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Abstract: The laws of gravity and mass interactions inspire the gravitational
search algorithm (GSA), which finds optimal regions of complex search spaces
through the interaction of individuals in a population of particles. Although GSA
has proven effective in both science and engineering, it is still easy to suffer from
premature convergence especially facing complex problems. In this paper, we pro-
posed a new hybrid algorithm by integrating genetic algorithm (GA) and GSA
(GA-GSA) to avoid premature convergence and to improve the search ability of
GSA. In GA-GSA, crossover and mutation operators are introduced from GA to
GSA for jumping out of the local optima. To demonstrate the search ability of the
proposed GA-GSA, 23 complex benchmark test functions were employed, including
unimodal and multimodal high-dimensional test functions as well as multimodal
test functions with fixed dimensions. Wilcoxon signed-rank tests were also utilized
to execute statistical analysis of the results obtained by PSO, GSA, and GA-GSA.
Experimental results demonstrated that the proposed algorithm is both efficient
and effective.
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1. Introduction

When solving optimization problems with a high-dimensional search space,
classical optimization algorithms do not provide suitable solutions because the
search space increases exponentially with problem size; solving these problems by
exact techniques is thus not practical [26]. Researchers have developed several al-
gorithms to solve complex optimization problems, including the branch-and-bound
[20], heuristic [14], and gradient-based methods [34]. Among them, heuristic algo-
rithms have become increasingly popular.
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Heuristic algorithms are stochastic global optimization methods and are widely
used for numerical and combinatorial optimization, classifier systems, and many
other engineering problems. There are many heuristics, including Simulated An-
nealing (SA) [19, 36], Ant Colony Optimization (ACO) [9], Particle Swarm Op-
timization (PSO) [6,10, 16, 18, 23, 38], Differential Search Algorithm (DSA) [3],
Backtracking Search Optimization Algorithm (BSA) [4], and Artificial Cooperative
Search algorithm (ACS) [5]. Different algorithms can solve different optimization
problems, and some algorithms show better performances for particular problems
than others. However, no single algorithm can find the best solutions of all prob-
lems in finite iterations. In some cases, the existing heuristic algorithms above
may easily fall into the local optimum or converge too slowly [21]. Some available
improvements are thus designed to make heuristic algorithms more efficient and
effective, like DPSO [32], BCPGA [44], and HPSO [12, 25, 33, 39]. They all try to
find a good balance between the local and global domains.

Rashedi et al. proposed the gravitational search algorithm (GSA) [26–28]. It
is one of the newest heuristic algorithms inspired by the law of gravity. In this
algorithm, gravitational force guides all masses to achieve convergence quickly. The
GSA principle is thus easy to explain and its process is simple to implement, as it
has an independent physical model. Because this force absorbs masses into each
other, there will be no recovery for the algorithm if premature convergence occurs.
After converging, GSA loses its ability to explore and becomes inactive. Therefore,
new operators should be added to GSA to increase its flexibility in solving more
complicated problems [29]. Some studies have examined to improve the algorithm
[21, 29, 31].

Holland introduced the genetic algorithm (GA) in the 1970s [15]. It is a type
of adaptive heuristic search algorithm premised on the evolutionary ideas of natu-
ral selection and genetics [37, 45]. These algorithms encode a potential solution to
a specific problem on a simple chromosome-like data structure and apply recombi-
nation and mutation operators to these structures to preserve critical information.
Although with very low converging rate, GA is adaptive, self-learning, and capa-
ble of global optimization. And crossover and mutation [1] can effectively avoid
the algorithm falling into local optimum. Many studies have therefore investigated
GA’s hybridization with local searches [2, 11, 42].

In this paper, GA has been utilized to avoid GSA getting ‘stuck’ in local op-
tima. GSA generally functions according to its knowledge of the law of gravity and
mass interactions, and each generation account for all individuals. Conversely, GA
simulates evolution, and some individuals are selected while others are eliminated
from generation to generation. Taking advantage of the compensatory properties of
GA and GSA, we propose a new algorithm that combines the evolutionary natures
of both (denoted GA-GSA).

