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Abstract: Support Vector Machines (SVM) are well known as a kernel based
method mostly applied to classification. SVM-Recursive Feature Elimination (SVM-
RFE) is a variable ranking and selection method dedicated to the design of SVM
based classifiers. In this paper, we propose to revisit the SVM-RFE method. We
study two implementations of this feature selection method that we call External
SVM-RFE and Internal SVM-RFE, respectively. The two implementations are ap-
plied to rank and select acoustic features extracted from speech to design optimized
linear SVM classifiers that recognize speaker emotions. To show the efficiency of
the External and Internal SVM-RFE methods, an extensive experimental study
is presented. The SVM classifiers were selected using a validation procedure that
ensures strict speaker independence. The results are discussed and compared with
those achieved when the features are ranked using the Gram-Schmidt procedure.
Overall, the results achieve a recognition rate that exceeds 90%.
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1. Introduction

Feature selection is a fundamental issue when dealing with data separation. On
one hand, the candidate features must form a large set in order to be enough
informative and selective to separate the data. On the other hand, only the most
relevant of them have to be involved in the design of the classifier. Irrelevant
features can be considered as noisy data and may deteriorate the classification
accuracy. Thus, they must be discarded. Usually, the feature selection process
consists in determining the subset of variables that achieves the best classification
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hela.daassi@univ-paris8.fr

†Yacine Oussar – Corresponding author, Laboratoire de Physique et d’Étude des Matériaux
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performance. This process may start by ranking the available variables according
to their level of relevance and then selects the most relevant of them. However,
ranking and selection may come combined in a unique procedure. Frequently,
the selection methods are run previous to the classifier design. They do not take
into account the classifier structure or the training algorithm. SVM-RFE [14] is
simultaneously a ranking and a selection method. It is dedicated to the design of
linear SVM classifiers [5]. By means of (i) a built-in regularization mechanism and
(ii) the linearity in their parameters, SVM have shown a great ability for the design
of classifiers with strong generalization capabilities.

In the present paper, we propose to revisit the SVM-RFE method. Since the
ranking and selection performed by SVM-RFE require to train SVM classifiers,
the regularization hyperparameter commonly pointed by C has to be optimized.
Depending on how the optimization of this parameter interacts with the feature
ranking, two different schemes can be derived. We will call these schemes and their
respective implementations as External SVM-RFE and Internal SVM-RFE.

To illustrate the performance of the two implementations we propose, we are
interested in an application that comes from the speech processing world [20].
Indeed, speech processing is a rich and a wide research domain with many appli-
cations in various areas. Beside speech recognition which has been a stimulating
research activity for more than half a century, computational paralinguistics [26],
which includes emotion recognition from speech [17, 28], has become of a great
interest during the last few years. This research domain implements intensively
methods that belong to the machine learning world [6]. Speech emotion recogni-
tion is in itself a challenging research field [22–25]. Its main objective is often an
improvement of the speech recognition by making the human-machine interaction
more natural [12]. Speech emotion recognition can be useful for applications which
require an extraction of emotions from speech to generate corresponding facial ex-
pressions. This process is involved in various domains as a key factor to make the
human-machine interaction friendlier and more efficient [10,11].

One important challenge of the speech emotion recognition is the extraction of
relevant features that are efficiently informative on the existing emotions. In the
literature, different types of speech features are used [2, 12, 29], we focus on basic
acoustic features since (i) we assume that the acoustic information is fully given
by a set of both prosodic and spectral features and (ii) the use of these acoustic
features is still an active research domain in emotion recognition [30]. We propose
to study four separation problems: “Happy” versus “Neutral”, “Cold anger” versus
“Neutral”, “Hot anger” versus “Neutral” and “Panic” versus “Neutral”.

The aim of this paper is twofold: (i) a detailed description of a dual implemen-
tation of the SVM-RFE method, (ii) an application of the proposed methods for
an efficient pairwise emotion separation with optimized classifiers. The classifiers
involve the most relevant features and determine the emotion from the speech sig-
nal. To compare the efficiency of the two implementations we propose, the results
we obtained are discussed and compared with those achieved when the features are
ranked using the Gram-Schmidt method [7] and selected according to a wrapper
approach [13].
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The paper is organized as follows: SVM classification is briefly reported in
Sec. 2. The ranking and selection methods we propose are described in detail in
Sec. 3. Sec. 4 presents: (i) the corpus used for this study, (ii) the results obtained
by numerical experiments for speech emotion recognition.

