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Abstract: The aim of this paper is to show how the Hodgkin-Huxley model of the
neuron’s membrane potential can be extended to a stochastic one. This extension
can be done either by adding fluctuations to the equations of the model or by us-
ing Markov kinetic schemes’ formalism. We are presenting a new extension of the
model. This modification simplifies computational complexity of the neuron model
especially when considering a hardware implementation. The hardware implemen-
tation of the extended model as a system on a chip using a field-programmable gate
array (FPGA) is demonstrated in this paper. The results confirm the reliability of
the extended model presented here.
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1. Introduction

A developed by nature in the evolution process biological neuron provides better
results than the classic artificial neuron in information processing tasks. Current
research shows that classification tasks could be resolved with the use of only
one living neural cell [3]. This is a significant advantage over the artificial neural
networks. More accurate neuron models could result in a higher level of artificial
intelligence (AI) in developed devices.

The main problem in using biological neuron models is their computational
complexity requiring long simulation time and the necessity of using powerful,
and expensive computing machines. In this work we present an efficient model of a
neural cell optimized for hardware implementation. Our model is unique because it
reduces computational complexity while maintaining full mathematical projection
of the modeled processes.
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In this work we focus on the neuron’s membrane potential. The first model
of the neuron was created by A.L. Hodgkin and A.F. Huxley [16]. It is based
on the idea that the electrical properties of the membrane can be modeled by an
equivalent electrical circuit. Fig. 1 shows how the input current flows through the
membrane [2, 12,19].

Fig. 1 Equivalent circuit of the potential on the membrane of the neuron [2,12,19].

For all models shown in this paper, the current, that flows through the mem-
brane, is composed of two main components and can be written in this general
equation [2]

C
dV

dt
+ Iion = Iext, (1)

where C is the capacitance of the membrane and V is the intracellular potential.

The first one Iext expresses the input current that is applied externally to the
neuron. The second current Iion is related with movement of certain types of
ions through the membrane. The neuron’s membrane is composed of voltage-
gated channels that control the movement of ions between the interior and the
exterior of the neuron. In the classic approach (e.g. in the Hodgkin-Huxley model)
each gate can be in one of the two states – permissive (open), and non-permissive
(closed). There are three types of ions (according to the circuit shown in Fig. 1):
sodium Na, potassium K, and chloride L. Type L is associated with a small leakage
current (hence the “L” abbreviation). Additionally, each ion element has its own
conductivity and potential. Hence, the ion current can be written in the following
form [2]

Iion =
∑
i

Ii =
∑
i

ḡi (V − Vi) , (2)

where ḡi is the ion conductivity and Vi is the ion potential, for i ∈ {Na,K,L} .
In this paper we are presenting a new extension of the basic Hodgkin-Huxley

model. Our approach increases the reliability of the model, thus it is making it more
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accurate. The derived model, described in Section 4, is used for the FPGA-based
hardware implementation as a system on a chip.

This paper is organized as follows: in Section 2, we are presenting the state of
the art approaches for the neuron models by describing its action potential. A brief
comparison of the different models will summarize this section. In Section 3, we
describe the implementation of the kinetic models using any mathematical envi-
ronment. In our case, we are using MATLAB environment. Then, in Section 4, we
propose the extension of the basic Hodgkin-Huxley model, where each ion gate can
be in a random number of states. In Section 5, we describe the process of FPGA-
based hardware implementation of our model. Finally in Section 6, we summarize
our results.

2. Models of the neuron cell

This section shows the existing model spectrum. Beginning with the basic Hodgkin-
Huxley model, then followed by the simplified versions of this model (e.g. the LIF
model [18] and the Izhikevich model [29]) ending with a complex amplification of
the model. In the first subsection, we go over the main model, the basic Hodgkin-
Huxley model. The following subsection describes the simplified models, and then
the extensions with the involvement of stochasticity are presented.