This paper is organized as follows. Section 2 briefly reviews GA and GSA. In
Section 3, we introduce the basic principles and methods of our algorithm. Section
4 presents a comparative study and the experimental results, and Section 5 outlines
the conclusions.
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2. GA and GSA review

2.1 Genetic algorithm

GA is an adaptive method that can be used to solve search and optimization
problems [15]. It is based on the genetic process of biological organisms. Compared
to other techniques, GA more strongly emphasizes global search and optimization,
instead of the local variants.

GA starts optimization with several solutions. Each candidate solution for a
specific problem is called an individual or a chromosome and contains a linear list
of genes. A population is first randomly initialized, and each individual represents
a point in the search space and thus a possible solution to the problem. GA then
uses three basic operators (selection, crossover, and mutation) to manipulate the
genetic composition of a population. Selection is a process by which the individu-
als with the highest fitness values in the current generation are reproduced in the
new generation. The crossover operator produces two offsprings (new candidate
solutions) by recombining the information from two parents. There are two pro-
cessing steps in this operation. In the first step, a given number of crossing sites
are uniformly selected, along with the parent individual randomly selected. In
the second step, two new individuals are formed by exchanging alternate selection
pairs between the selected sites. Mutation is a random alteration of some gene
values in an individual. The allele of each gene is a candidate for mutation, and
the mutation probability determines its function [17]. In the new generation, the
population is more adapted to the environment than the previous generation, and
the evolution continues until meeting an optimization criterion. After decoding the
last individual, an optimal solution can be obtained [39].

The general GA process is described in Algorithm 1 and in Fig. 1.

Algorithm 1 GA algorithm.

Initialize a population randomly, where each individual is expressed as genes
encoded in a chromosome.
repeat
Calculate the fitness of each individual
Determine whether it is agrees with the optimization criterion
if fitness agrees then
Output the best individual and optimal solution.
return

else
Select new individuals based on fitness.
{The roulette method [6] can be used. This is a choice based on the proportion of individual

fitness that determines the possibility of reservations among descendants.}
Perform crossover and mutation operations to generate new individuals.
{Generally, the crossover probability is 0.3-0.8 and the mutation probability is 0.01-0.20.}
Get a new generation of the population.

end if
until the stopping criterion is met
Anti-code the results.
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Fig. 1 General GA principle.

2.2 Gravitational search algorithm

In GSA [26], a set of agents called masses are introduced to find the optimum
solution by simulating Newtonian laws of gravity and motion. All objects attract
each other with gravity force, and this force causes a global movement of all objects
towards objects with heavier masses (as is shown in Fig. 2). Masses thus cooperate
using a direct form of communication through gravitational force. Heavier masses,
which correspond to good solutions, move more slowly than lighter ones. This
guarantees the exploitation step of the algorithm.

In GSA, each particle has four specifications: position, inertial mass, active
gravitational mass, and passive gravitational mass. The mass position corresponds
to a solution for the problem, and its gravitational and inertial masses are deter-
mined using a fitness function. Each mass represents a solution, and the algorithm
is navigated by properly adjusting the gravitational and inertial masses. By lapse
of time, we expect the heaviest mass to attract the other masses. This mass will
represent an optimum solution in the search space. GSA could be considered as
an isolated system of masses. It is like a small artificial world of masses obeying
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Fig. 2 Every mass accelerate toward the result force that act it from the other
masses.

the Newtonian laws of gravitation and motion. More precisely, masses obey the
following laws:

(1) Law of gravity: each particle attracts every other particle and the gravi-
tational force between two particles is directly proportional to the product
of their masses and inversely proportional to the distance R between them.
In this paper, we use R instead of R2, as it provides better results in all
experimental cases.

(2) Law of motion: the current velocity of any mass equals the sum of the fraction
of its previous velocity and the variation in the velocity. Variation in the
velocity or acceleration of any mass equals the force acting upon the system
divided by the inertial mass.