2. SVM classification: a brief recall

SVM classification is used to find an optimal separation between two classes: the
maximum margin hyperplane [9]. The set of examples that are sufficient to deter-
mine the maximum margin hyperplane are called the support vectors. If the data
are linearly separable, a linear SVM classifier is sufficient. Otherwise, if the data
are not linearly separable, SVM classification proceeds by projecting the input vec-
tors in a high dimensional space called the feature space then a linear separation
is possible. In practice, this data conversion leads to the use of a kernel function.
To be a SVM kernel, a function has to verify a set of conditions listed in [9]. An
SVM discriminant function is given by

f(x) =

M∑
i=1

αiyik(x,xi) + b, (1)

where k is the kernel function, xi are the support vectors, yi are the corresponding
class labels (±1) and M is the number of support vectors. Note that αi and b are
the parameters of the classifier adjusted during the training process that leads to
maximizing:

L(α) =
M∑
i=1

αi −
1

2

M∑
i,j=1

αiαjyiyjk(xi,xj),

subject to

M∑
i=1

αiyi = 0,

and

0 ≤ αi ≤ C,

for 1 ≤ i ≤M .

The regularization parameter C controls the trade off between classification
errors on training data and margin maximization.

The validation procedure used in our experiments is a particular implementation
of the cross validation method [15]. It is called the Leave-One-Speaker-Out (LOSO)
method. Since the data used in this study involves six speakers, this procedure
consists in a data partitioning in which the validation fold contains data from the
sixth speaker that does not appear in the training folds containing data from the
five other speakers. This method guarantees strict speaker independence.
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3. Variable ranking and selection methods

3.1 The Gram-Schmidt orthogonalization procedure

The Gram-Schmidt orthogonalization (GS) procedure is a method for ranking the
variables of linear-in-their-parameters models according to their level of relevance.
In the context of machine learning, this method was first introduced in [7]. After-
wards, it has been widely implemented for various purposes. The GS procedure is
an iterative method. For ranking a set of Nmax variables, it proceeds, at the first
iteration, by estimating the relevance of each variable by computing the following
quantities:

cos2 (xk,y) =
(xk.y)

2

∥xk∥2 ∥y∥2
, k = 1, . . . , Nmax,

where xk is the vector of the values of the k-th variable and the components of the
vector y takes values (±1) since we are dealing with a classification problem.

The most relevant variable is the input vector that leads to the largest value
of this quantity. Projecting the remaining Nmax − 1 variables and the output
vector y to the subspace orthogonal to the vector of the most relevant variable
ends the first iteration. Indeed, this projection permits to avoid the selection of
redundant variables. The second iteration proceeds similarly by computing the
relevance of the Nmax − 1 variables, selecting the most relevant one and projecting
the remaining Nmax − 2 variables. The procedure stops when all the variables are
ranked. Once the features are ranked, the N most relevant of them can be selected
using either a filter or a wrapper approach [13]. Although the filter approach is
often computationally cost effective, we focused on the wrapper approach which
usually leads to a better generalization in the data separation with an acceptable
computational burden in our implementation. Fig. 1 describes a basic example
with two variables x1 and x2.

In our experiments, both hyperparameter C and the value of N were optimized
according to a 6-fold LOSO validation procedure described in the previous Section.
For each value of N , the hyperparameter C is optimized following a list search.

We describe below in detail the feature selection procedure according to a wrap-
per approach when the GS procedure is used with linear SVM.