2.1 Basic Hodgkin-Huxley model

The basic Hodgkin-Huxley model consists of four equations. The first one is de-
scribing the dynamics of membrane potential V [2, 16]

C
dV

dt
= I − ḡNa (V − VNa)− ḡK (V − VK)− ḡL (V − VL) , (3)

where elements ḡNa = gNam
3h, ḡK = gKn

4 and ḡL = gL are ion conductivities,
while m, n and h are the ion variables, describing the processes of movement of
ions through the membrane. Values of conductivities, as well as of the associated
potentials are shown in Tab. I. We also assume that C = 1 µF/cm2 while the
potential of the membrane at time t = 0 [s] is V (0) = −67 mV [12]. The I variable
represents the Iext in the equation (1), which express the current that is applied
externally to the neuron. The values shown in Tab. I are based on the assumption
that the resting potential is zero.

i Vi [mV] gi [mS/cm2]
Na 115 120
K −12 36
L 10.6 0.3

Tab. I The parameters of Hodgkin-Huxley model.

The membrane is composed of small voltage-gated channels, which control the
movement of ions through the membrane. A single gate can be in one of two
states, namely permissive (open), or non-permissive (closed), meaning that a single
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gate allows, or does not allow the movement of ions through the membrane. The
potential V is related to the ion conductivity by making the assumption that the
probability of a single gate being in the permissive or the non-permissive state
depends upon the value of the potential on the membrane. When considering the
i-th gate, the variable pi represents the probability that this gate is in the permissive
state. Transitions between these two states are governed by equation [2]

dpi
dt

= αi (V ) (1− pi)− βi (V ) pi, (4)

where αi (V ) and βi (V ) are functions of potential V. First part of equation (4)
αi (V ) (1− pi) is the transition rate in-between the non-permissive and the per-
missive states, while the other part βi (V ) pi – in-between the permissive and the
non-permissive states. The remaining three equations of the model are of the form
(4), for i ∈ {m,n, h} . Functions αi (V ) and βi (V ) are shown in Tab. II [2].

i αi (V ) βi (V )

n
0.01 · (10− V )

exp((10− V ) /10)− 1
0.125 · exp (−V/80)

m
0.1 · (25− V )

exp ((25− V ) /10)− 1
4 · exp (−V/18)

h 0.07 · exp (−V/20)
1

exp ((30− V ) /10) + 1

Tab. II αi (V ) and βi (V ) rate functions [2].

If the potential on the membrane settles on a certain value, the gates in the
permissive state approach a steady state when time approaches infinity [2]

pi,t→∞ (V ) =
αi (V )

αi (V ) + βi (V )
, (5)

and the time of approaching this value is given by [2]

τi (V ) =
1

αi (V ) + βi (V )
. (6)

Dynamics of the membrane’s potential are shown in Fig. 2, for two different
input currents. It can be seen that the number of peaks increases with higher
current input.

2.2 Simplifications of the basic Hodgkin-Huxley model

Due to computational complexity of the Hodgkin-Huxley model, and significant
implementation costs, various simplifications of the neural models were invented,
e.g. Leaky-Integrate-Fire (LIF) model [18], or Izhikevich model [29]. Both models
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A B

Fig. 2 Waveforms of the potential obtained with the basic Hodgkin-Huxley model
for different current inputs: A. I = 0 nA, B. I = 30 nA.

reduce computational power requirements; however the projection accuracy of the
biological neural cell behavior is reduced. As it was shown at the beginning of
this paper, the classification problem could be solved using only one living neural
cell [23]. However, it cannot be solved by using only one artificial neuron. Thus, in
our opinion, the simplification of neural models in living cell is not the best possible
way in artificial intelligence (AI) development.

2.3 Deterministic kinetic model based on Markov schemes

One of possible extensions of the Hodgkin-Huxley model is by adding some random
fluctuations to the ion equations [5, 11,25]

dpi = (αi (V ) (1− pi)− βi (V ) pi) dt+ σdW, (7)

where σ is a constant value, while W represents the Brownian motion [25]. This
description allows for modeling a stochastic behavior of ion channels, which are
activated by changes of potential that take place near these channels.

We, however, will consider other possible extension of Hodgkin-Huxley model,
which use Markov kinetic formalism.

Markov’s approach is commonly used in both artificial [1,24,31,32], and biolog-
ical [4, 26] neural networks. We want to present the approach of Markov’s kinetic
schemes [6] in the modeling of the neuron’s membrane potential.