Considering a system with N agents (masses), the position of the i-th agent
can be defined by

pi = (p1i , . . . , p
d
i , . . . , p

n
i ), for i = 1, 2, . . . , N, (1)

where pdi represents the position of the i-th agent in the d-th dimension and n is
the dimension of search space.

At a specific time t, the force acting on mass i from mass j is equal to

F d
ij(t) = G (t)

Mpi (t)Maj (t)

Rij (t) + ϵ

(
pdj (t)− pdi (t)

)
, (2)

where Maj(t) is the active gravitational mass related to agent j in time t, Mpi(t) is
the passive gravitational mass related to agent i, G(t) is gravitational constant at
time t, ϵ is a small constant, and Rij(t) is the Euclidian distance between agents
i and j,

Rij(t) = ∥pi(t),pj(t)∥. (3)

To give the algorithm a stochastic characteristic, the total force that acts on
agent i in dimension d is a randomly weighted sum of the d-th components of the
forces exerted by other agents. In addition, to improve the performance of GSA
by controlling exploration and exploitation only the Kbest agents will attract the
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others. Kbest is a function of time, with the initial value K0 at the beginning and
decreases with time. In such a way, at the beginning, all agents apply the force,
and as time passes, Kbest decreases linearly and at the end there will be just one
agent applying force to the others,

F d
i (t) =

∑
j∈Kbest

j ̸=i

randjF
d
ij(t), (4)

where randj is a uniform random variable in the interval [0, 1], and Kbest is the
set of first K agents with the best fitness value and biggest mass.

Hence, by the law of motion, the acceleration of agent i at time t in direction
d-th, adi (t), is given as follows:

aid(t) =
F d
i (t)

Mii(t)
, (5)

where Mii(t) is the inertial mass of the i-th agent in time t.

The following equations can thus calculate the position pdi and velocity vdi of
agent i:

vdi (t+ 1) = randi × vdi (t) + adi (t), (6)

pdi (t+ 1) = pdi (t) + vdi (t+ 1), (7)

where randi is a uniform random variable in the interval [0, 1]. This random
number is used to give a randomized characteristic to the search.

The gravitational constant, G, is initialized at the beginning and decreases
with time to control the search accuracy. In other words, G is a function of the
initial value G0 and time t,

G(t) = G(G0, t) = G(t0)×
(
t0
t

)A

, A < 1, (8)

where G(t0) is the value of the gravitational constant at the first cosmic quantum-
interval of time t0 [36].

Furthermore, gravitational and inertial masses are simply calculated using the
fitness evaluation. A heavier mass means a more efficient agent. Better agents
thus have higher attractions and walk more slowly. Assuming the gravitational
and inertial masses are equal, their values are calculated using the fitness map.
The gravitational and inertial masses are updated by

Mai =Mpi =Mii =Mi, i = 1, 2, . . . , N, (9)

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
, (10)

Mi(t) =
mi(t)∑N
j=1mj(t)

, (11)
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where fiti(t) represent the fitness value of agent i at time t. For a minimization
problem, worst(t) and best(t) are defined as

best(t) = min
j=1,2,...,N

fitj(t), (12)

worst(t) = max
j=1,2,...,N

fitj(t). (13)

For a maximization problem, the two equations are changed to

best(t) = max
j=1,2,...,N

fitj(t), (14)

worst(t) = min
j=1,2,...,N

fitj(t). (15)

From the GSA formulations presented above, the general GSA process is out-
lined in Algorithm 2 and also in Fig. 3.

Algorithm 2 GSA algorithm.

Population-based initializing.
repeat
Evaluate agent fitness
Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2, . . . , N
Calculate the total force in different directions
Calculate acceleration and velocity
Update agents’ position

until the stopping criterion is met
Output the optimization results.