Step 1 F : f1, f2, ... fNmax is the set of ranked features
using the Gram-Schmidt orthogonalization procedure

Step 2 Define a list of n values for C: C1, C2, ... Cn

Step 3 For all i from 1 to Nmax

Consider the f1 to fi ranked features
For all j from 1 to n

Set C to Cj

Compute the score of the LOSO procedure
End of loop on j
Save the best LOSO score and the corresponding Cj

End of loop on i
Select the subset of the N most relevant features
that achieves the best LOSO score
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Fig. 1 A basic illustration of ranking variables. {z1, z2, z3} is a set of 3 linearly
independent vectors: they form a 3-dimensional vector space. At the first step, x2

is the most relevant variable with respect to the output y. It is selected and then y
and variable x1 are projected on the subspace orthogonal to x2. If there are more
projected variables xp

i , their relevance is computed with respect to yp.

3.2 The SVM-RFE methods

As discussed below in Sec. 4, data are linearly separable. Thereby, linear SVM are
preferred for the design of classifiers. The SVM-RFE is a ranking method dedicated
for the design of linear SVM classifiers [13]. This method evaluates the relevance of
a variable through the change that occurs in the training cost function when this
variable is withdrawn from the classifier inputs. More precisely, withdrawing the
i-th variable from the set of features results in a change ∆J(i) in the training cost
function J as discussed in [14]. The expression of J is given by

J =

P∑

i=1

e2i + C‖w‖2,

where P is the number of examples, ei = (yi − ŷi) is the error for example i and w
is the vector of classifier adjustable parameters. The expression of the output of
the classifier is given by

ŷi = wTxi + b,

where b is an adjustable parameter. Thereby, J is quadratic with respect to the
parameters wi. Accordingly, the change ∆J(i) is proportional to the square of wi,

∆J(i) ∝ w2
i .

Thus, the relevance of a variable is given by the magnitude of the square of
the corresponding parameter wi. The smaller is the magnitude of w2

i , the less
relevant is the variable. The SVM-RFE method starts with considering all the
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available features. A first training allows to determine the less relevant variable
which is withdrawn from the set of variables. Then, the method proceeds itera-
tively performing a training at each iteration. The last remaining variable is the
most relevant. Note that if the output is given by the expression of Eq. (1), the

parameters wi are given by w =
∑M

k=1 αkykxk.
Since the SVM-RFE method necessitates to train linear SVM classifiers, a strat-

egy to optimize the hyperparameter C must be applied. Indeed, the ranking will
depend on the value of C. One might ask: (i) how this parameter influences the
ranking and the classifier overall performance, (ii) how to set it effectively. To
provide an answer to these questions, we propose two formulations of this ranking
method that differ on the optimization scheme of C. We name them the External
SVM-RFE and the Internal SVM-RFE methods.

• External SVM-RFE : This first formulation consists in selecting a value for
hyperparameter C in a predetermined set and keeping it fixed until all the
variables are ranked. The complete procedure is described below.

Step 1 Define a set of candidate values for C: C1, C2, ... Cn

Step 2 For all j from 1 to n
Set C to Cj

For all i from 1 to Nmax

Consider the Nmax − i+ 1 remaining variables
Compute the score of the LOSO procedure
Compute vector w
Withdraw the less relevant variable

End of loop on i
Save the subset of ranked variables that achieves
the best LOSO score for Cj

End of loop on j
Among all the saved subsets, select the subset
that achieves the best LOSO score

Determining the subset that achieves the best LOSO score allows to select the
N most relevant variables. Thus, this ranking procedure possesses a built-in
selection mechanism. This method produces as many rankings as the number
of values tested for hyperparamter C.

• Internal SVM-RFE : This second formulation consists in optimizing the value
for hyperparameter C for every variable to withdraw. The complete proce-
dure is described below.

Step 1 Define a set of candidate values for C: C1, C2, ... Cn

Step 2 For all i from 1 to Nmax

Consider the Nmax − i+ 1 remaining variables
For all j from 1 to n

Set C to Cj

Compute the score of the LOSO procedure
End of loop on j
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Save the subset of ranked variables that achieves
the best LOSO score
and the corresponding Cj

Compute vector w with Cj

Withdraw the less relevant variable
End of loop on i
Among all the saved subsets, select the subset
that achieves the best LOSO score

Similarly to the first formulation, the Internal SVM-RFE method also pos-
sesses a built-in selection mechanism. Indeed, the subset that achieves the
best LOSO score is formed by the N most relevant variables among all those
ranked. Contrary to the External SVM-RFE, this formulation produces a
unique ranking.