Single ion gate is a discrete element, so it can be described only in a stochastic
way. The best way to describe the activity of the neurons is by showing the
interaction between stochastic discrete elements.

At first we will show how to make the translation from the main Hodgkin-
Huxley model to the kinetic one. Then we will extend the model to the stochastic
version [26].

In the basic Hodgkin-Huxley model all ion gates can only exist in one of two
states. In the kinetic model we will assume that the potassium gates can exist in one
of five states, where the relationship between states is expressed with the Markov
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kinetic scheme shown in (8). In this case only one state is permissive, while the
remaining ones are non-permissive. Value [ni] is an amount of i permissive gates,
so n4 like n4 in the basic Hodgkin-Huxley model means that four permissive gates
are required, that flow of potassium ions is possible, hence the form of the equation
(9) for the potassium conductivity [26].

n0

4αn �
_
βn

n1

3αn �
_
2βn

n2

2αn �
_
3βn

n3

αn �
_
4βn

n4 (8)

ḡK (V, t) = φK [n4] (9)

A sodium gate can be in one of eight states (10), with only one permissive as well.
The open state is m3h0 which is equivalent to m3h element in the basic model,
hence the form of the equation (11) for the sodium conductivity [26].

m0h0

βh

�

?

αh

3αm �
_
βm

m1h0

βh

�

?

αh

2αm �
_
2βm

m2h0

βh

�

?

αh

αm �
_
3βm

m3h0

βh

�

?

αh

m0h1

3αm �
_
βm

m1h1

2αm �
_
2βm

m2h1

αm �
_
3βm

m3h1

(10)

ḡNa (V, t) = φNa [m3h0] (11)

In the equations (9) and (11), φK and φNa are the conductivities of a single ion
gate that is in the open state.

The main equation of the kinetic model is basically the same as in the Hodgkin-
Huxley model and it is of the form (3). After substituting the ḡNa, ḡK and ḡL values,
we can write [27]

C
dV

dt
= I − φNa [m3h0] (V − VNa)− φK [n4] (V − VK)− gL (V − VL) . (12)

Fig. 3 shows examples of waveforms of the potential obtained from the deter-
ministic kinetic model. It is possible to notice that with higher input current the
number of peaks is increasing. For this example, changing the current from I = 0
nA to I = 30 nA almost doubled the number of peaks.

2.4 Stochastic kinetic model

This subsection shows the translation from the deterministic kinetic model to the
stochastic version [26].

Instead of accounting every gate separately, we take a more reliable scheme,
where we take into account all of the gates.

Let us assume that at a time t in state A there are nA gates, similar for state B
– at the time t in the state B there are nB gates. Value rAB is a rate function that
describes transition of one gate from state A to state B, similarly rBA describes
transition of one gate from state B to state A. Probability of transfer of one gate
from state A to state B in the time interval t and t+∆t is p = ∆t · rAB . Hence, for
every step in time it is possible to obtain a number of gates ∆nAB , that transfer
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A B

Fig. 3 Waveforms of the potential obtained with the deterministic kinetic model
for different input currents: A. I = 0nA, B. I = 30 nA. Ion gates can be in 8 and
5 states for sodium and potassium respectively.

from state A to state B, by choosing a random number from binomial distribution,
where n = nA and k = ∆nAB . Under certain assumptions [10] it is possible to
approximate the binomial distribution with the normal one, with µ = ∆nAB · p
and σ = ∆nAB · p · (1− p) .

The simulation results of the stochastic kinetic model are illustrated in Fig. 4.
The number of gates is determined in each step in time separately. Depending on
the random number generator peak irregularities appear as shown in Fig. 4A. For
higher input currents it is hard to perceive the difference between the waveforms
due to the high frequency of peaks.

A B

Fig. 4 Waveforms of the potential obtained with the stochastic kinetic model for
different input currents: A. I = 0 nA, B. I = 30 nA. Ion gates can be in 8 and 5
states for sodium and potassium respectively.

The difference between deterministic and stochastic kinetic models can be illus-
trated by showing the difference between the waveforms of mean number of gates
that change their states as a function of time. Input current is set to zero. These
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waveforms are shown in Figs. 5 and 6. In both cases, top figures correspond to the
deterministic kinetic model, while the bottom ones to the stochastic version of the
model.