3. Hybrid of genetic algorithm and gravitational
search algorithm (GA-GSA)

Although GSA has been proven to be an effective optimal algorithm, after
converging, GSA loses its ability to explore and becomes inactive. In contrast,
GA is able to find new solutions with crossover and mutation operators when
facing premature convergence though GA has problems in finding an exact solution
[30]. Hence, to tackle premature convergence of GSA, GA-GSA, which combine
GSA’s standard velocity and position update rules with GA’s ideas of crossover
and mutation is presented. GA-GSA employs GA for generation jumping to avoid
GSA getting stuck in the local optima problem. That is to say, it integrates GA’s
global optimization and GSA’s fast convergence by unifying crossover and mutation
operators of GA and speed-displacement formula of GSA to solve optimization
problems more efficiently and effectively.

GA-GSA has three main steps. First of all, generate a population P′ from
the original population P according to the crossover and mutation operations of
GA. Secondly, generate the next population generation P according to the Eqs. (1–
15) of GSA. Finally, the best solution is returned after meeting the optimization
criterion.
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Fig. 3 General GSA principle.

According to the above analysis, the hybrid of GA accelerates the search ability
of GSA by combining the global optimization of GA with the fast local search of
GSA. The convergence speed of local area is thus increased, and the GSA no longer
tends to get ‘stuck’ at local optima as well. At the same time, the search accuracy
improves. In this paper, real-coding is used to avoid the encoding and decoding
processes and improve computational efficiency.

The general GA-GSA process is outlined in Algorithm 3 and also in Fig. 4.

4. Experimental results

In this section, 23 standard benchmark functions were utilized to demonstrate
the searching ability of the proposed algorithm. Section 4.1 presents these bench-
mark functions, and Section 4.2 compares the results with those from PSO and
GSA.
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Algorithm 3 GA-GSA algorithm.

Initialize population position P = [p1,p2, . . . ,pN ]
Initialize velocity V = [v1,v2, . . . ,vN ].
repeat
Evaluate agent fitness
(GA method) Perform GA crossover and mutation operations to generate new
population P′

Update G(t), best(t), worst(t) and Mi(t) for i = 1, 2, . . . , N
Calculate the total force in different directions
Calculate acceleration and velocity
Update agents’ position P

until the stopping criterion is met
Output the optimization results.

 n o i t a l u p o p   l a i t i n i   e t a r e n e G

 t n e g a   h c a e   r o f   s s e n t i f   e h t   e t a u l a v E
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 n o i t a r e p o   r e v o s s o r C
 n o i t a r e p o   n o i t a t u M

U p d a t e   t h e   G ,   b e s t   a n d   w o r s t   o f   t h e   p o p u l a t i o n . 

C a l c u l a t e   M   a n d   a   f o r   e a c h   a g e n t 
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N O 

Y E S 
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Fig. 4 General GA-GSA principle.

4.1 Benchmark functions

Tabs. I, II, and III represent the benchmark functions used in our experimental
study. In these Tables, n is the function dimension, fopt is the minimum value of
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the function, and S is a subset of Rn. The minimum value (fopt) of the functions
in Tabs. I and II are 0, except F8, which has a minimum value of −418.98 × n.
The fopt of the functions in Tab. III is variable.

Test function S fopt

F1(x) =
∑n

i=1 x
2
i [−100, 100]n 0

F2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| [−10, 10]n 0

F3(x) =
∑n

i=1(
∑i

j=1 xj)
2 [−100, 100]n 0

F4(x) = max{xi|, 1 ≤ i ≤ n} [−100, 100]n 0

F5(x) =
∑n−1

i=1 [100(xi+1 − x2
i )

2 + (xi − 1)2 [−30, 30]n 0

F6(x) =
∑n

i=1([xi + 0.5])2 [−100, 100]n 0

F7(x) =
∑n

i=1 ix
4
i + random(0, 1) [−128, 128]n 0

Tab. I Unimodal test functions.

