percent chance of
throwing tails, the output from measurement of the second system is determined
entirely by the value of measurement of the first system. In other words, the output
of the second system is 100-percent entangled with the output of the first system,
because if the output of the first system is heads, for the second system we will
most certainly, actually with a 100-percent probability, get a reading of tails. And
vice-versa: if the output of the first system is tails, the output of the second system
will definitely be heads. This conclusion applies regardless of the distance between
the two systems.

Let us define the above mentioned example through joint probability

P ((A = 0) ∪ (B = 1)) =

= P (A = 0) + P (B = 1) + 2 ·
√
P (A = 0) · P (B = 1) · cos (φ) , (7)

where φ is the phase difference between wave functions ψ (A = 0) and ψ (B = 1).
Let us suppose now that

P ((A = 0) ∪ (B = 1)) = 0. (8)

This case can occur for the following values of φ:

φ = a cos

(
−1

2
· P (A = 0) + P (B = 1)√

P (A = 0) · P (B = 1)

)
. (9)

If, for example, P (A = 0) = P (B = 1) = 1/2, then φ = π represents the 100-
percent entanglement.
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As a result of the entanglement (8), we can write that the following events will
surely happen:

P ((A = 1) ∩ (B = 0)) = 1. (10)

We can also start with the following probability, instead of (8):

P ((A = 1) ∪ (B = 0)) = 0. (11)

Then the entanglement yields into

P ((A = 0) ∩ (B = 1)) = 1. (12)

Measuring the first quantum object (the probability of measuring event 0 is 1/2
and the probability of measuring 1 is also 1/2) fully determines the value which
will be measured on the second object. Eqs. (10) and (12) yield the well-known
Bell state introduced in [37], which is used in many applications, for example in
quantum teleportation, quantum cryptography, etc.

3.4 Quantum processes

Let us imagine that thanks to a complex wave probability function, a situation
may arise when we shall be monitoring the probability of the union of several
phenomena, i.e. that either the first phenomenon will occur, or the second will
occur, or the third will not occur etc., and that this probability works out to equal
zero. Naturally, this situation cannot arise under the classical theory of probability,
because their probabilities are merely added together, and at the most, repeating
overlaps of phenomena are subtracted. In the newly introduced area of complex
wave probability functions, it can also occur, through the influence of the existence
phases, the subtracting of probabilities, and under certain conditions it is possible
to find such a constellation of phenomena, that their union works out to zero
probability. This, however, automatically means that the inversion phenomenon
(intersection) for the given union (in our case, this inversion phenomenon would
mean that the first phenomenon does not occur, and at the same time the second
phenomenon does not occur, and the third phenomenon does occur) will occur
with 100% probability, regardless of how the phenomena are arranged spatially.

Quantum entanglement is caused by the resonance of complex wave functions.
Among the ways this resonance manifests itself is that thanks to it we arrive from
a purely probabilistic world to a completely deterministic world, where there is a
disruption of the probabilistic characteristics of various phenomena, and the links
between the entangled phenomena become purely deterministic events that even
show up in different places (generally even at different times), and for that reason
they are also often designated as spatial (or generally temporo-spatial) distributed
system states. Similarly, one may arrive at the conclusion that thanks to the prin-
ciple of resonance, selected (temporo-spatial) distributed states absolutely cannot
occur in parallel, and this leads to an analogy with the Pauli exclusion principle.

The selection of a group entangled states can, of course, have a probabilistic
character, as long as the entanglement is not one hundred percent. This means
that parallel behavior occurs only with a certain probability, and this leads to the
idea of the selection of one variant according to the given probability function.
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In reference [37], we read that the behavior of entangled states is very odd.
Firstly, it spreads rapidly among various phenomena, where for this spreading
it makes use of a property known as entanglement swapping. Here is a simple
example of this behavior. If we have four phenomena, the first and second being
entangled,the third and fourth phenomenon being entangled as well, then as soon
as it comes to an entanglement between the first and third phenomenon, the second
and fourth are also entangled, without any information being exchanged between
them. Not- withstanding that those phenomena can be spatially quite remote from
each other.

