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Abstract: A novel hybrid rule network based on TS fuzzy rules is proposed to
resolve the problems of fuzzy classification and prediction. The proposed model
learns by using genetic algorithm and is able to cover the whole distribution regions
of the samples. In the learning process: (1) fuzzy intervals of each dimension of
the samples are partitioned evenly; (2) computing intervals (CIs) are established
based on the even intervals; (3) linear weighted model of several normal proba-
bility distributions is used to describe the sample probability distribution on CIs;
(4) membership degree of each CI is learnt to evaluate the importance of each CI,
avoiding the problem that the optimal intervals are difficult to cover the original
sample spaces; (5) dynamic rule selection mechanism is used to dynamically com-
bine a small number of optimal rules linearly to achieve nonlinear approximation,
reducing the computation load.

Three experiments are performed: the experiments on Iris and Mackey-Glass
chaotic time series show that HRN can achieve satisfactory results and is more
effective in terms of generalization ability, whereas the experiment on exhaust gas
temperature demonstrates that HRN can predict the EGT of aero engine effectively.
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1. Introduction

Because the ability to handle the complex problems with strong nonlinearity or
high degree of uncertainty, the fuzzy models have been widely employed in many
real fields, such as system identification [24], automatic control [3, 26], pattern
recognition [26], data mining [1], prediction [10], etc. Fuzzy model is proved to be
a powerful model in complex system modeling [25]. There are at least two different
kinds of rule-based fuzzy models, including the Mamdani fuzzy model [21] and the
Takagi-Sugeno (TS) fuzzy model [24]. Recently, the TS fuzzy model has got more
attention than the Mamdani fuzzy model, because the TS fuzzy model can approx-
imate the complex nonlinear system with fewer rules and higher accuracy [13, 15].
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The design of fuzzy modeling based on the input–output data can be divided into
two parts: structure identification and parameter identification. Structure identifi-
cation is used to generate both the antecedent part and the consequent part of the
fuzzy rules, whereas parameter identification is used to generate the parameters of
membership functions in the antecedent part and of linear function in the conse-
quent part. The methods proposed for structure identification consist of heuristics
[24], clustering-based method [5], neural networks [2], etc. And the methods pro-
posed for parameter identification cover least-square method [24], gradient descent
[13], genetic algorithm (GA) [12], etc.

In fact, the performance of typical fuzzy model is greatly dependent on the prior
knowledge of expertise, which is used to make decisions about how to partial the
input data. But sometimes the prior knowledge cannot help to cluster the input
data, and it probably generates a larger number of fuzzy rules. The redundant
fuzzy rules can neither improve the accuracy nor enhance the explanatory. There-
fore, the effective methods for fuzzy clustering should be proposed to enhance the
performance of fuzzy model. The literature [27] has summarized three kinds of
fuzzy clustering methods to determine the number of fuzzy rules: increasing or
merging clusters from the initial clustering number, mountain clustering or sub-
tractive clustering, and trade-off among several clustering validity indexes. But it
is difficult to obtain the accurate and reasonable result directly using them, and
they may decrease the robustness of the model. On the other hand, in the typical
fuzzy model, once the clustering is completed, the antecedent part of fuzzy rules is
confirmed, so the rules would keep the same pattern for all the input data.

To solve the problem, many researches were progressed. Some methods com-
bine GA and TS fuzzy model, for instance, the TS-group method of data handing
algorithm [29] employs rules fusion and rules combination to optimize the fuzzy
rules. Some methods use support vector regression, for instance, the incremental
smooth support vector regression [14] reduces the number of fuzzy rules through
more forms of membership functions. Some researchers even presented new system
form, for instance, the habitually linear evolving TS fuzzy model [16] controls the
number of rules by an adaptive threshold on the error. However, these methods
cannot promise the consequent part of the fuzzy rules to be appropriate for each
input data.

In this research, a novel rule-based fuzzy network model named hybrid rule
network (HRN) is proposed to solve the problems of fuzzy classification and pre-
diction. HRN is mainly established by the nodes which represent fuzzy subspaces
(different clusters of the input data) and are linked to others, with the thought of
generating rules based on the TS fuzzy rule. There are three stages to use HRN
after initializing the fuzzy subspaces for one sample. Firstly, HRN dynamically
adjusts the features of all fuzzy subspaces by using the weights for the input vector
of the sample. Secondly, in the rule-space consisting of all the probable rules, HRN
builds the optimal rule set for the sample using the dynamic rule selection mecha-
nism (DRSM). Thirdly, HRN obtains the input vector of the sample according to
the optimal rule set. In the learning process, many samples are used, and HRN
collects all the errors between the input vector and output of the samples to obtain
the fitness. Once the fitness satisfies the threshold, the global optimal solution can
be obtained.
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This paper is organized as follows. In Section 2, the construction of HRN is
described including structure analysis and node analysis. In Section 3, the learning
algorithm of HRN is discussed including chromosome coding, DRSM, and fitness
function. In Section 4, three experiments are presented: using Iris samples to
validate the fuzzy classification capability, using the Mackey-Glass chaotic time
series samples to validate the prediction capability, and using EGT samples to
show the performance of HRN in the actual engineer field. In Section 5, conclusion
remarks are summarized, and open problems are presented.