Fig. 5 shows how many gates in the current step in time are changed from being
closed to being open (transfer from the state n4 to the state n3) and otherwise.
Similarly in Fig. 6, the transfers between the state m3h0 and two adjacent states
m2h0 and m3h1 are illustrated.

A B

Fig. 5 Differences in waveforms of the mean values of number of gates for scheme
with five states, for input current I = 0 nA A. The number of gates that transfer
from state n3 to state n4. B. The number of gates that transfer from state n4 to
state n3.

Changes between the waveforms of mean values in Figs. 5 and 6 are small, even
unnoticeable, which means that there are small differences between the determin-
istic and the stochastic versions of the kinetic model. Events that take place in the
nervous system are not predictable enough and processes that take place in it are
not regular enough to assume that the potential on the cell’s membrane appears
in the form of regular spikes. That is why the stochastic version of kinetic model
gives a reliable description of the cell’s membrane potential.

Additionally, to strengthen the argument that the disparity between the mean
values is slight, we are showing the difference between waveforms of these mean
values. In Fig. 7 we are showing the difference between the mean values calculated
with the deterministic and stochastic kinetic model of the neuron. The difference
is in the order of 10−3 therefore the disparity between the two versions of the
model is negligible and the stochastic model can be successfully used instead of the
deterministic model.

2.5 Advantages and disadvantages of the models

Each model has advantages and disadvantages. The main advantage of the simpler
models (such as the main Hodgkin-Huxley one and its stochastic extension) over
their extensions presented in this paper (kinetic model and extended kinetic model)
is their simpler software implementation. On the other hand, these models are not
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A B

C D

Fig. 6 Differences in waveforms of the mean values of number of gates for scheme
with eight states, for input current I = 0 nA. A. The number of gates that transfer
from state m2h0 to state m3h0. B. The number of gates that transfer from state
m3h0 to state m2h0. C. The number of gates that transfer from state m3h1 to state
m3h0. D. The number of gates that transfer from state m3h0 to state m3h1.

Fig. 7 The difference between the mean values of gates (for scheme with five states)
that transfer from state n3 to state n4 obtained with deterministic and stochastic
versions of the kinetic model.
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showing every aspect of the neuron nor the processes that take place within that
the kinetic model is providing.

The kinetic model is more trustworthy but requires higher computational com-
plexity. This problem is solved with the stochastic approach, which reduces a
lot of calculations by replacing them with the drawing numbers from the normal
distribution.

3. Backward Euler implementation of determinis-
tic kinetic model

Scheme (13) shows three possibilities of connections between states, that appear
in kinetic schemes (8) and (10), used in the kinetic models of the neuron. Using
a kinetic formalism we can write five differential equations of the form (14) that
show the dynamics between these states.

x0

r01 �
_
r10

x1

r14
�

?

r41

r12 �
_
r21

x2

r23 �
_
r32

x3

x4

(13)

d [x0]

dt
= r10 [x1]− r01 [x0]

d [x1]

dt
= r01 [x0] + r41 [x4] + r21 [x2]− [x1] (r10 + r12 + r14)

d [x2]

dt
= r12 [x1] + r32 [x3]− [x2] (r21 + r23)

d [x3]

dt
= r23 [x2]− r32 [x3]

d [x4]

dt
= r14 [x1]− r41 [x4]

(14)

Using backward Euler method (which is quite simple from the implementation point
of view and has advantages of the implicit methods like accuracy and stability [17])
of the form

xi+1 = xi +∆t · f
(
ti+1, xi+1

)
, (15)

where the right upper i and i+1 indexes denote the actual and the following steps
in time, respectively and

f (t, x) =
dx

dt
, (16)
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we can rewrite the equations of the form (14) into the form

[x0]
i+1

= [x0]
i
+∆t

(
r10 [x1]

i+1 − r01 [x0]
i+1

)
,

[x1]
i+1

= [x1]
i
+∆t

(
r01 [x0]

i+1
+ r41 [x4]

i+1
+ r21 [x2]

i+1

− [x1]
i+1

(r10 + r12 + r14)
),

[x2]
i+1

= [x2]
i
+∆t

(
r12 [x1]

i+1
+ r32 [x3]

i+1 − [x2]
i+1

(r21 + r23)
)
,

[x3]
i+1

= [x3]
i
+∆t

(
r23 [x2]

i+1 − r32 [x3]
i+1

)
,

[x4]
i+1

= [x4]
i
+∆t

(
r14 [x1]

i+1 − r41 [x4]
i+1

)
.