3.5 Quantum information gate

With respect to above mentioned electrical-information analogies we can also define
the wave information flow and the wave information content such as the wave
probabilistic functions (for the sake of simplicity we suppose that all quantities are
time independent):

ψΦ (x) = |ψΦ (x)| · ej·νΦ(t), ψI (x) = |ψI (x)| · ej·νI(x). (13)

Referring to the above results we can also redefine the information power on the
level of wave probabilistic functions in the following way [4]:

PI (x) = |ψΦ (x)| · |ψI (x)| · cos (νI(x) + νΦ(x)) . (14)

Let us define quantities as follows:

ψΦ = αΦ,1 · |Φ1⟩+ αΦ,2 · |Φ2⟩+ · · ·+ αΦ,N · |ΦN ⟩ (15)

ψI = αI,1 · |I1⟩+ αI,2 · |I2⟩+ · · ·+ αI,N · |IN ⟩ (16)

where Φ1, . . . ,ΦN and I1, . . . , IN are possible values of information flow and infor-
mation content, respectively. Complex parameters αΦ,1, . . . , αΦ,N and αI,1, . . . , αI,N

represent wave probabilities taking into account both probability of falling relevance
flow/content value together with their mutual dependences [15].

The information power can be expressed through wave probabilistic functions
as follows (under assumption of distinguishability):

ψPI = ψΦ ⊗ ψI = αΦ,1 · αI,1 · |Φ1, I1⟩+ · · ·+ αΦ,1 · αI,N · |Φ1, IN ⟩+ . . .

· · ·+ αΦ,N · αI,1 · |ΦN , I1⟩+ · · ·+ αΦ,N · αI,N · |ΦN , IN ⟩
(17)

where symbol ⊗ means Kronecker operation [15, 16] for vectors transformed into
multiplication, each i, j-th component |Φi, Ij⟩ represents particular value of infor-
mation power that characterizes the falling/measuring of the information flow Φi

and information content Ij .

Multiplication of different combinations of the information flows and contents
|Φi, Ij⟩, |Φk, Il⟩ can achieve the same (or similar) information power Kr,

Φi · Ij ≈ Φk · Il ≈ Kr. (18)
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It can be seen that interferences of wave probabilities can emerge and wave reso-
nances among the wave parameters are possible as well. Finally, an information
power in renormalized form can be expressed as:

ψPI = β1 · |K1⟩+ β2 · |K2⟩+ · · ·+ βr · |Kr⟩+ . . . . (19)

This approach yields to the resonance principle between the received/transmitted
information flow and information content with respect to our preferences. It enables
modeling deep perception and new soft systems categories both for input/output
parameters of each quantum information gate.

It is supposed that each quantum information gate has its wave input/output
information flow Φi and content Ij . With respect to this statement we can, there-
fore, define the wave input/output information power PIin, P Iout assigned to such
a gate.

3.6 Two (non-)distinguished quantum subsystems

Let us have two quantum subsystems A,B described by wave probabilistic functions
ψA (.), ψB (.). First of all, we suppose that we are able to distinguish between A
and B quantum subsystems. Let us assign features (e.g. a special functionality, a
set of parameters or a part of a subsystem) p1 or p2 to them. The final quantum
system is represented by following wave probabilistic function:

ψA,B (p1, p2) = ψA (p1) · ψB (p2) . (20)

In case we are not able to assign the right feature to the given subsystems A or B
we must apply the principle of quantum indistinguishability [4]. It means we have
to take into account all variants of possible arrangements:

ψA,B (p1, p2) = ψA (p1) · ψB (p2)± ψA (p2) · ψB (p1) , (21)

where± characterizes the symmetry or non-symmetry of both variants (information
bosons or fermions).

Let us suppose that we have generalized “gravitation energy” between our two
subsystems UA,B (p1, p2). How much energy will be used to connect A and B
under the condition of quantum indistinguishability? From (21) we can compute
the probability density:

ρ (p1, p2) = [ψA (p1)]
2 · [ψB (p2)]

2 ± 2 · ψA (p1) · ψB (p2) · ψA (p2) · ψB (p1) +

+ [ψA (p2)]
2 · [ψB (p1)]

2
. (22)

The mean value of connection energy is given:

ŪA,B ≈ CA,B ±XA,B , (23)

where CA,B is a classical energy integral and XA,B is the exchange integral – a
consequence of quantum indistinguishability. CA,B and XA,B can be computed
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using (22) under symmetry condition [14]:

CA,B =

∫
V1

∫
V2

[ψA (p1)]
2 · [ψB (p2)]

2 · UA,B (p1, p2) dp1 dp2, (24)

XA,B =

∫
V1

∫
V2

ψA (p1) · ψB (p2) · ψA (p2) · ψB (p1) · UA,B (p1, p2) dp1 dp2. (25)

We can mark the distance between subsystems A and B as R = |p1 − p2|. Then
Eq. (22) with minus sign represents the binding in the system as a whole (in analogy
with hydrogen atom in physics).