2. Construction of HRN

2.1 Structure of HRN

The samples used in HRN are described as follows:

samples = [x1,x2, . . . ,xi,y],

xi = [xi1, xi2, . . . , xij ]
T,

y = [y1, y2, . . . , yj ],

i = 1, 2, . . . , n j = 1, 2, . . . ,m.

(1)

where n is the dimension of the input vector of a sample, m is the capacity of the
samples, xij is the i-th variable in the input vector of j-th sample and yj is the
output vector of the j-th sample.

As mentioned in Section 1, HRN is a network model established to solve the
problems of fuzzy classification and prediction, which is based on the thought of
forming the neural network nodes and constructing the rules of TS fuzzy model.
The core of HRN is the nodes taking the information about the corresponding fuzzy
set.

In a typical fuzzy model, a rule is defined as

Rn : If x1 is An
1 and x2 is An

2 and . . . and xi is A
n
i

then yn = an1x1 + · · ·+ ani xi + bn,
(2)

where Rn is the n-th fuzzy rule, An
i is the fuzzy set of xi in rule Rn, yn is the

output of Rn, ani is the real coefficient corresponding to xi, b
n is a compensation

value. The structure of a typical TS fuzzy model is shown in Fig. 1.
For the j-th sample, W 1

j ,W
2
j , . . . ,W

n
j are rule weights for R1, R2, . . . , and

Rn, which are obtained according to some clustering method, and the calculated
sample’s output yj =W 1

j y
1
j +W

2
j y

2
j + · · ·+Wn

j y
n
j is a linear weighted sum by each

rule’s output.
As we can see in Fig. 1, the rules keep the same pattern and are composed of

the same fuzzy sets for each sample. In another words, the rules are predetermined
in the typical fuzzy model, so the generation of the rules may not show the rules-
selected completeness which represents the capability to select the rules from all
the rules built by different combinations of the fuzzy sets. Therefore, it is difficult
to guarantee that each sample is calculated through the optimal rules, and thus
the typical fuzzy model may not obtain the satisfactory result sometimes. To avoid
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Fig. 1 Structure of the typical TS fuzzy model.

that deficiency, the structure of HRN is proposed, based on TS fuzzy rules. This
structure is shown in Fig. 2.

Ak
i is the k-th fuzzy set represented as the interval of the i-th dimension of the

current sample, fki (x) is the membership function on the interval Ak
i and whose

parameter is xij , ω
k
i is the weight used to modify the membership degree calculated

by fki (x), a
k
i is the real coefficient corresponding to interval Ak

i , the implication of
which is same to that of ani in Eq. (2), ykj is the j-th sample’s output obtained by

the k-th rule that built through the node taking interval Ak
i (the detail is discussed

in Section 2.2), W k is the weight of ykj , B is a compensation matrix, the element
of which is used to generate bn in Eq. (2).

Therefore, HRN is supposed to consist of a k × n nodes-matrix with links and
a scalar matrix. Each node in the nodes-matrix is composed of an interval, a
membership function, a weight, and a real coefficient.

Fig. 2 Structure of HRN.
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2.2 Analysis of a node

Two kinds of intervals exist: real interval (RI) and computing interval (CI). When
initializing HRN, the number of RIs is confirmed, and the number of CIs is one
greater than that of RIs. Therefore, if there are two RIs on certain dimension, then
three CIs on the same dimension will be defined. The relationships between the
intervals are shown in Fig. 3.

Fig. 3 The different kind of intervals in the HRN: a is the minimal value of certain
dimension of a sample, b is the maximal value, c is the middle value between a and
b, e is the middle value between a and c, f is the middle value between c and b; a is
also the middle value between d and e, b is also the middle value between f and g.
The long vertical solid lines are the interval lines, and the arrow lines represent the
corresponding values are equal. Therefore, [a, c] and [c, b] are RIs, whereas [d, e],
[e, f ], and [f, g] are CIs.