Test function S fopt

F8(x) =
∑n

i=1 −xi sin(
√

|xi|) [−500, 500]n −418× n

F9(x) =
∑n

i=1[x
2
i − 10cos(2πxi) + 10] [−5.12, 5.12]n 0

F10(x) = −20exp(−20
√

1
n

∑n
i=1 x

2
i )− exp( 1

n

∑n
i=1 cos(2πxi)) [−32, 32]n 0

+20 + e

F11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 [−600, 600]n 0

F12(x) =
π
n
{10sin(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)] [−50, 50]n 0

+(yn − 1)2}+
∑n

i=1 µ(xi, 10, 100, 4)

yi = 1 + xi+1
4

µ(xi, a, k,m) =


k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

F13(x) = 0.1{sin2(3πx1) +
∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)] [−50, 50]n 0

+(xn − 1)2[1 + sin2(2πxn)]}+
∑n

i=1 µ(xi, 5, 100, 4)

Tab. II Multimodal test functions.

4.2 Comparison with PSO and GSA

GA-GSA was applied to these minimization functions and the experimental
results were compared with those corresponding results of PSO and GSA. In all
cases, the population size is set to 50 (N=50) the dimension is 30 (n = 30), and the
maximum iteration is 1000 for all the functions in Tabs. I, II, and III. In PSO, the
positive constants c1 = c2 = 2 and inertia factor ω decrease linearly from 0.9 to 0.2
[15] because particle swarms are more excursive in a bigger area at the beginning
while their motion range becomes smaller as iterations progress. To speed up the
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Test function S fopt

F14(x) = ( 1
500

+
∑25

j=1
1

j+
∑2

i=1(xi−aij)6
)−1 [−65.53, 65.53]2 1

F15(x) =
∑11

i=1[ai − xi(b
2
i+bix2)

b2i+bix3+x4
]2 [−5, 5]4 0.0003

F16(x) = 4x2
1 − 2.1x4

1 +
1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 [−5, 5]2 1.0316

F17(x) = (x2 − 5.1
4π2 x

2
1 +

5
π
x1 − 6)2 + 10(1− 1

8π
)cosx1 + 10 [−5, 10]×[0, 15] 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 [−5, 5]2 3

+6x1x2 + 3x2
2)]× [30 + (2x1 − 3x2)

2 × (18− 32x1

+12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

F19(x) = −
∑4

i=1 ciexp(−
∑3

j=1 aij(xj − pij)
2) [0, 1]3 3.86

F20(x) = −
∑4

i=1 ciexp(−
∑6

j=1 aij(xj − pij)
2) [0, 1]6 3.32

F21(x) = −
∑5

i=1[(x− ai)(x− ai)
T + ci]

−1 [0, 10]4 10.1532

F22(x) = −
∑7

i=1[(x− ai)(x− ai)
T + ci]

−1 [0, 10]4 10.4028

F23(x) = −
∑10

i=1[(x− ai)(x− ai)
T + ci]

−1 [0, 10]4 10.5363

Tab. III Multimodal test functions with fix dimension.

convergence rate at the beginning and avoid falling into local optima, the linear
inertia factor was adopted.

In GSA, G is set using Eq. (16), where G0 is set to 100 and α to 20, and T is
the total number of iterations (the total age of the system):

G(t) = G0e
−α t

T . (16)

Furthermore, K0 for Eq. (4) is set to N (total number of agents) and decreases
linearly to 1.

The three mentioned algorithms were applied to the benchmark functions and
the results are shown in Tabs. IV, V, and VI. In addition, the Wilcoxon signed-rank
test [13, 40] was also utilized to execute statistical analysis of the results obtained
by PSO, GSA, and GA-GSA as shown in Tab. VII.

4.2.1 The results of unimodal high-dimensional test functions

In these functions, the search algorithm convergence rate is more important
than the final results, because other methods are specifically designed to optimize
unimodal functions (i.e., Nonlinear Programming [35, 43]). These results are av-
eraged over 30 runs; Tab. IV shows the average best-so-far solution, average mean
fitness function, and median of the best solution in the last iteration.