4. Features of complex systems

4.1 Self-organization principles

Let us deal with three subsystems A,B,C not admitting any negative probabilities
P (A), P (B) or P (C), which means that the subsystems can only store/carry energy
(they do not exhaust it). Further on, we suppose that all the three subsystems fulfil
the normalization condition:

P (A ∪B ∪ C) = 1. (26)

As there is no link between either the subsystems A and C or between the subsys-
tems B and C we must admit with respect to (5) both positive and negative joint
probability P (A ∩B) – information bosons or fermions:

P (A ∪B ∪ C) = P (A) + P (B)± P (A ∩B) + P (C) ≡ 1. (27)

We can write the Eq. (27) in more universal wave probabilistic form:

P (A ∪B ∪ C) = P (A) + P (B) +
√
P (A) · P (B) · cos (φ) + P (C) ≡ 1, (28)

where φ is the phase difference between wave functions ψ (A) and ψ (B).
Generally, we can define also one-directional links [29] (phase φ characterizes

the source of the link):

P (A ∪B ∪ C) = P (A) + P (B) +
√
P (A) · cos (φ) + P (C) ≡ 1, (29)

P (A ∪B ∪ C) = P (A) + P (B) +
√
P (B) · cos (φ) + P (C) ≡ 1. (30)

In case there is no link between A and B, the energy assigned to the probability
(1− P (C)) is distributed between A and B,

P (A) + P (B) = 1− P (C) . (31)

If we start to model a positive link between A and B (co-operation model charac-
terized by classical probabilistic rule with negative sign of P (A ∩B) in (27)) we
can write

P (A) + P (B) = 1− P (C) + P (A ∩B) . (32)
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It is evident that the right side of this form is increased. It means that both A and
B can gain additional energy due to “the common co-operation principle” at the
expense of P (C). For available maximum P (A) = 1 and P (B) = 1 the link must
achieve P (A ∩B) = 1 and P (C) = 0.

A negative link between A and B can also bring a negative influence modelled
by a positive sign of P (A ∩B) in (27). It means that the negative link yields to
weakening of both subsystems A and B and to strengthening of the subsystem C.
The minimum P (A) = 0 and P (B) = 0 is fulfilled for P (A ∩B) = P (C) − 1. If
subsystem C is able to use the lost energy from A and B than such situation is
characterized by P (A ∩B) = 0 and P (C) = 1. If not, negative value of P (A ∩B)
means the energy dissipation into system environment. In case P (C) = 0 all
energy assigned to the subsystems A and B is dissipated into the environment and
so P (A ∩B) = −1.

The positive and negative links among different subsystems create the emergent
behaviour known in theory of complex systems. The more subsystems the more
links among them and so the more emergencies that have significant influence to
the modelled system as a whole.

Self-organization rules should be explained through the probability (energy)
maximization principle. We can search for (positive or negative) links among dif-
ferent subsystems to maximize simultaneously each subsystem (egoistic behaviour)
P (A) , P (B) , P (C) and also the system as a whole (group/alliance behaviour [40])
P (A)+P (B)+P (C). Various criteria for optimization can be studied, e.g. tuning
parameters of links for optimal distributions of energies within the complex system.
A new model is likely to be formed introducing the natural driving force yielding
to the creation of different system structures (organization schemes, unexpected
new links, etc.).

4.2 Interference principles

Many complex systems are typically characterized by a high level of redundancies.
The surrounding complex reality can be modelled either by very complicated model
or approximated by a set of many different and often overlapping easier models
which represent different pieces of knowledge.