The way used to establish other CIs can be inferred even if there are more
than 2 rules (RLs). The aim of establishing CIs is to guarantee that two or more
different effective membership functions exist on one RI at least. The membership
function fki (x) adopts the form of a univariate normal distribution model

f(x) =
1

σ
√
2π

exp(
−(x− µ)2

2σ2
), (3)

where µ is the mean value of certain variable and σ is the standard deviation of
certain variable. The background of central limit theorem theory suggests that
there are many random variables in the objective reality, which are the results of
comprehensive effects influenced by a large number of random factors independent
of each other, and the effect of individual variable in the total influence is tiny.
Those variables usually follow normal distribution, so the other probability distri-
bution can utilize normal distribution as an approximation. Meanwhile, it has been
proved that any kind of probability distribution can be approximated using a linear
weighted sum of the finite number of normal distributions. Therefore, using the
normal distribution to approximate the distribution of some variable in the input
vector without knowing its distribution is reasonable. The membership function
curves (MFCs) on CIs for certain dimension of the samples (3 CIs) are shown in
Fig. 4.

As shown in Fig. 4, on a CI, three normal distribution models are summed
through linear weighted sum to approximate the final membership degree. There-
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Fig. 4 MFCs on CIs for certain dimension of the sample (3 CIs).

fore, the final probability distribution model f ′(x) for that sample in a CI is ob-
tained by

f ′(x) = ω1f1(x) + ω2f2(x) + ω3f3(x), (4)

where f1(x), f2(x), and f3(x) are the three normal distributions, and ω1, ω2, and
ω3 are the corresponding weights. Experience shows that the satisfactory result
can be obtained if we use three or more normal distributions on the adjacent CIs
to approximate an abnormal distribution on the current CI. Because the parti-
tions based on the membership function are complete and the definition domain of
the membership function has no boundary, the situation that there is no solution
because of the variable out of definition domain does not occur.

Setnes and Roubos [23] pointed out that some methods obtaining the optimal
fuzzy classification solution by modifying the intervals may generate a problem
where the intervals are discontinuous after being learnt. There is a contrast between
the original intervals and the modified intervals about MFCs shown in Fig. 5.

To make HRN have the capability to obtain the same optimal effects, the weight
ω is introduced. The weight ω is used to recalculate the original membership degree
as available membership degree (AMD) used to build a rule, which can optimize
the CIs under the circumstance that the intervals do not need to be modified. For
xij , its AMD is determined by either of

Sk
ij = ωk

i f
k
i (xij) , ω ∈ (0, 1] , (5)

Sk
ij = fki

(
ωk
i xij

)
, ω ∈ (0, 1] , (6)

where Sk
ij is the AMD of xijcalculated by fki (x) which is the membership function

on Ak
i . In Eq. (5), ω is used to adjust the original membership degree directly. In

Eq. (6), ω is used to adjust the original membership degree through multiplication
by the corresponding xij . As a result, the performance of the model is improved
because both of the two formulas are used to optimize AMD by adjusting one weight
ω instead of two variables (µ and σ). The different effects of the above formulas
are shown in Fig. 6 and Fig. 7, where the solid curve is the original membership
degree calculated only by the membership function, and the dash curve is the AMD
calculated by the membership function and the weight.

Analyzed from interval optimization, the weight ω is used to modify the original
CI: if Sk

ij > fki (xij) , then the result is similar to enlarging the CI, or the probability
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Fig. 5 Contrast between the original intervals and the modified intervals.

The orginal function

The modified function

Fig. 6 The effect of Eq. (5).

The orginal function

The modified function

Fig. 7 The effect of Eq. (6).

that the point xij is located in the CI is enlarged; if Sk
ij = fki (xij) , then the result

is similar to keeping the CI, or the probability that the point xij is located in the
CI is not modified; if Sk

ij < fki (xij) , then the result is similar to shrinking the CI,
or the probability that the point xij is located in the CI is reduced.

The pattern of the rule used in HRN is similar to that of the rule used in the
typical TS fuzzy model. The rule in HRN is still based on local linearization, but
it helps to obtain the global nonlinear result using the fuzzy reasoning method.
Therefore, the implications of the real coefficient and the compensation matrix are
similar to those in the typical fuzzy rules, but they are provided to enrich the
selection pattern of the optimal rules for the samples. In fact, there may be no
compensation values in a fundamental rule in HRN, but to obtain high performance,
it is better if the rule has the same components as that in the typical TS fuzzy
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model. And, the dimension of the compensation matrix usually is not less than the
number of rules that is set before initializing the learning algorithm.

3. Learning algorithm of HRN

From the methodology point of view, many different kinds of methods can be
used to approximate the global optimal solution in HRN, such as GA, ant colony
optimization algorithm [7], particle swarm optimization algorithm [9, 17], etc. To
simplify the solving logic, this research used GA which shows the global searching
capability to approximate global optimal solution.

3.1 Chromosome coding

GA is used to search for a global optimal solution through optimizing the chromo-
somes in the population, and the optimal chromosome is a solution for the problem.
The chromosome in HRN is coded by gray code [4] that is useful to search for the
optimal solution in global, because the distance between two adjacent gray codes
is 1.