(17)

In the same way, we can rewrite the main equation of the kinetic model (12)
into the following form

V i+1 = V i +
∆t

C
(I − φNa [m3h0]

i+1 (
V i+1 − VNa

)
− φK [n4]

i+1 (
V i+1 − VK

)
− gL

(
V i+1 − VL

))
.

(18)

Using the Markov kinetic schemes of size 8 and 5 for sodium and potassium ion
gates, respectively, we can formulate the set of equations describing the waveform
of potential V, of the form (19), presented on following page.

Transforming this set of equations using the backward Euler method (15) leads
to the set of algebraic equations of the form (20).

In Fig. 8 we are presenting the results of simulating the Hodgkin-Huxley model,
discretized with the implicit Euler method.

A B

Fig. 8 Waveforms of the potential obtained with the kinetic Hodgkin-Huxley model
(discretized with the implicit Euler method) for different current inputs: A. I = 0
nA, B. I = 30 nA. Ion gates can be in 8 and 5 states for sodium and potassium
respectively.
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C
dV

dt
= I − φNa [m3h0] (V − VNa)− φK [n4] (V − VK)

− gL (V − VL)

d [n0]

dt
= βn [n1]− 4αn [n0]

d [n1]

ddt
= 4αn [n0] + 2βn [n2]− [n1] (βn + 3αn)

d [n2]

dt
= 3αn [n1] + 3βn [n3]− [n2] (2αn + 2βn)

d [n3]

dt
= 2αn [n2] + 4βn [n4]− [n3] (3βn + αn)

d [n4]

dt
= αn [n3]− 4βn [n4]

d [m0h0]

dt
= βm [m1h0] + αh [m0h1]− [m0h0] (βh + 3αm)

d [m1h0]

dt
= 3αm [m0h0] + αh [m1h1] + 2βm [m2h0]

− [m1h0] (βm + 2αm + βh)

d [m2h0]

dt
= 2αm [m1h0] + αh [m2h1] + 3βm [m3h0]

− [m2h0] (2βm + βh + αm)

d [m3h0]

dt
= αm [m2h0] + αh [m3h1]− [m3h0] (3βm + βh)

d [m0h1]

dt
= βh [m0h0] + βm [m1h1]− [m0h1] (αh + 3αm)

d [m1h1]

dt
= 3αm [m0h1] + βh [m1h0] + 2βm [m2h1]

− [m1h1] (βm + αh + 2αm)

d [m2h1]

dt
= 2αm [m1h1] + βh [m2h0] + 3βm [m3h1]

− [m2h1] (2βm + αh + αm)

d [m3h1]

dt
= αm [m2h1] + βh [m3h0]− [m3h1] (3βm + αh)

(19)
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V i+1 = V i +
∆t

C
(I − φNa [m3h0]

i+1 (
V i+1 − VNa

)
− φK [n4]

i+1 (
V i+1 − VK

)
− gL

(
V i+1 − VL

))
[n0]

i+1
= [n0]

i
+∆t

(
βn [n1]

i+1 − 4αn [n0]
i+1

)
[n1]

i+1
= [n1]

i
+∆t

(
4αn [n0]

i+1
+ 2βn [n2]

i+1

− [n1]
i+1

(βn + 3αn)
)

[n2]
i+1

= [n2]
i
+∆t

(
3αn [n1]

i+1
+ 3βn [n3]

i+1

− [n2]
i+1

(2αn + 2βn)
)

[n3]
i+1

= [n3]
i
+∆t

(
2αn [n2]

i+1
+ 4βn [n4]

i+1

− [n3]
i+1

(3βn + αn)
)