Wave probabilistic models could be used to set up final behavior of complex
system. Phase parameters can compensate overlapping information among models
as it was firstly presented in [18]. Feynman rule [4, 5] says that all paths (or in our
case each of the models) contributes to a final amplitude (or in our case to a final
model) by its amplitude with different phase.

In classical examples the more models the more possible trajectories of the
future complex system behavior. This problem is mentioned in literature as “the
curse of dimensionality”. But for wave probabilistic models some trajectories could
be due to phase parameters mutually canceled up and others, by contrast, strength-
ened. If we take a sum of all trajectories assigned to all wave models this sum can
converge into “right” trajectory of the complex system. With respect to Feynman
path diagram, the more available models could not note the complexity increase.
I would like to show this principle on the following illustrative example.
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Let us have three binary subsystems A, B, C characterized by wave probabilities
ψ (A = 0), ψ (A = 1), ψ (B = 0), ψ (B = 1), ψ (C = 0) and ψ (C = 1). The whole
quantum system can be described (under the distinguishability assumption) as

ψ = ψ (A)⊗ψ (B)⊗ψ (C) = γ0,0,0 · |000⟩+ γ0,0,1 · |001⟩+ · · ·+ γ1,1,1 · |111⟩ , (33)

where γi,j,k = ψ (A = i) ·ψ (B = j) ·ψ (C = k) is the wave probability assigned for
i, j, k ∈ {0, 1}. It is evident that eight possible quantum processes are possible.

We can imagine that due to the interferences of the wave probabilistic functions
γi,j,k only two final processes |000⟩ and |111⟩ can take place as written bellow:

γ0,0,0 + γ1.1.1 = 1, γ0,0,1 + γ0.1.0 + γ1.0.0 + γ0,1,1 + γ1,0,1 + γ1,1,0 = 0, (34)

even though we can separately measure all eight variants with probability |γi,j,k|2
in each of the systems.

The presented illustrative example can be extended into more complex time-
varying systems but the basic principles are the same. The whole is more than
the sum of different pieces because it can possess new emergent features caused by
interferences of its parts.

4.3 Identity principles

Let us define two binary subsystems A and B characterized by the wave prob-
abilities ψ (A = 0), ψ (A = 1), ψ (B = 0) and ψ (B = 1). In [20, 21] the product
probabilistic rule for two wave functions was defined as

P ((A = 1) ∩ (B = 1)) =
1

2
· [ψ∗ (A = 1) · ψ (B = 1) + ψ (A = 1) · ψ∗ (B = 1)] ,

(35)
where the symbol ψ∗ expresses a complex conjugate of ψ. This equation is in com-
pliance with the non-distinguishability principle because the replacement between
A and B has no influence on the probability P ((A = 1) ∩ (B = 1)).

We can imagine that A represents the real subsystem and B its external im-
age or in other words: how this subsystem is perceived/accepted by its environ-
ment/surroundings. This quality was firstly introduced by [38] as a subsystem
identity.

It is reasonable to suppose that the surroundings spend no energy to make
changes of the subsystem A, which means

|ψ (A = 1)| = |ψ (B = 1)| . (36)

In case the surroundings fully accept the subsystem A both subsystems A and B
are identical (they have the same phases) and we can rewrite (35) as a standard
Copenhagen interpretation form [4],

P (A = 1) = |ψ (A = 1)|2 . (37)

The acceptance of the subsystem A by its surroundings (modeled by its image B)
can be differentiated by phase parameters. We note the phase difference between
ψ (A = 1) and ψ (B = 1) as ∆φ. Then, (35) can be given as

P ((A = 1) ∩ (B = 1)) = |ψ (A = 1)|2 · cos (∆φ) . (38)
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There are many variants ∆φ for the subsystems identity modelling available. The
full acceptance is modelled by ∆φ = 0. The phase difference ∆φ = π represents a
negative acceptance (the surroundings are blind to it) that yields to the negative
sign of P ((A = 1) ∩ (B = 1)).

4.4 Hierarchical networks

In many practical applications of complex system’s analyses there is a demand for
modelling of hierarchical networks as it is shown in Fig. 6. We can assume that the
first layer subsystems A1, A2, A3 and A4 play the key roles (system’s genetic code
[39]) represented by the probabilities P (A1), P (A2), P (A3) and P (A4). The second
and third layer is responsible for co-ordination activities: B1 co-ordinates A1 and
A2, B2 co-ordinates A3 and A4 and C1 is responsible for collaboration between B1
and B2.