3.3 Discussion

Both External and Internal SVM-RFE methods are computationally more complex
than the Gram-Schmidt procedure. However, simultaneously to the ranking, they
perform a selection procedure according to a built-in selection mechanism.

The two SVM-RFE methods are sensitive to the tested values of parameter
C. Practically, these values are taken in an arbitrary list of numbers generated
according to a logarithmic scale.

With the External SVM-RFE method, a different ranking is achieved with each
value of C. Thus, if the logarithmic scale is not fine enough, the feature subset
with the best validation score may be a little different of the subset achieved by
the optimal value of C omitted in the list.

With the Internal SVM-RFE method, the situation is quite different. The
ranking depends on the values of C considered as optimal at each step. Thus,
a small deviation is introduced in the ranking at each step, i.e. Nmax times on
the whole. To overcome this drawback, one can involve a larger list of values for
parameter C. The price to pay is the increase in the computational burden. Thus,
this issue makes the Internal SVM-RFE method numerically more expensive than
the External SVM-RFE.

When implemented with real data, one can wonder if either of these two meth-
ods is more efficient. We propose to study the performances of both methods for
ranking and selecting acoustic features to design optimized classifiers for emotion
recognition.

4. Experimental results

4.1 Corpus and feature extraction

The data used in our experiments was obtained from the LDC Emotional Prosody
and Transcripts database [8]. It consists of English language acted speech record-
ings. This database contains both audio recordings and the corresponding tran-
scripts. The recordings deal with professional actors reading series of semantically
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neutral utterances (dates and numbers) spanning fifteen distinct emotional cate-
gories. In this study, we chose six professional actors: three male (CC, CL and MF)
and three female (GG, JG and MK) to guarantee speaker gender balancing. From
the LDC Emotional Prosody Data, we focused on the recognition of a first emo-
tion separation problem: “Happy” versus “Neutral” emotions, then we also paid
attention to a second emotion separation problem: “Cold anger” versus “Neutral”
emotions. We study further emotion separation problems in Sec. 4.4.

Pre-processing the database leads to the following outcome:

• For the first separation problem: 53 utterances for female speakers (32 Happy
and 21 Neutral utterances) and 52 for male (31 Happy and 21 Neutral utter-
ances).

• For the second separation problem: 53 utterances for female speakers (32
Cold anger and 21 Neutral utterances) and 53 for male (32 Cold anger and
21 Neutral utterances).

Many acoustic features for speech emotion recognition have been explored.
However, there is still no consensus on a fixed set of features. In [21], Schuller
et al. have used 276 acoustic features. In the Interspeech challenges 2009 and 2010,
Schuller et al. have increased the number of acoustic features to 384 in [22] and
1582 in [23]. Later, in Audio/Visual Emotion Challenges (AVEC) in 2011 and
2012, Schuller et al. have slightly decreased the number of acoustic features from
1941 in [24] to 1841 in [25].

In our work, to reduce the constraint of computational complexity, we pro-
pose to extract basic acoustic features. In order to take into account relevant
and informative input data, we considered both prosodic and spectral features.
More specifically, we propose to use statistical moments from two prosodic features
and four spectral features. The statistical moments are: maximum, minimum,
range (maximum-minimum), mean, median and standard deviation. The selected
prosodic features are the fundamental frequency contour (F0) and the energy con-
tour (En). The selected spectral features are the formant frequencies (F1, F2) and
their bandwidths (B1, B2). We gathered the 6 moments from each of the 6 basic
acoustic features to generate a set of Nmax = 36 variables. Theses features can be
computed quickly which is convenient for real time applications. All these features
were extracted with the Praat software [4] and their statistical moments were com-
puted using the Matlab software. According to the corpus described above, 105
utterances are given to separate the “Happy” versus “Neutral” case and 106 utter-
ances are available for the “Cold anger” versus “Neutral” case. We assume that in
both cases, each utterance is fully described given the values of the 36 features.