The chromosome in HRN is composed of three parts: the weight matrix W, the
real coefficient matrix A, and the compensation matrix B. Each row in the matrix
represents a variable of the corresponding kind, and the form of chromosome is
shown as follows:

W =

0 0 0 · · · 0 1
...
...
...
. . .

...
...

1 0 0 · · · 1 0


(i×k,l)

, A =

1 0 1 · · · 1 0
...
...
...
. . .

...
...

0 1 0 · · · 1 0


(i×k,l)

, B =

0 0 1 · · · 1 0
...
...
...
. . .

...
...

1 0 1 · · · 0 0


(n,l)

, (7)

chromosomec = (WAB)T.

Here, i is the number of the dimension for the sample, k is the number of CIs for
the dimension, l is the number of gene digits for a coded value, n is the number of
RLs, and c is the index of chromosome in the population.

3.2 DRSM

The typical TS fuzzy model generally does not show the rules-selected complete-
ness, whose alternative rules are determined by the knowledge of the experts or
some methods and that keep the same pattern for all the samples. Although, some
methods can show a certain capability to select the rules, but cannot promise that
the alternative rules are optimal for the samples. DRSM is a special method aiding
the sample in selecting the optimal rule set from the whole rule-space consisting
of different combinations by different node information, and DRSM can guarantee
the rule diversity for certain sample. Given the dimension of the input vector of
some sample is n, the number of CIs for each variable in the input vector is k, and
then the number of alternative rules existing in HRN is kn. Therefore, HRN shows
rules-selected completeness, and makes the optimal rules can be selected from all
the possible rules.
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Variable MDOV of The Left Variable Corresponding CIs

1 x1j
[
ω1
1f

1
1 (x1j)ω

2
1f

2
1 (x1j)ω

3
1f

3
1 (x1j)

]
A1

1, A
2
1, and A

3
1

2 x2j
[
ω3
2f

3
2 (x2j)ω

2
2f

2
2 (x2j)ω

1
2f

1
2 (x2j)

]
A3

2, A
2
2, and A

1
2

3 x3j
[
ω3
3f

3
3 (x3j)ω

1
3f

1
3 (x3j)ω

2
3f

2
3 (x3j)

]
A3

3, A
1
3, and A

2
3

4 x4j
[
ω2
4f

2
4 (x4j)ω

1
4f

1
4 (x4j)ω

3
4f

3
4 (x4j)

]
A2

4, A
1
4, and A

3
4

Tab. I Supposed relationships.

To build the optimal rule sets, membership degree ordered vector (MDOV)
is proposed. MDOV is the vector consisting of membership degrees ordered by
descent from different CIs of the variable in the input vector. Once MDOV for
each variable is confirmed, the rule set of the sample can be also confirmed. Here
is an example of a hypothetical HRN, with hypothetical nodes (interval symbol is
omitted) matrix and compensation matrix, shown in Fig. 8.

Fig. 8 Hypothetical HRN. The dimension of the input vector of the sample is 4,
the number of CIs is set to 3, and the number of RLs in the rule sets is set to 2.

Then, the detail algorithm of DRSM for the j-th sample is described as follows:

Step 1: calculate the AMDs on the different CIs for each variable in the in-
put vector and organize each variable’s AMDs as each variable’s MDOV. In the
example, supposed that there are some relationships in Tab. I:

Step 2: Select the CIs and the corresponding real coefficient both contained in
the nodes whose AMD is positioned at first in each MDOV (that means, the AMD
is the maximal one) to build the first rule. So the first rule is shown in Fig. 9.
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Fig. 9 First rule. The nodes connected by the bold dash line are used to build the
first rule.

The first rule can be written as follows:

R1 : If x1j is A1
1 and x2j is A3

2 and x3j is A3
3 and x4j is A2

4

then y1j = a11ω
1
1f

1
1 (x1j) + a32ω

3
2f

3
2 (x2j) + a33ω

3
3f

3
3 (x3j) + a24ω

2
4f

2
4 (x4j) + b1.

(8)
In the Eq. (8), the most effective nodes are selected because they are the first
contributive for determining the output of the sample.

Step 3: Build the next optimal rule based on the previous rule. This step
includes two stages. Given the order number of the next optimal rule is assumed
to be t (t > 1). The first stage is to select both the CIs and the corresponding real
coefficient contained in the nodes whose AMD is positioned at t-th in each MDOV
to build the t-th possible rule. That is, the t-th contributed nodes are selected to
build the t-th possible rule. In the example, if t = 2, then the second possible rule
whose nodes linked by the bold dash line shown in Fig. 10 should be Eq. (9).

R2,possible : If x1j is A2
1 and x2j is A2

2 and x3j is A1
3 and x4j is A1

4

then y2 = a21ω
2
1f

2
1 (x1j) + a22ω

2
2f

2
2 (x2j)+

+ a13ω
1
3f

1
3 (x3j) + a14ω

1
4f

1
4 (x4j) + b2.