 

A3 A1 A2 A4 

B1 B2 

C1 

Fig. 6 Hierarchical model of complex system.

Let us apply wave probabilistic approach to the network in Fig. 6. We can
define wave probabilities assigned to the first layer’s functions:

ψ (A1) =
√
P (A1) · ej·φ1 , ψ (A2) =

√
P (A2) · ej·φ2 , (39)

ψ (A3) =
√
P (A3) · ej·φ3 , ψ (A4) =

√
P (A4) · ej·φ4 . (40)

The whole system can be described as follows:

ψ = ψ (A1) · ψ (A2) · ψ (A3) · ψ (A4) = P (A1) + P (A2) + P (A3) + P (A4)+

+2
√
P (A1) · P (A2) · cos (φ2 − φ1) + 2

√
P (A1) · P (A3) · cos (φ3 − φ1)+

+2
√
P (A1) · P (A4) · cos (φ4 − φ1) + 2

√
P (A2) · P (A3) · cos (φ3 − φ2)+

+2
√
P (A2) · P (A4) · cos (φ4 − φ2) + 2

√
P (A3) · P (A4) · cos (φ4 − φ3) .

(41)
Based on the Eq. (41) we can see that the links (hierarchical co-ordinations) could
be positive or negative with respect to phase parameters φ1, φ2, φ3, φ4. We can
introduce wave probabilities assigned to the components B1, B2 and C :

ψ (B1) = 2
√
P (A1) · P (A2) · cos (φ2 − φ1) , (42)
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ψ (B2) = 2
√
P (A3) · P (A4) · cos (φ4 − φ3) , (43)

ψ (C) = 2
√
P (A1) · P (A3) · cos (φ3 − φ1)+

2
√
P (A1) · P (A4) · cos (φ4 − φ1)+

2
√
P (A2) · P (A3) · cos (φ3 − φ2)+

2
√
P (A2) · P (A4) · cos (φ4 − φ2) .

(44)

Optimal management of hierarchical networks consists of the identification of best
arrangement of all subsystems (amplitudes and phases of all components). The co-
ordination process tries to eliminate negative links while supporting the positive
links in such a way that the working components A1, A2, A3 and A4 gain as many
probabilities (proportional to the energies) as possible.

The presented example can be extended into more sophisticated networks with
many links and more complicated component arrangements. The structure of the
network can also cover serial, parallel or feedback ordering of its components. In
the future research the methodology similar to Feynman diagrams [4, 5] could be
prepared as a part of the wave system theory. Obviously, some components are
non-distinguishable which means that all their combinations must be taken into
account [20]. For such cases the system’s structure optimization may yield into
very interesting results. It appears that network’s analyze through wave probabil-
ities can get further into the complex system theory which can model features, as
emergencies or self-organization.

4.5 Complex quantum systems

The complex quantum systems were analyzed by a methodology that enables to
order different basic gates in the same way as in the systems theory. A general
description of a quasi-stationary quantum system [20] can be defined as follows:

γ1 (t+ 1)
γ2 (t+ 1)
.
γn (t+ 1)

 = k1(t) ·



a1,1 a1,2 . a1,n
a2,1 . . .
. . . .
an,1 an,2 . an,n

 ·


γ1(t)
γ2(t)
.
γn(t)

+

+


b1,1 b1,2 . b1,n
b2,1 . . .
. . . .
bn,1 bn,2 . bn,n

 ·


β1(t)
β2(t)
.
βn(t)


 , (45)


α1(t)
α2(t)
.
αn(t)

 = k2(t) ·



c1,1 c1,2 . c1,n
c2,1 . . .
. . . .
cn,1 cn,2 . cn,n

 ·


γ1(t)
γ2(t)
.
γn(t)

+

+


d1,1 d1,2 . d1,n
d2,1 . . .
. . . .
dn,1 dn,2 . dn,n

 ·


β1(t)
β2(t)
.
βn(t)