[n4]
i+1

= [n4]
i
+∆t

(
αn [n3]

i+1 − 4βn [n4]
i+1

)
[m0h0]

i+1
= [m0h0]

i
+∆t

(
βm [m1h0]

i+1
+ αh [m0h1]

i+1

− [m0h0]
i+1

(βh + 3αm)
)

[m1h0]
i+1

= [m1h0]
i
+∆t

(
3αm [m0h0]

i+1
+ αh [m1h1]

i+1

+ 2βm [m2h0]
i+1 − [m1h0]

i+1
(βm + 2αm + βh)

)
[m2h0]

i+1
= [m2h0]

i
+∆t

(
2αm [m1h0]

i+1
+ αh [m2h1]

i+1

+ 3βm [m3h0]
i+1 − [m2h0]

i+1
(2βm + βh + αm)

)
[m3h0]

i+1
= [m3h0]

i
+∆t

(
αm [m2h0]

i+1
+ αh [m3h1]

i+1

− [m3h0]
i+1

(3βm + βh)
)

[m0h1]
i+1

= [m0h1]
i
+∆t

(
βh [m0h0]

i+1
+ βm [m1h1]

i+1

− [m0h1]
i+1

(αh + 3αm)
)

[m1h1]
i+1

= [m1h1]
i
+∆t

(
3αm [m0h1]

i+1
+ βh [m1h0]

i+1

+ 2βm [m2h1]
i+1 − [m1h1]

i+1
(βm + αh + 2αm)

)
[m2h1]

i+1
= [m2h1]

i
+∆t

(
2αm [m1h1]

i+1
+ βh [m2h0]

i+1

+ 3βm [m3h1]
i+1 − [m2h1]

i+1
(2βm + αh + αm)

)
[m3h1]

i+1
= [m3h1]

i
+∆t

(
αm [m2h1]

i+1
+ βh [m3h0]

i+1

− [m3h1]
i+1

(3βm + αh)
)

(20)
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4. Extended kinetic model

We decided to perform a test of simple extension of the kinetic model by enlarging
kinetic schemes for potassium and sodium gates. Hence we assume that the scheme
for potassium gates is of the form

n0

kαn �
_
βn

n1

(k−1)αn�
_
2βn

n2

(k−2)αn�
_
3βn

. . .
2αn �
_
(k−1)βn

nk−1

αn �
_
kβn

nk (21)

The size of this scheme is obtained by k ∈ {0, . . . , 31} , so the biggest scheme is
built from 32 states. Similar for sodium gates – the size of scheme is obtained by
l ∈ {0, . . . , 15} , so also the biggest scheme is built from 32 states, arranged in two
rows
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βh

�

?

αh

lαm �
_
βm
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βh

�

?

αh
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_
2βm

m2h0

βh

�

?

αh

(l−2)αm�
_
3βm

. . .
2αm�

_
(l−1)βm

ml−1h0

βh

�

?

αh

αm �
_
lβm

mlh0

βh

�

?

αh

m0h1

lαm �
_
βm

m1h1

(l−1)αm�
_
2βm

m2h1

(l−2)αm�
_
3βm

. . .
2αm�

_
(l−1)βm

ml−1h1

αm �
_
lβm

mlh1

(22)

The main equation does not change its form – it is exactly the same as for
the basic kinetic model (12). The locations of the open states and the sizes of
schemes are changed. We assumed that the position of the open state can be
chosen randomly, and can be set at any point, so i ∈ {0, . . . , k} and j ∈ {0, . . . , l} .
Hence the equations (23) for ḡK (V, t) and ḡNa (V, t) , as

ḡK (V, t) = φK [ni] ,

ḡNa (V, t) = φNa [mjh0] .
(23)

The stochastic version of this model is obtained exactly in the same way as in
case of the simpler kinetic model, as shown in Section 2.4. We are not providing
the numerical scheme for the extended stochastic version of the model, since it is
similar to the scheme presented as (20).

We proved empirically, by simulating all possible combinations of {k, l, i, j} ,
that the extended model exhibits better than the basic kinetic models shown earlier
in this paper. The extended kinetic model is more complicated, but it is more
reliable in describing the processes on the membrane of the neuron. The main
advantage of this approach can be seen by waveforms of the membrane potential.
The results obtained from this model show the unpredictable nature of the neurons,
which in nature are unstable and thus not able to create regular spikes (which are
involved in information transfer and thus are important in eventual applications).