4.2 Happy/Neutral emotion separation

Prior to the design of SVM classifiers, we were interested in testing the data linear
separability. Indeed, linear separability is a desirable property when separating
data since the resulting classifiers are less complicated to built than nonlinear
classifiers. For this purpose, the Ho-Kashyap algorithm [16] was run to determine
if the data are linearly separable regarding the training examples.

82



Daassi-Gnaba H., Oussar Y.: External vs. internal SVM-RFE

Rank Feature

1 range F0

2 max F0

3 mean F0

4 median B2

5 median F2

6 min F0

7 std F1

8 max F1

9 max B1

10 range B2

11 mean F1

12 std F2

13 median B1

14 std B1

15 min F1

Rank Feature

1 median F0

2 min F0

3 std F1

4 mean F2

5 range F0

6 median B2

7 max F0

8 range F1

9 mean F1

10 median F1

11 std F2

12 median En

13 max B1

Tab. I The N most relevant acoustic features that ensure linear separability ac-
cording to the Gram-Schmidt (left) and the External SVM-RFE (right) methods
with the Happy/Neutral data.

Methods N C

Gram-Schmidt 15 X
External SVM-RFE 13 8

Tab. II Conditions of linear separability for the Happy/Neutral data.

When taking into account the whole available examples (105 utterances), the
Ho-Kashyap algorithm showed that the data are linearly separable when the N =
15 most relevant input variables, according to the Gram-Schmidt method, over
the 36 available are considered. Tab. I (left) illustrates the list of these 15 most
relevant features. When using the External SVM-RFE method, features ranking
and classifiers design are strongly linked. Therefore, for each value of C, the Ho-
Kashyap algorithm is run after the classifier design: the smaller subset of relevant
features that allows data linear separability is N = 13 corresponding to C = 8.
Tab. I (right) illustrates the list of these 13 most relevant features. Tab. I shows
that 8 features are common to these two methods. As explained in Sec. 3.3 a full
implementation of the Internal SVM-RFE method comes with a heavy computa-
tional burden. We then skipped the study of the linear separability for this case.
The results are summarized by Tab. II. Note that linear SVM were implemented
using the spider software [27].

As shown by Tab. I, with the Gram-Schmidt (left) and the External SVM-
RFE (right) methods, the most relevant features are moments related to the pitch
frequency F0. This result is consistent with the property of the pitch frequency
which is known as a leading parameter in speech emotion recognition [1, 18].
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Methods Well classified [%] N C M

Gram-Schmidt + linear classifier 83.8 15 X X
Gram-Schmidt + linear SVM 89.5 15 20 19

External SVM-RFE 94.3 16 7 20
Internal SVM-RFE 91.4 11 20 20

Tab. III Percentage of well classified emotions for the Happy/Neutral data.

When the variables are ranked using the Gram-Schmidt method, the best recog-
nition rate of 89.5% is achieved by involving the N = 15 most relevant variables
and C = 20. As a comparison, 83.8% of the emotions were successfully recognized
with a linear classifier using the same N = 15 most relevant features. Note that
the linear classifier consists of an hyperplane whose parameters are adjusted by
minimizing the least squares cost function.

The best performance was obtained with the External SVM-RFE having N =
16 and C = 7. With this classifier involving M = 20 support vectors (roughly 19%
of the whole available data), 94.3% of the emotions were successfully recognized.
The overall results are given by Tab. III.

As mentioned above, such linear SVM with the 16 most relevant features as
inputs separates successfully any subset from the data if it is trained with all the
available examples. Since we implemented the LOSO validation procedure, the
behavior of the validation speaker can be slightly different from the others. Hence,
the hyperplane determined during training may not successfully separate all the
examples that belong to the validation speaker. As a result, the overall recognition
rate is not guaranteed to be close to 100%.

Tab. IV and Tab. V summarize the results of the classification of “Happy” versus
“Neutral” emotions using respectively the Gram-Schmidt and External SVM-RFE
methods for each speaker (first column); we show the percentage of well classified
items (second column), the precision (third column) and the recall for the recogni-
tion of Happy and Neutral emotions (fourth column). Note that for a given class,
the precision is the fraction of well classified emotions over all those put in this
class. The recall is the fraction of emotions put in this class over all those labeled
in this class. Precision and recall can be computed using the confusion matrices.