 , (46)
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where the matrices A, B, C, D are LTI (Linear Time Invariant) evolution n × n
matrices and n-valued discrete input time series observed in the time instant t in
the wave probabilistic form can be expressed:

|ζ, t⟩ = β1(t) · |I1⟩+ · · ·+ βn(t) · |In⟩ , (47)

where I1, I2, . . . , In is the set of possible values that appears in the studied process
and β1(t), β2(t), . . . , βn(t) is the vector of complex parameters assigned into the
input probabilistic discrete values normalized as follows:

|β1(t)|2 + |β2(t)|2 + · · ·+ |βn(t)|2 = 1. (48)

In the same way we can define the n-valued output probabilistic discrete pro-
cess/signal:

|ψ, t⟩ = α1(t) · |I1⟩+ · · ·+ αn(t) · |In⟩ , (49)

with normalized complex parameters α1(t), α2(t), . . . , αn(t).
The constants k1(t), k2(t) guarantee the normalization conditions in each time

instant t, and complex parameters γ1(t), γ2(t), . . . , γn(t) represent the state-space
process/signal (inner parameters):

|ζ, t⟩ = γ1(t) · |I1⟩+ · · ·+ γn(t) · |In⟩ (50)

The most general model can also be defined through the time varying evolution ma-
trices A(t),B(t),C(t),D(t). Because of the difficulty in time evolution modelling
of matrices A(t),B(t),C(t),D(t), we can preferably introduce the quasi-stationary
model and use an approach known in the dynamic system theory, e.g. exponential
forgetting [27].

Let us present illustrative example of a quantum system with two repeated
eigenvalues and one distinct eigenvalue λ1 = − 1

2 , λ2 = −1
2 , λ3 = −1 , as follows:α1(t)

α2(t)
α3(t)

 =

 0 1 0
0 0 1
0.7 0.9 −0.2

α1(t− 1)
α2(t− 1)
α3(t− 1)

 ,
α1(1)
α2(1)
α3(1)

 =

 0.5477
0.5477
0.5477

 . (51)

The initial values were chosen as

α1(1) = α2(1) = α3(1) =
1√
3
, (52)

so that the initial probabilities were equal to

p1(1) = p2(1) = p3(1) =
1

3
. (53)

Fig. 7 presents the time evolution of the probabilities assigned to each state. The
analysis shows that the evolution of probabilities converges into the final values:
p1 = 0.42, p2 = 0.32 and p3 = 0.26.

We can extend the quantum modeling from the set of n-values to the set of n
multi-models [18]. Let the sequence with m output values Yz, z ∈ {1, 2, . . . ,m} be
represented by a set of n-models P (Yz|Hi) , i ∈ {1, 2, . . . , n} and let the models
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Fig. 7 Evolution of probabilities assigned to three states – (∗ marks the state p1,
+ marks the state p2, ◦ marks the state p3).

be changed over with probability P (Hi). Then, according to well-known Bayes’
formula, the probability of z-th output value can be computed as follows:

P (Yz) =

n∑
i=1

P (Yz |Hi ) · P (Hi). (54)

Equation (54) holds only if we know both probabilities P (Hi) and the model
components P (Yz|Hi), i ∈ {1, 2, . . . , n}.

Model components P (Yz|Hi) represent, in our approach, the partial knowl-
edge of the modeled system. In practical situations the number of model compo-
nents n is finite and is often chosen as a predefined set of multi-model components
P (Yz |Hi, C ) where C denotes that the model component is conditioned by the de-
signer decision (letter C meaning the context transition). The probabilities P (Hi)
mean the combination factors of the model components.

In the case where the real model components P (Yz |Hi ) are the same as the
designer’s models P (Yz |Hi, C ), the Eq. (54) is fulfilled. In other cases, the Bayes’s
formula must be changed so that the designer’s decision is corrected:

P (Yz) =
n∑

i=1

P (Yz | Hi, C) · P (Hi)+

+ 2
∑
k<L

√
P (Yz | Hk, C) · P (Hk) · P (Yz | HL, C) · P (HL) · λ(z)k.L,

(55)
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where coefficients λ
(z)
k,L = cos

(
β(z)

k,L

)
are normalized statistic deviations that could

be computed by algorithm [18]. The form (55) represents multidimensional Law
of cosines that, for the two-dimensional case, could be written as a2 = b2 + c2 +
2bc cos(φ), where φ is the angle between the sides b and c [7, 8].