As illustrated in Tab. IV, GA-GSA provided better results than PSO and
GSA for all functions, and PSO was too weak to compete with GSA and GA-
GSA. Especially in function F3, neither GSA nor PSO could converge to fopt
(in F3, fopt = 0), while GA-GSA performed an excellent convergence. That is
because GA-GSA employs GA for generation jumping and prevents GSA getting
stuck in the local optima problem effectively. In function F5, although the proposed
algorithm is not skillful enough to find the optimum, it outperformed GA and GSA
as well. Furthermore, the good convergence rate of GA-GSA could be concluded
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PSO GSA GA-GSA

F1 Average best-so-far 0.14 1.97× 10−17 8.06× 10−17

Median best-so-far 0.13 1.97× 10−17 8.06× 10−21

Average mean fitness 0.14 3.46× 10−17 2.58× 10−17

F2 Average best-so-far 1.17 2.41× 10−8 8.17× 10−10

Median best-so-far 1.13 2.47× 10−8 7.41× 10−10

Average mean fitness 1.17 3.06× 10−8 2.51× 10−08

F3 Average best-so-far 95.97 2.54× 1002 8.73× 10−19

Median best-so-far 73.99 2.55× 1002 7.49× 10−19

Average mean fitness 95.97 2.54× 1002 8.82× 10−19

F4 Average best-so-far 1.94 3.25× 10−09 8.64× 10−10

Median best-so-far 1.58 3.04× 10−09 9.33× 10−10

Average mean fitness 1.94 43.9× 10−09 3.05× 10−09

F5 Average best-so-far 48.06 26.30 26.14
Median best-so-far 32.82 26.04 26.00
Average mean fitness 48.06 26.30 26.23

F6 Average best-so-far 217.40 6.01× 10−15 4.24× 10−18

Median best-so-far 241.00 8.10× 10−15 4.66× 10−18

Average mean fitness 219.41 2.34× 10−15 4.24× 10−18

F7 Average best-so-far 0.0686 0.0134 0.0036
Median best-so-far 0.0822 0.0116 0.0031
Average mean fitness 0.5530 0.5486 0.5292

Tab. IV Minimization results of benchmark functions in Tab. I with n = 30. The
maximum number of iterations = 1000.

from Figs. 5 and 6. According to these figures, GA-GSA tends to find the global
optimum faster than the other algorithms.

4.2.2 The results of multimodal high-dimensional test functions

Multimodal functions are almost the most difficult to optimize, as they have
many local minima. The final results are more important, because they reflect
the ability of the algorithm to escape from poor local optima and locate a near-
global optimum. For functions F8 to F13, the number of local minima increases
exponentially as the function dimension increases [26]. In this paper, the function
dimension is set to 30. The results are averaged over 30 runs; Tab. V shows the
average best-so-far solution, average mean fitness function, and median of the best
solution in the last iteration.

Tab. V shows the superiority of our method compared to PSO and GSA. The
largest difference in performance among them occurs at multimodal functions F9,
F11, and F12. For the three functions, both PSO and GSA cannot converge to fopt,
while GA-GSA performs a good convergence and exactly leads to the optimum. For

64



Zhang A., et al.: A hybrid genetic algorithm and gravitational search. . .

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

 Iteration

 A
v

e
ra

g
e

 B
e

s
t−

s
o

−
fa

r

 F3

 PSO

 GSA

 GA−GSA

Fig. 5 Comparison of performance for minimizing of F3.
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Fig. 6 Comparison of performance for minimizing of F7.

functions F10 and F13, GA-GSA performs much better than the others. What’s
more, the performance of function F8 in GA-GSA is also better than in GSA.
Figs. 7–9 show the progress of the average best-so-far solution over 30 runs for
functions F9, F11, and F12. These figures also demonstrated the superiority of
GA-GSA.
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PSO GSA GA-GSA

F8 Average best-so-far −2.97× 1003 −2.90× 1003 −2.72× 1003

Median best-so-far −2.79× 1003 −3.02× 1003 −2.99× 1003

Average mean fitness −3.97× 1003 −1.28× 1003 −1.05× 1003

F9 Average best-so-far 23.37 17.31 0
Median best-so-far 21.37 18.90 0
Average mean fitness 23.37 17.31 0