(9)

In order to judge which node is more effective between the one positioned at t-th
and the one positioned at (t− 1)-th for certain variable, the rule similarity (RS) is
proposed, which is then used as

Am
i ∨An

i =


Am

i if
Sm
ij − Sn

ij

Sm
ij

> RS,

An
i if

Sm
ij − Sn

ij

Sm
ij

≤ RS,

(10)
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Fig. 10 Building the next optimal rule (1).

where ∨ is selection operator, Am
i and An

i is the CIs of the i -th variable in the input
vector of thej-thsample. Eq. (10) means that the selection operation (between the
node positioned at t-th and the node positioned at (t− 1)-th for each variable) is
used to determine which one is more suitable. to build the next optimal rule before
the next optimal rule is built. If the relationships exist in Eq. (11):

(S1
1j − S2

1j)/S
1
1j ≤ RS

(S3
2j − S2

2j)/S
3
2j > RS

(S3
3j − S1

3j)/S
3
3j ≤ RS

(S2
4j − S1

4j)/S
2
4j > RS

, (11)

then, the second rule is revised to be Eq. (12), which is shown in Fig. 11.

R2 : If x1j is A2
1 and x2j is A3

2 and x3j is A1
3 and x4j is A2

4,
then y2j = a21ω

2
1f

2
1 (x1j) + a32ω

3
2f

3
2 (x2j) + a13ω

1
3f

1
3 (x3j) + a24ω

2
4f

2
4 (x4j) + b2.

(12)

The Step 3 can be repeated to build more rules and it can be synthesized as{
R1 : y1j =

∑n
i=1 |atiωt

i f
t
i (xij)|t=1 + b1,

Rt : ytj =
∑n

i=1 |atiωt
i f

t
i (xij)|t ∨

∣∣at−1
i ωt−1

i f t−1
i (xij)

∣∣
t−1

+ bt, t > 1.
(13)

where t is the position number in the MDOV for xij and |atiωt
i f

t
i (xij)|t is the

product by the corresponding values in the node whose AMD is positioned at t-th
in the MDOV for xij .

Therefore, HRN can use DRSM to select the finite number (set by the number
of RLs) of the optimal rules to obtain the output of certain sample; however, the
TS fuzzy model must use all the predetermined rules for the same purpose. If
all the rules have been confirmed by Eq. (13), the rule set for the j-th sample is
established.
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Fig. 11 Building the next optimal rule (2).

3.3 Fitness function

If the number of RLs is set to t, the output of the sample is

yj =W 1y1j +W 2y2j + · · ·+W tytj . (14)

That means the output of HRN is the same as that of the typical TS fuzzy model
(see Eq. (4)), and the rule weight W is the product by corresponding AMDs of the
rule, which can be described as

W t =
∏

Sk, Sk ⊂ Rt, k = 1, 2, · · · , n. (15)

Here, W t is the rule weight for the t-th rule, Sk is the corresponding AMD existing
in the t-th rule and n is the dimension of the input vector of the sample.

Hence, least mean square or mean relative estimation error or root-mean-square
error (RMSE) can be used as the fitness function based on Eq. (14).

3.4 Whole algorithm

If the fitness function uses RMSE, then the description of operating algorithm for
HRN is as follows:

Step 1: Confirm the parameters, such as RIs, RLs, RS, the convergence condi-
tion (here is maximal RMSE), the maximum iterations (MI), and some parameters
only for GA.

Step 2: Normalize all the samples, and set the current iteration to be 0.
Step 3: Initialize the chromosome shaped as the Eq. (7) in the population.
Step 4: Add the current iteration with 1.
Step 5: For each chromosome:
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Step 5.1: Set current chromosome.
Step 5.2: For each sample:
Step 5.2.1: Set current sample.
Step 5.2.2: Obtain AMDs of current sample by Eq. (5) or (6).
Step 5.2.3: Establish MDOV of each variable of current sample.
Step 5.2.4: Build the optimal rule set for current sample by Eq. (13).
Step 5.2.5: Obtain the output of current sample by Eq. (15).
Step 5.2.6: Obtain the error between the output and the real value.
Step 5.3: Obtain RMSE of current chromosome.
Step 6: Obtain the best chromosome according to its RMSE. If its RMSE

satisfies maximal RMSE, the algorithm stops, and recognize the best chromosome
as optimal solution; otherwise, the algorithm continues.

Step 7: Judge whether MI is reached. If reached, the algorithm stops and
returns the best chromosome; otherwise, the algorithm continues.

Step 8: Complete the selection, crossover, and mutation manipulation for chro-
mosomes in the population to generate new population. And return to Step 4.