The probability of z-th output value P (Yz) can be characterized by a complex
parameter ψ (Yz) with the following properties:

P (Yz) = |ψ (Yz)|2 , (56)

ψ (Yz) =
n∑

i=1

ψi (Yz), (57)

ψi (Yz) =
√
P (Yz |Hi, C ) · P (Hi) · ej·βz(i). (58)

Because equations (56), (57), and (58) are independent on the selection of the
models P (Yz | Hi, C), i ∈ {1, 2, . . . , n}, these models can be chosen in advance to
cover a whole range of the probabilistic area (universal models). The multi-models
parameters P (Hi) and βz (i) can be estimated from a real data sample (such as
amplitude and phase in Fourier transform) to model real system dynamics.

The amplitude and phase representation of multi-models can be expressed as in
Fig. 8 (the number of a priori models is selected to 4) where amplitudes define the
probability of model occurrence and the phases represent the model composition
rule to catch original dynamics.

 

3      4        Hi 

( )0Yi =ψ

 

( ) ( ) ( )iii HPC,H0YP0Y ⋅===ψ

( )( ) ( )i1Yarg 1i β==ψ
 

( )( )1Yarg i =ψ  
( )1Yi =ψ

 

( ) ( ) ( )iii HPC,H1YP1Y ⋅===ψ
 

1         2           3          4     iH
    

( )( ) ( )i0Yarg 0i β==ψ
 ( )( )0Yarg i =ψ

 

1         2 

1        2          3          4        Hi 1         2           3          4     iH
    

Fig. 8 Complex multi-models spectrum.

For better understanding the illustrative example is highlighted. Let two values
time series Y ∈ {0, 1} be composed from a mixture of three models described by
probabilities P (Y |H1 ), P (Y |H2 ), and P (Y |H3 ), where each component occurs
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with probabilities P (H1), P (H2) and P (H3). The probabilities P (Y |Hi ), i ∈
{1, 2, 3} are defined in Tab. I and probabilities P (Hi) were chosen:

P (H1) = P (H2) = P (H3) =
1

3
. (59)

Model Identification Hi H1 H2 H3

P (Y = 1 | Hi) 0.9 0.5 0.4
P (Y = 0 | Hi) 0.1 0.5 0.6

Tab. I Real components P (Y |Hi ) , i ∈ {1, 2, 3}.

The designer’s decision (universal models conditioned by letter C) is given in
Tab. II.

Model Identification Hi H1 H2 H3

P (Y = 1 | Hi, C) 0.8 0.6 0.7
P (Y = 0 | Hi, C) 0.2 0.4 0.3

Tab. II Designer’s decision of components P (Y |Hi, C ) , i ∈ {1, 2, 3}.

By using the Eqs. (56–58) together with the algorithm [18] the following complex
components can be numerically calculated:

ψ1 (Y = 1) =
√
P (Y = 1 |H1, C ) · P (H1) · ej·β1(1) = 0.5164, (60)

ψ2 (Y = 1) =
√
P (Y = 1 |H2, C ) · P (H2) · ej·β1(2) = 0.4472 · ej·0.5166, (61)

ψ3 (Y = 1) =
√
P (Y = 1 |H3, C ) · P (H3) · ej·β1(3) = 0.4830 · ej·2.4012, (62)

ψ1 (Y = 0) =
√
P (Y = 0 |H1, C ) · P (H1) · ej·β0(1) = 0.2582, (63)

ψ2 (Y = 0) =
√
P (Y = 0 |H2, C ) · P (H2) · ej·β0(2) = 0.3651 · ej·1.2371, (64)

ψ3 (Y = 0) =
√
P (Y = 0 |H3, C ) · P (H3) · ej·β0(3) = 0.3162 · ej·2.1924. (65)

Based on the Eq. (57) the two complex parameters can be computed as follows:

ψ (Y = 1) = ψ1 (Y = 1) + ψ2 (Y = 1) + ψ3 (Y = 1) = 0.7746 · ej·0.7837, (66)

ψ (Y = 0) = ψ1 (Y = 0) + ψ2 (Y = 0) + ψ3 (Y = 0) = 0.6325 · ej·1.2596, (67)

where probabilities of falling one or zero could be calculated as follows:

P (Y = 1) = |ψ (Y = 1)|2 = 0.6, (68)

P (Y = 0) = |ψ (Y = 0)|2 = 0.4. (69)
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The outcomes (68), (69) are in agreement with the result achieved by the knowledge
of model components given in Tab. I and by using Bayes’ formula:

P (Y = 1) = P (Y = 1 | H1) · P (H1) + P (Y = 1 | H2) · P (H2)+

+ P (Y = 1 | H3) · P (H3) = (0.9 + 0.5 + 0.4) · 1
3
= 0.6 .