These results show that a promising rate in emotion recognition can be obtained
with few relevant acoustic features. This classification confirms the validity of our
assumption as well as the feasibility of a numerically cost effective implementation.
Indeed, the classifier is linear and uses a small set of input variables instead of the
overall 36 extracted from the speech signal.

For the sake of the design of parsimonious classifiers involving less input vari-
ables (N < 15), nonlinear SVM classifiers using a Gaussian kernel were also im-
plemented. The regularization parameter C, the Gaussian kernel parameter σ, as
well as the value of N were simultaneously optimized according to the 6-fold LOSO
validation procedure described above. The results showed that neither the classifi-
cation error nor the number of relevant input variables was optimized. Hence, we
consider that the nonlinear classification does not bring any improvement for the
“Happy” versus “Neutral” emotions separation.

84



Daassi-Gnaba H., Oussar Y.: External vs. internal SVM-RFE

Speaker Well classified Precision Recall
[%] Happy Neutral Happy Neutral

Male CC 77.8 0.89 0.67 0.73 0.86
CL 100 1 1 1 1
MF 100 1 1 1 1

Female GG 88.9 0.91 0.86 0.91 0.86
JG 83.3 0.83 0.83 0.91 0.71
MK 88.2 1 0.78 0.8 1

Tab. IV Percentage of well classified emotions, precision and recall obtained when
the acoustic features are ranked using the Gram-Schmidt method (Happy/Neutral
data).

Speaker Well classified Precision Recall
[%] Happy Neutral Happy Neutral

Male CC 100 1 1 1 1
CL 94.1 0.91 1 1 0.86
MF 100 1 1 1 1

Female GG 100 1 1 1 1
JG 83.3 0.78 1 1 0.57
MK 88.2 1 0.78 0.8 1

Tab. V Percentage of well classified emotions, precision and recall obtained
when the acoustic features are ranked using the External SVM-RFE method
(Happy/Neutral data).

4.3 Cold anger/Neutral emotion separation

Similarly to the previous classification problem, the whole available acoustic fea-
tures were ranked taking into account the Cold anger/Neutral emotion labeling.
Data separability was tested using the Ho-Kashyap algorithm [16]. The latter
showed that the whole available data (106 utterances) are linearly separable when
considering at least the 17 most relevant features according to the Gram-Schmidt
method (Tab. VI (left)) or the 18 most relevant features according to the External
SVM-RFE method with C = 4 (Tab. VI (right)). Tab. VI also shows that 11
features are common to theses two methods. Tab. VII summarizes these results.

As shown by Tab. VI, with the External SVM-RFE method (right), the most
relevant features are moments related to the pitch frequency F0. According to
the Gram-Schmidt method (left), the most relevant feature is the signal energy.
Nevertheless, 4 moments related to the pitch frequency show up in the list. To
a lesser extent than the previous results, the pitch frequency stands as a highly
informative feature for speech emotion recognition [1, 18].

The classification results for the “Cold anger” versus “Neutral” problem are
given by Tab. VIII. When the variables are ranked using the Gram-Schmidt
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Rank Feature

1 range En

2 max F2

3 min B2

4 min F0

5 median F0

6 min F1

7 median F2

8 mean B1

9 range F0

10 max F0

11 std F1

12 std F2

13 range B2

14 median B2

15 median En

16 std En

17 std B1

Rank Feature

1 median F0

2 min F0

3 range F0

4 max F0

5 std F1

6 median F2

7 median B1

8 median En

9 range En

10 mean F1

11 median F1

12 std En

13 max F2

14 min F1

15 std F0

16 mean F2

17 mean B2

18 max En

Tab. VI The N most relevant acoustic features that ensure linear separability
according to the Gram-Schmidt (left) and the External SVM-RFE (right) methods
with the Cold anger/Neutral data.

Methods N C

Gram-Schmidt 17 X
External SVM-RFE 18 4

Tab. VII Conditions of linear separability for the Cold anger/Neutral data.