The algorithm flowchart is shown in Fig. 12 to illustrate the algorithm in details.
In each process of obtaining error of an sample, the time is mainly related to

(RIs + 1)×D×RLs, where D is the sample dimension. In each process of obtaining
fitness of an chromosome, the time is proportional to n×(RIs + 1)×D×RLs, where
n is the capacity of all the samples. For the population, C chromosomes exist, so
the time is related to n × C × (RIs + 1) × D × RLs. For the total of Iiterations,
the entire learning time is n× C × (RIs + 1)×D ×RLs× I. Because C, RIs, and
RLs are set for the algorithm, and D is typically far less than n and I, the time
complexity of the algorithm is linear, T (n) = O (n) if n≫ I or I ≫ n, or at worst
quadratic, T (n) = O

(
n2
)
.

4. Experiments and analyses

HRN can be used to either classify or predict the unresolved samples. We will
first study the fuzzy classification capability using Iris samples, on the basis of
analyzing the influence of different parameters and the generalization ability, an
experiment for one versus others was used to investigate the fuzzy classification
capability. Second, we will study the prediction capability using the Mackey-Glass
chaotic time series, both the prediction feasibility and the generalization ability
were investigated based on the typical parameters. At last, to show the practica-
bility, the exhausted gas temperature (EGT) of a particular aero engine was used
in the experiment for prediction.

Two applications are programed for the experiments; the one shown in Fig. 13
is employed for fuzzy classification, whereas the one shown in Fig. 14 is employed
for predication.

4.1 Experiment on fuzzy classification

A set of 150 Iris samples has been used in this experiment. Data preprocessing
operations included: (i) take the four eigenvalue as input vector for one sample;
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Fig. 12 Algorithm flowchart.

(ii) Iris setosa, Iris versicolor, and Iris virginica are respectively presented by 1, 2,
and 3, and then gathered as output vector for the corresponding sample; (iii) all
samples were normalized.

During the process of normalizing the samples, the fuzzy classification cen-
ters were generated by mapping the output vectors into the interval (0, 1) evenly.
Because three categories exist in Iris samples, the fuzzy classification centers are
respectively 0.1667, 0.5, and 0.8333, and the corresponding intervals are (0, 0.3334],
(0.3334, 0.6668), and [0.6668, 1). When the obtained output falls into certain in-
terval, the category of this sample can be confirmed.

4.1.1 Influence of different parameters

Randomly, 120 samples were selected as training samples and 30 samples as testing
samples. The experiments were divided into four groups, each group contained
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Fig. 13 Application for fuzzy classification.

Fig. 14 Application for predication.

four fundamental experiments, and each experiment was repeated 10 times. The
same samples including training samples and testing samples were used for all the
experiments, and maximal RMSE was used as the convergence condition.

Group 1: Verify the effect of RI. Parameters setting: RLs = 3, RS = 0.5, and
maximal RMSE < 0.06. The result is shown in Tab. II.

Conclusion: RI can affect the convergence rate of training samples, and the
classification accuracy of testing samples is reduced if RIs were overestimated. For
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RIs Times of
convergence

Average
iterations

Average accuracy
of training
samples

RMSE of
testing
samples

Average accuracy
of testing
samples

2 6 386 97.0833% 0.05168 99.0%
3 3 367 96.3333% 0.04974 99.0%
4 6 440 97.0833% 0.05189 99.0%
5 6 384 97.1667% 0.05256 98.0%

Tab. II Effects of different RIs

RLs Times of
convergence

Average
iterations

Average accuracy
of training
samples

RMSE of
testing
samples

Average accuracy
of testing
samples

1 3 494 95.5833% 0.045282 99.6%
2 4 282 96.6667% 0.043836 99.0%
3 3 367 96.3333% 0.049736 99.0%
4 8 339 97.0833% 0.050039 99.0%

Tab. III Effects of different RLs

fuzzy classification problem, the other experiments completed have also shown that
better fuzzy classification results can be achieved in HRN if RIs is set to 2 or 3;
the convergence rate can be boosted if certain better initial values for GA are set.

Group 2: Verify the effect of RLs. Parameters setting: RIs = 3, RS = 0.5, and
maximal RMSE< 0.06. The result is shown in Tab. III.

Conclusion: the testing samples can deviate from the classification centers if
RLs is overestimated, and increasing RLs is not guaranteed to be useful for im-
proving the classification accuracy. For fuzzy classification, the other experiments
completed have also shown that if RLs is set to about 2, the distance between
testing samples and classification center would become closer.

Group 3: Verify the effect of RS. Parameters settings: RIs = 3, RLs = 3, and
maximal RMSE < 0.06. The result is shown in Tab. IV.