F10 Average best-so-far 4.12 3.66× 10−09 4.73× 10−10

Median best-so-far 4.20 3.58× 10−09 3.50× 10−10

Average mean fitness 4.12 4.49× 10−09 4.08× 10−09

F11 Average best-so-far 30.99 4.83 0
Median best-so-far 31.73 5.02 0
Average mean fitness 34.60 4.83 0

F12 Average best-so-far 1.27 0.04 1.33× 10−19

Median best-so-far 1.45 1.88× 10−19 1.31× 10−19

Average mean fitness 1.27 0.04 2.10× 10−19

F13 Average best-so-far 7.08 2.20× 10−18 1.81× 10−18

Median best-so-far 7.28 2.30× 10−18 1.81× 10−18

Average mean fitness 7.08 3.32× 10−18 2.78× 10−18

Tab. V Minimization results of benchmark functions in Tab. II with n = 30. The
maximum number of iterations = 1000.
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Fig. 7 Comparison of performance for minimizing of F9.
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Fig. 8 Comparison of performance for minimizing of F11.
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Fig. 9 Comparison of performance for minimizing of F12.

4.2.3 The results of multimodal low-dimensional test functions

Tab. VI compares GA-GSA and GSA on the multimodal low-dimensional
benchmark functions in Tab. III. The function dimension is set according to Tab. III,
and the maximum number of iterations for both GA-GSA and GSA is set to 1000.
The results are averaged over 30 runs; Tab. VI shows the average best-so-far so-
lution, average mean fitness function, and median of the best solution in the last
iteration for these functions.
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PSO GSA GA-GSA

F14 n = 2 Average best-so-far 1.01 3.92 2.02
Median best-so-far 0.99 3.00 2.02
Average mean fitness 430.99 12.06 11.64

F15 n = 4 Average best-so-far 3.31× 10−04 0.0030 0.0018
Median best-so-far 3.07× 10−04 0.0022 0.0018
Average mean fitness 0.0028 0.0625 0.0211

F16 n = 2 Average best-so-far −1.0316 −1.0316 −1.0316
Median best-so-far −1.0316 −1.0316 −1.0316
Average mean fitness −1.0316 −1.0316 −1.0316

F17 n = 2 Average best-so-far 0.3979 0.3979 0.3979
Median best-so-far 0.3979 0.3979 0.3979
Average mean fitness 0.3979 0.3979 0.3979

F18 n = 2 Average best-so-far 3.0000 3.0000 3.0000
Median best-so-far 3.0000 3.0000 3.0000
Average mean fitness 3.0000 3.0000 3.0000

F19 n = 3 Average best-so-far −3.8628 −3.8628 −3.8628
Median best-so-far −3.8628 −3.8628 −3.8628
Average mean fitness −3.8628 −3.8628 −3.8628

F20 n = 6 Average best-so-far −3.2506 −3.3220 −3.3220
Median best-so-far −3.2031 −3.3220 −3.3220
Average mean fitness −3.1812 −3.3220 −3.3022

F21 n = 4 Average best-so-far −8.6591 −4.2259 −6.4180
Median best-so-far −10.1532 −2.6829 −6.4180
Average mean fitness −8.6591 −4.1769 −6.4180

F22 n = 4 Average best-so-far −7.3481 −10.4029 −10.4029
Median best-so-far −10.4029 −10.4029 −10.4029
Average mean fitness −7.3481 −10.4029 −10.4029

F23 n = 4 Average best-so-far −9.0034 −10.5364 −10.5364
Median best-so-far −10.5364 −10.5364 −10.5364
Average mean fitness −9.0034 −10.5364 −10.5364

Tab. VI Minimization results of benchmark functions in Tab. III with n = 30. The
maximum number of iterations = 1000.