(70)

The above mentioned numerical example shows that the theory of multi-models
composition is feasible. In practical analysis the amplitudes and phases of model
components will be estimated from real time series.

5. Conclusion

In this paper the wave probabilistic models were introduced and the mathematical
comparison between usually used probabilistic models and wave probabilistic mod-
els was presented. With the help of mathematical theory we derived the features
of wave probabilistic models. The quantum entanglement or quantization was ex-
plained as the consequence of the phase parameters and it can be interpreted as
the resonance principle of wave functions. The mathematical theory points out on
the applicability of wave probabilistic models and their special features in the area
of complex systems.

From the examples given above, we can see the possibility for linking the physi-
cal world with the world of information, because every information flow must have
its transmission medium, which is typically a physical object (e.g. physical parti-
cles) or a certain property of such an object [17]. The case is again similar to an
information content, which also must be encoded through a real, physical system.
The operations defined above the information systems can then likewise be de-
picted in a concrete physical environment. Such approach yields to finding better
knowledge in the area of information physics [28].

I believe that the capturing of processes in the world around us with the help
of information and knowledge subsystems organized into various interconnections
(modeled by wave probabilities), especially with feedbacks, can lead to the con-
trolled dissemination of macroscopic work as described by Stuart Kauffman [6],
and after the overcoming of certain difficulties, even to the description of the be-
havior of living organisms or our brain [31].

It seems to be true that the future will bring a convergence of the physical
sciences, life sciences and engineering. I would even allow myself to go a bit further,
to consider even convergence with the humanities, because I am convinced that the
laws of behavior of human society described, for example, in sociology or political
science will gain the capacity of being better understood when using the tools of
information physics. Wave probabilistic approach can capture Soft Systems Models
(SSM) which can bring new quality of understanding the complex systems. Such
approach can enrich our learning and we can then speak about quantum cybernetics
[21] or quantum system theory [26].

Systemic knowledge is a basis of telematics which is a result of convergence and
following progressive synthesis of telecommunication technology and informatics
[25]. The effects of telematics are based on synergism of both disciplines. Telem-
atics can be found in a wide spectrum of user areas [33, 40], from an individual
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multimedia communication towards an intelligent use and management of large-
scale networks (e.g. transport, telecommunications, and public service). Advanced
telematics provides intelligent environment for knowledge society establishment
and allows expert knowledge description of complex systems. It also includes le-
gal, organizational, implementation and human aspects. Transport telematics con-
nects information and telecommunication technologies with transport engineering
to achieve better management of transport, travel and forwarding processes by
using the existing transport infrastructure.

The telematics can be extended into more complex areas, for example, smart
cities or smart regions [30]. Interoperability and cooperation are essential charac-
teristics which a lot of heterogeneous subsystems must posses in order to be inte-
grated [35]. It is understandable that the concept of smart cities/regions yields to
an integration of different networks (energy, water, transport, waste, etc.) where
the integrated networks must undergo the synergy among the different network
sectors to fulfill predefined performance parameters [34]. Designed control system
across several sectors form integrated smart networks as a by-product of this ap-
proach. Smart approach to complex systems is an example of a multi-disciplinary
problem which must – in addition to the technical and technological elements –
include the areas of economics, law, sociology, psychology and other humanistic
soft disciplines. Only a systemic combination of these elements can achieve the
goal which is generally expected from the smart systems.

The inspiration for the above defined problems came from quantum physics
[4, 5]. The analogy with quantum mechanics could be seen as very interesting
and is likely to bring a lot of inspiration for the future work within the complex
systems modelling by wave probabilistic functions. The presented results should
not be treated as a finished work, but rather the beginning of a journey. It is easy
to understand that a lot of the mentioned theoretical approaches should continue
to be tested in practical applications.
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