To confirm that conclusion in Fig. 9, and Fig. 10, we presented the examples
of waveforms of the potential obtained from the extended kinetic model in the
deterministic and stochastic versions, respectively. Let us consider the plots in
these figures: Fig. 9A and Fig. 10A. It is assumed here that size of the scheme
for potassium gate is k = 12, and size of the scheme for sodium gate is l = 11.
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The open states are set for [n12] and [m7h0] , hence, the equation (12) will be of
the form

C
dV

dt
= I − φNa [m7h0] (V − VNa)− φK [n12] (V − VK)− gL (V − VL) . (24)

A B

Fig. 9 Waveforms of the potential obtained with the deterministic version of the
extended kinetic model for I = 0 nA: A. k = 12, l = 11, open states: [n12] and
[m7h0] , B. k = 31, l = 15, open states: [n26] and [m9h0] .

A B

Fig. 10 Waveforms of the potential obtained with the stochastic version of the
extended kinetic model for I = 0 nA: A. k = 12, l = 11, open states: [n12] and
[m7h0] , B. k = 31, l = 15, open states: [n26] and [m9h0] .

Finally, having the whole model described, after simulating all possible com-
binations, it is possible to extract a set of “proper” fours of the form {k, l, i, j} .
Not all the combinations give the expected results, which means that we cannot
observe spiking nature of the neuron in each case. Here for an example are shown
two waveforms of the potential, where the fours are of the form {12, 11, 12, 7} and
{31, 15, 26, 9} .
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Observing the plots shown in Fig. 9 and Fig. 10 it is impossible to perceive any
differences between deterministic and stochastic waveforms obtained from the same
set of the form {k, l, i, j} . The reason may be as simple as too small randomness
which has too small influence on irregularities of appearing peaks of the potential.
As we will show in Section 5, the random number generator implemented with
use of FPGA platform gives more irregular peaks of the potential, thus it is more
reliable.

Both, the stochastic version and deterministic version of the extended kinetic
model provide very similar results. The following analysis evaluates these results.
According to the absolute error of the potential

e (V ) = |VODE − VSDE| , (25)

we designated the difference for the first plots shown in Fig. 9 and 10, where
VODE and VSDE are the vectors of potentials obtained from the deterministic and
stochastic versions of the extended kinetic model, respectively. This difference
shown in Fig. 11 clearly shows that the potential peaks obtained from two versions
of the model are shifted with respect to each other. It is impossible to perceive it by
observing the waveforms only. We are showing this difference to confirm that with
properly implemented random number generator the potential peaks will appear
irregularly.

Fig. 11 Difference between the deterministic and stochastic versions of the extended
kinetic model for k = 31, l = 15, with open states [n26] and [m9h0] .

5. Hardware implementation of stochastic kinetic
model

The presented equations describe a single neuron without taking into consideration
its morphology. However, many studies suggest the importance of the geometrical
structure of the neurons in the information processing [15, 22, 28]. The extension
of the presented model to the compartmental description and its time-domain dis-
cretization generates a large system of algebraic equations leading to excessively
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long simulation times. For every time step a set of the equations presented in Sec-
tion 4 have to be solved. In order to achieve a reliable results time quantization
has to be thick leading to nontrivial computation problem.

One of the possible solutions to the problem of computational complexity is
the custom designed, problem oriented computational system that supports the
most computationally demanding parts of the simulation process. Implementing
additional dedicated hardware blocks accelerating some computational demanding
parts of the neural networks simulations is common, widely used approach and
it has proven its worth [7, 8, 20]. This section presents such an approach, result-
ing in FPGA-based hardware-implemented biologically realistic stochastic model
of the neuron. The stochastic model requires less computational power due to re-
placement of differential equations by draw from normal distribution with specified
parameters.

Different approaches to hardware accelerated simulating of a biological neural
networks (e.g. use of GPU parallel computing) are discussed in the other authors
works [13,14]. FPGA approach allows to add additional custom blocks speeding up
the calculations. In the presented implementation use of the True Random Number
Generator speeds up the whole calculation process while granting high accuracy.