Conclusion: If RSs is lower, HRN can reduce the distance between testing
samples and classification center to a certain extent; if RSs is higher, HRN can
reduce the accuracy of the test samples. When analyzed mathematically, if the

RSs Times of
convergence

Average
iterations

Average accuracy
of training
samples

RMSE of
testing
samples

Average accuracy
of testing
samples

0.2 6 347 96.7% 0.046214 99.3%
0.4 6 388 96.7% 0.048271 99.7%
0.6 6 319 96.3% 0.049569 98.7%
0.8 4 378 96.5 % 0.052658 97.3%

Tab. IV Effects of different RSs
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maximal
RMSE

Times of
convergence

Average
iterations

Average accuracy
of training
samples

RMSE of
testing
samples

Average accuracy
of testing
samples

0.03 0 none 96.7% 0.05275 99.0%
0.05 0 none 96.8% 0.05342 98.7%
0.07 10 310.2 96.2% 0.06132 97.7%
0.09 10 63.5 92.5% 0.08217 95.3%

Tab. V Effects of different maximal RMSE

Algorithms This paper From
[19]

From
[11]

From
[18]

From
[22]

Accuracy 96.67% 96.00% 96.00% 95.33% 96.67%

Tab. VI Results through different algorithms.

difference of rules is large, then the diversity of rules can be fully reflected. It is
also shown in the experiment that even if the distance between testing sample and
classification center is reduced, the average accuracy of testing samples cannot be
always improved.

Group 4: Verify the effect of the convergence condition, which was maximal
RMSE of training samples. Parameters setting: RIs = 3, RLs = 0.5, and RS =
0.5. The result is shown in Tab. V.

Conclusion: The lower the maximal RMSE of training samples is, the higher
the rate of convergence. If the maximal RMSE of training samples is increased, the
RMSE of testing samples is also increased, while the average accuracy of testing
samples can be reduced. Although the small maximal RMSE of training samples
may cause HRN to not converge in the MI, better results can be still obtained.

4.1.2 Experiment on leave-one-out cross-validate

To obtain the more objective classification result, avoiding obtaining the better
result due to using the better samples, the experiment on leave-one-out cross-
validate was used. In this experiment: RIs = 2, RLs = 2, RS = 0.2, and maximal
RMSE < 0.06. The application was modified in the aspect of graphic user interface
shown in Fig. 15. To reduce the effect of initial values used for GA, the experiment
was repeated many times, and the better result is shown in Fig. 16.

A comparison of results from different algorithms is presented in Tab. VI. We
can see that the proposed HRN has the capability to resolve problems of fuzzy
classification. Moreover, the results suggest that if nonlinear rule sets are used in
HRN, the average accuracy of testing samples can be improved further more.

4.1.3 Analysis for robustness

To validate the robustness of HRN, the should be first combined with additional
white noise, and then use a better parameters group. A sample of the original and
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Fig. 15 Modified application.

Fig. 16 Result of Iris experiment of one versus others.

noisy data is shown in Tab. VII, and in the learning process, the noisy data was
used instead of original data.

Parameters setting: RIs = 2, RLs = 2, RS = 0.2, and maximal RMSE < 0.06,
then the accuracy of test samples was 95.33%. Therefore, the generalization ability
of HRN for fuzzy classification was proved to be satisfactory.
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Original
data

Noised
data

Original
data

Noised
data

Original
data

Noised
data

5.700 5.732 3.500 3.433 1.500 1.546
5.300 5.287 3.100 3.125 1.300 1.278
4.900 4.856 2.900 2.873 0.400 0.399
4.600 4.633 2.800 2.760 0.200 0.203

Tab. VII Noised data in the samples

RIs RLs RSs Convergence
iteration

RMSE of train-
ing samples
(average relative
errors)

RMSE of testing
samples
(average relative
errors)

2 2 0.2 3942 0.046882 (4.4%) 0.052772 (5.1%)
3 3 0.2 3007 0.034105 (3.2%) 0.036921 (3.4%)
4 4 0.2 3082 0.030739 (2.9%) 0.032018 (3.1%)

Tab. VIII Experiment parameters and results

4.2 Experiment on prediction

The Mackey-Glass chaotic time series was used to validate the prediction capability
of HRN. The time series used in the experiment was generated by the differential
delay equation

x (t+ 1) = 0.9x (t) +
0.2x (t− 17)

1 + x10 (t− 17)
. (16)

Among the points,x (t− 18), x (t− 12), x (t− 6), and x (t) were used to construct
the input vector, x (t+ 6) was used to construct the output, and combine the input
vector and output vector as one sample. The capacity of samples was 1000 and the
first 500 samples were used as training samples while the remaining 500 samples
were used as testing samples.

4.2.1 Fundamental experiment analysis

After normalizing the samples, MI was set to 4000. The result based on typical
parameters is show in Tab. VIII.

Conclusion: for the experiment on the Mackey-Glass chaotic time series, the
gained experience is different from that of fuzzy classification experiments. The
other experiments completed have also shown that if RIs = 4, RLs = 4, and RS =
0.2, then the experiments about other kinds of chaotic time series can obtain the
better results.