Tab. VI contains multimodal low-dimensional functions in which exploitation
is more effective than exploration. Although PSO worked slightly better than GA-
GSA and GSA in functions F14, F15, and F21, none of them realized acceptable
optimization. Moreover, GA-GSA outperformed GSA in these three functions. For
functions F16, F17, F18, and F19, the performances of three algorithms are almost
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the same. For the other functions, both GA-GSA and GSA achieved the optimal
solutions, and showed superiority to PSO. Figs. 10–11 compare the GA-GSA, GSA,
and PSO performance for minimizing F20 and F21.
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Fig. 10 Comparison of performance for minimizing of F20.
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Fig. 11 Comparison of performance for minimizing of F21.
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4.2.4 Wilcoxon signed-rank test for the comparison algorithms

To statistically analyze the results in Tabs. IV–VI, a non-parametric significance
proof known as the Wilcoxon signed-rank test was conducted in this section [13, 40].
This test allows assessing result differences among two related methods [7]. In this
test, a null hypothesis is assumed that there is no difference between the median
of the solutions achieved by two compared algorithms for a benchmark functions
over 30 independent runs. The significance level is α = 0.05. Tab. VII reports the
p-values produced by Wilcoxon signed-rank test for the pairwise comparison of two
groups formed by GA-GSA versus PSO and GA-GSA versus GSA. If in any test a
p-value that is smaller than or equal to significance level α value is produced, the
null hypothesis for that test is rejected [8, 22]. The alternative hypothesis considers
a significant difference of both approaches [7].

GA-GSA vs. F1 F2 F3 F4 F5 F6 F7 F8

PSO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.111
GSA 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GA-GSA vs. F9 F10 F11 F12 F13 F14 F15 F16

PSO 0.000 0.000 0.000 0.000 0.005 0.000 0.000 1.000
GSA 0.000 0.000 0.000 0.005 0.000 0.000 0.000 1.000

GA-GSA vs. F17 F18 F19 F20 F21 F22 F23

PSO 1.000 0.170 1.000 0.010 0.238 0.000 0.000
GSA 1.000 0.000 1.000 1.000 0.913 1.000 1.000

Tab. VII p-values for Wilcoxon signed-rank test of benchmark functions.

As illustrated in Tab. VII, for all of the unimodal high-dimensional test func-
tions, F1–F7, the produced p-values of Wilcoxon signed-rank test are 0. The results
indicated that GA-GSA performed significant superiority compared with GSA and
PSO. For the multimodal high-dimensional test functions, F9–F13, GA-GSA also
achieved much better results than PSO and GSA. Different from functions F9–F13,
function F8 is a special multimodal high-dimensional function where the global op-
timum is far away from any of the local optima [41]. For this function, GA-GSA had
no significant difference compared to PSO, but performed significant superiority to
GSA. Functions F16–F23 are multimodal low-dimensional functions, the obtained
results revealed that there were no significant difference among these algorithms,
for these functions are relatively simple.

Overall, according to the above results and analysis, it is obvious that the hy-
brid of GA indeed greatly improves the exploration and exploitation ability of GSA
in unimodal and multimodal high-dimensional optimization problems. Further-
more, the proposed algorithm also improves the search ability for some multimodal
low-dimensional functions.

5. Conclusions

In this paper, we have presented a novel optimization algorithm: the hybrid genetic
algorithm and gravitational search algorithm (GA-GSA). In the existing GSA, only
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the gravitational force guiding masses for the algorithm is constructed based on
the laws of gravity and mass interactions. Though GSA is a powerful optimizer,
it is not effective enough for more complicated problems. In contrast, GA is an
adaptive heuristic search algorithm premised on the evolutionary ideas of natural
selection and genetics. The hybrid algorithm thus combines the global optimization
of GA with the fast local search of GSA, and thereby enriches the search ability of
GSA. To evaluate the proposed algorithm, it is tested on a set of various standard
benchmark functions and the statistical analysis is made. The results showed that
GA-GSA is comparable with PSO and GSA in all cases. Moreover, GA-GSA
produced significant superiority in most cases.
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