The device was implemented as an embedded system, and it is based on Xilinx
microblaze soft processor with floating point unit and uses True Random Number
Generator (TRNG) based on inverter rings [30]. It was built on Virtex 5 FPGA
on XUPV5-LX110T platform.

5.1 Proposed architecture

The device directly implements the presented extended stochastic Markov model
presented in Section 4, i.e. computes the number of ion gates that exist in each of
the states n0, . . . , nk and {m0,m1,m2, . . . ,ml}h0, {m0,m1,m2, . . . ,ml}h1 depicted
in diagrams (21) and (22) respectively. In order to calculate the number of gates,
in each of the states, the amount of gates ∆nAB that “transfers” from and to
the adjacent states must be computed first. The number of “transferring” gates
depends on the random number chosen from normal distribution. In order to
compute the number of gates being in the open state (ni and mjh0 in diagrams
(23) respectively) the device should implement the following key functionality:

• fast True Random Number Generator generating the numbers governing the
transfer process,

• module calculating the number of ions “transferring” between the Markov’s
scheme states,

• fast memory for storing temporary computation results.

The presented device consists of the following modules implementing the afore-
mentioned functionality:

• fast hardware-based True Random Number Generator (TRNG),

• microblaze soft processor,

• 256 MB RAM memory.
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The algorithm was written in ANSI C. Its flow is presented in the pseudocode
listing 1:

Algorithm 1 The Microblaze algorithm

1: read the random data form TRNG
2: calculate the ∆nAB values for all the adjacent states in the Markov scheme

basing on the numbers sampled from TRNG and current time (refer to p =
∆t · rAB in Section 2.4)

3: update the number of gates in every state
4: calculate the final number of gates being in the open state
5: calculate the gNa and gK parameters in the (12)
6: calculate the output (see Eq. (12)).

5.2 Main algorithm

The main part of the algorithm use random data to calculate number of ion gates
in each state. Output potential calculation according to Eq. (12) is also performed
here. Algorithm configuration, such as dimensions of Markov kinetic schemes and
locations of the open states within it, is provided by a set of defines in the header
file. Due to the large amount of data processed by the algorithm during calculations
external RAM module is used to store partial results.

5.3 Implementation results

In Fig. 12 we are presenting two different waveforms of the potential, assuming for
both that I = 0 nA, but different sizes of the Markov kinetic schemes.

A B

Fig. 12 Waveforms of the potential obtained with the stochastic extended kinetic
model (implemented in hardware) for I = 0 nA: A. k = 12, l = 11, open states:
[n12] and [m7h0] , B. k = 31, l = 15, open states: [n26] and [m9h0] .
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6. Conclusions

The ion gate stochasticity, included in the Hodgkin-Huxley neural model, may
result in the macroscopic behavior that replicates observed input-dependent relia-
bility of the real neural cells. That model also shows other observed characteristics
like the ones present in the real neurons, such as subthreshold oscillations and
spontaneous spike generation [27].

The presented simulation confirms those observations. The basic Hodgkin-
Huxley model and the deterministic kinetic model give periodic spikes of the po-
tential. It has been shown that more spikes occur with increasing of input current.
Because of the unpredictability of the nervous system, the stochastic version mod-
els are preferential because they enable the irregular appearance of the potential
spikes. Unfortunately, with increase of input current it is difficult to differentiate
between the deterministic and the stochastic kinetic models. The best results are
noted for zero input current.

The authors expect that presented extension of the model providing better
statistical properties, and an increased number of possible states against known
solutions will enable better learning abilities, thus creating better association capa-
bility. The performed tests confirm the above thesis. This will be further verified
by applying the network based on the presented models in various classification
tasks.

Stochastic model using hardware random generator based on inverter rings is
more similar to deterministic model than software simulation based on pseudo-
random generator. High quality random number generation is crucial for stochastic
simulation system due to the fact that statistical results can only be reliable when
the independence of the samples can be guaranteed [21]. The true hardware random
number generator presented in this paper provides the truly independent samples
of the required high quality.

Additionally FPGA implementation prove of concept could first step towards
full custom ASIC realization which can improve power dissipation and size of the
whole system [9].
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