Methods Well classified [%] N C M

Gram-Schmidt + linear classifier 77.4 12 X X
Gram-Schmidt + linear SVM 86.8 12 10 27

External SVM-RFE 87.7 21 2 33
Internal SVM-RFE 90.6 10 1000 27

Tab. VIII Percentage of well classified emotions for the Cold anger/Neutral data.

method, the best recognition rate of 86.8% is achieved by involving the N = 12
most relevant variables and C = 10. As a comparison, 77.4% of the emotions
were successfully recognized with a linear classifier using the same N = 12 most
relevant features. The best validation score consisting in 90.6% of well classified
emotions was obtained with the Internal SVM-RFE having N = 10 and C = 1000
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Speaker Well classified Precision Recall
[%] Cold anger Neutral Cold anger Neutral

Male CC 94.1 1 0.87 0.9 1
CL 94.4 1 0.87 0.91 1
MF 94.4 1 0.87 0.91 1

Female GG 82.4 0.89 0.75 0.8 0.86
JG 55.6 0.59 0 0.91 0
MK 100 1 1 1 1

Tab. IX Percentage of well classified emotions, precision and recall obtained
when the acoustic features are ranked using the Gram-Schmidt method (Cold
anger/Neutral data).

Speaker Well classified Precision Recall
[%] Cold anger Neutral Cold anger Neutral

Male CC 88.2 0.9 0.86 0.9 0.86
CL 88.9 0.85 1 1 0.71
MF 94.4 1 0.87 0.91 1

Female GG 88.2 0.9 0.86 0.9 0.86
JG 88.9 0.85 1 1 0.71
MK 94.4 0.92 1 1 0.86

Tab. X Percentage of well classified emotions, precision and recall obtained
when the acoustic features are ranked using the Internal SVM-RFE method (Cold
anger/Neutral data).

(see Tab. VIII). It involves M = 27 support vectors (roughly 25% of the whole
available data).

Tab. IX and Tab. X illustrate the classification results for the “Cold anger”
versus “Neutral” case using respectively the Gram-Schmidt and Internal SVM-
RFE methods for each speaker (first column); it gives the correct classification rate
(second column), the precision (third column) and the recall for the recognition of
Cold anger and Neutral emotions (fourth column). Precision and recall can be
computed using the confusion matrices.

A comparison of the results illustrated by both Tab. IX and Tab. X shows that
the Internal SVM-RFE method leads to a ranking that better separates the female
speakers. Indeed, the emotions of speaker JG have a recognition rate of 88.9% while
using the Gram-Schmidt method achieves only 55.6% of well classified emotions.
Although the latter performs better for male speakers. The overall performance
goes to the Internal SVM-RFE method.

To be consistent with the previsous classification problem, nonlinear SVM clas-
sifiers using a Gaussian kernel were also implemented. The regularization param-
eter C, the Gaussian kernel parameter σ, as well as the value of N were optimized
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according to the 6-fold LOSO validation procedure described above. Similarly, the
performance was not improved. Also for this case, linear classification remains
more suitable.

4.4 Further emotion separation problems

In order to validate the results obtained above, we propose to study two more cases
of emotion separation. We still assume that for both cases, each utterance is fully
described given the values of the 36 features outlined in Sec. 4.1.

4.4.1 Hot anger/Neutral emotion separation

The third problem we introduce consists in 105 utterances: 52 for female speakers
(31 Hot anger and 21 Neutral utterances) and 53 for male (32 Hot anger and
21 Neutral utterances). Tab. XI shows the percentage of well classified emotions
achieved by the two proposed methods and compared with the score obtained when
the features are ranked using the Gram-Schmidt method. In this case, the External
SVM-RFE method achieves the best separation performance.

Methods Well classified [%] N C

Gram-Schmidt + linear SVM 90.5 7 20
External SVM-RFE 93.3 8 1
Internal SVM-RFE 87.6 11 0.02

Tab. XI Percentage of well classified emotions for the Hot anger/Neutral data.