4.2.2 Experiments comparison

Parameters setting: RIs = 4, RLs = 4, and RS = 0.2. The result is shown in
Fig. 17.
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Fig. 17 Result of the Mackey-Glass chaotic time series experiment.

Algorithm RMSE of training
samples

RMSE of testing
samples

Average relative
errors

From [6] 0.00043 0.00041 -
From [20] 0.014 0.009 -
From [8] 0.024 0.025 -
This paper 0.031 0.032 3.1%

Tab. IX Results through different algorithms. Note: “-” indicates that relevant
studies did not provide the corresponding information.

The results obtained from different algorithms were compared, and the result
is shown in Tab. IX. We can see that HRN represents a reasonable capability in
terms of resolving the chaotic time series problem.

4.2.3 Analysis for robustness

To validate the robustness capability of HRN, the samples should be first combined
with additional white noise, and then use a better parameters group. In the learning
process, the noisy data was used instead of original data. A sample of the original
and noisy data is shown in Tab. X.

If RIs = 4, RLs = 4, and RS = 0.2, then the result was as follows: at the 4565

Original Noised Original Noised Original Noised
data data data data data data

1.081111 1.090000 0.752387 0.760000 0.869055 0.857000
0.982946 0.975000 0.520449 0.530000 0.376558 0.362000
1.001452 1.010000 0.628194 0.622000 1.224462 1.210000
0.762473 0.757000 0.522397 0.512000 0.856656 0.847000

Tab. X Noised data in the samples.
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Time EGT Time EGT Time EGT Time EGT
[s] [◦C] [s] [◦C] [s] [◦C] [s] [◦C]

t(1) 533 t(6) 563 t(11) 548 t(16) 526
t(2) 538 t(7) 525 t(12) 556 t(17) 541
t(3) 538 t(8) 528 t(13) 521 t(18) 526
t(4) 536 t(9) 582 t(14) 543 t(19) 523
t(5) 537 t(10) 545 t(15) 546 t(20) 526

Tab. XI First 20 original data points.
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Fig. 18 Result of EGT training.

iterations, the RMSE was 0.036875 and average relative errors was 3.3982% for the
training samples; and for the testing samples, the RMSE was 0.0392 and average
relative errors was 3.5339%. Therefore, the better generalization capability can be
still reflected even if the samples are noisy.

4.3 Experiments on practicability

Exhaust gas temperature, EGT, is an important parameter which is the character-
ization of aero engine health status and determines the availability of the engine,
so there is a great practical application value in predicting the aircraft engine EGT
in a future period of time accurately. The data in this experiment was the chaotic
time series composed of EGT from a particular aero engine of China International
Airlines Company. The first 20 original data points are shown in Tab. XI.

Among the data, x (t− 4), x (t− 3), x (t− 2), x (t− 1) and x (t− 1) were used
to construct the input vector, x (t+ 1) was used to construct the output, and
combined the input vector and output as one sample. The whole dataset contained
234 samples and we took the first 192 samples as training samples, whereas the
remaining 42 samples as testing samples. Using the appropriate parameters, the
result is shown in Fig. 18.

Generally speaking, removing the noise for the data is implemented before train-
ing in this experiment. But, as known in Fig. 18, the data curve of the result is
smoother than the original one, which means HRN combines the two operations.
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Algorithm RMSE of testing
data

Average relative
error of testing
data

From [28] - 1.8%
This paper 13.8910 2.0%
Standard BP neural network 20.3545 2.9%

Tab. XII Experiment result and the results through other algorithms. Note: “-”
indicates that relevant studies did not provide the corresponding information.

Therefore HRN can reduce the time for removing the noise, and then improve on
the performance of prediction. The results from different algorithms are shown in
Tab. XII.

Therefore, after comparing with other algorithms, HRN has shown certain ad-
vantages over the other algorithms for predicting EGT of a particular aero engine
of China International Airlines Company.

5. Conclusion remarks and open problems

In this paper we introduced a hybrid rule network (HRN), which is a network
model consisting of nodes with links. DRSM is a mechanism proposed to make
HRN behave the capability to search the optimal rule set from rule space dynam-
ically, and to make HRN use the optimal rule set to obtain the sample’s output.
The learning algorithm proposed can make HRN able to approximate the global
optimal solution. Experiments showed that HRN has good performance in fuzzy
classification and prediction, and that HRN has stronger generalization ability.

At present, the research of HRN is at the initial stage, there are many aspects
to be further researched. These are, for example: (i) how to avoid the redundant
intervals dynamically; (ii) how to avoid the redundant rules dynamically; (iii) how
to avoid the excessive homogenization or heterogenization for the rules dynamically;
(iv) how to modify the range of real coefficient and compensation matrix to optimize
the capability to approximate optimal solution; and (v) how to improve on the
performance of HRN by using other algorithms.
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