4.4.2 Panic/Neutral emotion separation

The fourth problem we introduce consists in 103 utterances: 51 for female speakers
(30 Panic and 21 Neutral utterances) and 52 for male (31 Panic and 21 Neutral
utterances). Tab. XII shows the percentage of well classified emotions achieved by
the two proposed methods and compared with the score obtained when the features
are ranked using the Gram-Schmidt method. In this case, the Internal SVM-RFE
method achieves the best separation performance.

Methods Well classified [%] N C

Gram-Schmidt + linear SVM 92.2 6 20
External SVM-RFE 93.2 12 1

Internal SVM-RFE 94.2 11 50

Tab. XII Percentage of well classified emotions for the Panic/Neutral data.

4.5 Discussion

In [21], Schuller et al. presented results obtained with the Berlin Emotional Speech
Database [3]. They considered seven different emotions and 276 acoustic features.
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They implemented SVM classifiers with 75 relevant variables selected using the Se-
quential Floating Forward Search (SFFS) method [19]. They obtained a recognition
rate of 87.5%.

In our work, we present results obtained with the English LDC Emotional
Prosody and Transcripts Database [8]. We considered five different emotions. To
reduce the computational burden and to design optimized classifiers, we proposed
two different implementations of a feature ranking method dedicated to SVM clas-
sifiers. We extracted 36 basic features. On the “Happy” versus “Neutral” problem,
a recognition rate of 94.3% was obtained with a subset formed by the 16 most
relevant features. On the “Panic” versus “Neutral” problem, a recognition rate of
94.2% was achieved with a subset formed by the 11 most relevant features among
the 36 extracted. Tab. XIII summarizes the results obtained with the four separa-
tion problems we considered.

Separation problem External SVM-RFE Internal SVM-RFE
[%] [%]

“Happy” vs. “Neutral” 94.3 (N=16) 91.4
“Cold anger” vs. “Neutral” 87.7 90.6 (N=10)
“Hot anger” vs. “Neutral” 93.3 (N=8) 87.6
“Panic” vs. “Neutral” 93.2 94.2 (N=11)

Tab. XIII Percentage of well classified emotions for all the studied problems.

Our results are slightly better than those from Schuller et al. noticed above. In
fact, they present improvements by the recognition rate as well as by the smaller
size of the relevant feature subsets. Since the implementation conditions are quite
different, the approach we propose can be considered as complementary to the other
existing methods and does not claim to systematically outperform them whatever
the data and the number of different labels.

We recall that the aim of our study is to propose and compare two different
implementations of the SVM-RFE method for the design of optimized linear SVM
classifiers. The results we obtain are promising since they show the effectiveness of
our approach: the two methods perform differently for a given set of data. Thereby,
they must be taken into account both.

5. Conclusion

When dealing with the design of classifiers from data, the feature ranking and selec-
tion is a key step to achieve promising recognition rates. Within this framework, the
presented study proposes two implementations of the SVM-RFE method entitled
External SVM-RFE and Internal SVM-RFE, respectively. Theses two methods de-
termine two different optimization schemes for the regularization hyperparameter
C. For External SVM-RFE, the complete ranking and selection scheme is run for
each value of C taken from a predetermined set of candidate values. The Internal
SVM-RFE proceeds by optimizing the hyperparameter C at each iteration of the
ranking and selection scheme.
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We selected emotion recognition as an interesting application to illustrate the
efficiency of both methods and also their differences to design optimized classi-
fiers. The study of data separability shows that considering a small set of relevant
features is sufficient to ensure data linear separability. Several numerical experi-
ments involving linear SVM classifiers were conducted. Four different separation
problems were considered. Promising recognition rates over 90% were achieved.
Furthermore, a small number of support vectors for each of the optimized classi-
fiers confirms their good generalization capabilities.

The results show that the best performance is obtained with either method
according to the separation problem. For the “Happy” versus “Neutral” and “Hot
anger” versus “Neutral” problems, the best performance was achieved by the Ex-
ternal SVM-RFE method while for the “Cold anger” versus “Neutral” and “Panic”
versus “Neutral” emotions separation the best recognition rate was obtained with
the Internal SVM-RFE method. Thus, according to the available data either
method may be more efficient. Therefore, for a given study, both methods must
be considered, implemented and their performances compared.
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