
PREDICTING THE PERFORMANCE

MEASURES OF A 2-DIMENSIONAL MESSAGE

PASSING MULTIPROCESSOR

ARCHITECTURE BY USING MACHINE

LEARNING METHODS

M.F. Akay, Ç.İ. Aci, F. Abut

Abstract: 2-dimensional Simultaneous Optical Multiprocessor Exchange Bus (2D
SOME-Bus) is a reliable, robust implementation of petaflops-performance com-
puter architecture. In this paper, we develop models to predict the performance
measures (i.e. average channel utilization, average channel waiting time, average
network latency, average processor utilization and average input waiting time) of a
message passing architecture interconnected by the 2D SOME-Bus by using Multi-
layer Feed-forward Artificial Neural Network (MFANN), Support Vector Regression
(SVR) and Multiple Linear Regression (MLR). OPNETModeler is used to simulate
the message passing 2D SOME-Bus multiprocessor architecture and to create the
training and testing datasets. Using 10-fold cross validation, the performance of
the prediction models have been evaluated using several performance metrics. The
results show that the SVR model using the radial basis function kernel (SVR-RBF)
yields the lowest prediction error among all models.

Key words: Support vector regression, neural networks, multiprocessors, message

passing

Received: September 22, 2014 DOI: 10.14311/NNW.2015.25.013
Revised and accepted: March 15, 2015

1. Introduction

With high computing power of parallel computers, it is now possible to address
many applications that were until recently beyond the capability of conventional
computing techniques [15]. Message passing environments are considered the most
popular programming methods for parallel computers. Their flexibility permits to
parallelize all types of applications (client-server, data-parallel, embarked and real-
time systems etc.). Message passing is easy to understand, portable, interoperable,
and effective. The principle of message passing rests on tasks cooperation through

Mehmet Fatih Akay – Corresponding Author, Çiğdem İnan Aci, Fatih Abut, Department
of Computer Engineering, Cukurova University, Adana, Turkey, Tel.: +90-322-3387101, Fax:
+90-322-3386326, E-mail: mfakay@cu.edu.tr, caci@cu.edu.tr, abut@hotmail.de.

c©CTU FTS 2015 241

Neural Network World 3/15, 241–265

explicit message exchanges carried out as point-to-point communication between
two processes or between several processes and a unique communication task [12].

Two methods are typically used for multiprocessor studies: analytical and sim-
ulation modeling. Analytical models become intractable when multiprocessor dy-
namics are considered, and are not practical for application-dependent studies.
Simulation, with the correct assumptions, is a feasible approach that can produce
an accurate picture of the dynamic behavior of multiprocessors [6].

Statistical simulation is a method that characterizes the behavior of the pro-
gram and architecture with some probability distributions. The idea of statistical
simulation is to measure a number of important program execution characteristics,
generate a synthetic trace, which shows the memory references of a workload, and
simulate that synthetic trace. The important benefit is that a synthetic trace is very
small compared to real program traces [10]. A statistical simulation is a robust,
flexible, and suitable tool in multiprocessor design, but it can still be time consum-
ing especially when multiprocessor systems to be simulated have many parameters
and these parameters have to be tested with different probability distributions or
values.

There exist some studies in literature [4, 23], which prove the fact that artificial
intelligence methods could be applied to predict the performance measures of a mul-
tiprocessor architecture. Akay and Abasikeles [4] predicted the performance mea-
sures of a multiprocessor architecture employing the distributed shared-memory
programming model on the 1-dimensional Simultaneous Optical Multiprocessor
Exchange Bus (1D SOME-Bus) architecture. In that study, statistical simulation
of the architecture was carried out to generate the dataset. The dataset contained
the following input variables: ratio of the mean message channel transfer time to
the mean thread run time (T/R), probability that a block can be found in modified
state, probability that a data message is due to a write miss, probability that a
cache is full and probability of having an upgrade ownership request. Support Vec-
tor Regression (SVR) was used to build prediction models for predicting average
network latency, average channel waiting time and average processor utilization. It
was concluded that SVR model is a promising tool for predicting the performance
measures of a distributed shared-memory multiprocessor. In a follow-up work [23],
Multi-layer Feed-forward Artificial Neural Network (MFANN) has been used to
predict the performance measures of the 1D SOME-Bus architecture employing
the message passing programming model. OPNET Modeler [16] was used to sta-
tistically simulate the message passing 1D SOME-Bus architecture, the details of
which is given in Section 4. The input variables of the prediction model included
T/R, node number, thread number and traffic pattern. The output variables of
the prediction model included average channel waiting time, average channel uti-
lization, average network latency, average processor utilization and average input
waiting time. It was concluded that MFANN-based prediction model performs the
best for predicting the performance measures of the message passing 1D SOME-Bus
architecture.

Additional studies with different programming models on different multipro-
cessor architectures are definitely required in order to generalize the effectiveness
of machine learning methods for predicting the performance measures of a mul-
tiprocessor architecture. There are major differences between the current study

242

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

and the study of [23]. First of all, the architecture used in this study is the 2-
dimensional Simultaneous Optical Multiprocessor Exchange Bus (2D SOME-Bus),
which operates differently and is more complex than the 1D SOME-Bus as outlined
in Section 2. Second, the message passing protocol used in this study and [23] is
different. In [23], only message passing without acknowledgments (ACK’s) protocol
has been considered in which the source is not in need to learn whether or not the
sent packet has arrived to its destination (i.e. the source node only broadcasts the
packet). In this study, we have utilized two different message passing protocols:
message passing without ACK’s (also known as asynchronous traffic mode) and
message passing with ACK’s (also known as client-server traffic mode), in which
for every packet sent by a source node, there is a returned ACK after the packet
has reached the destination node. As a result of this, the dataset used in this study
includes one more predictor variable (i.e. spatial distribution of traffic) than the
dataset used in [23]. Finally, the range for the number of threads used in [23] can
not be used in this study as low values of thread number result in low processor
utilization while very high values cause large latencies but not higher processor
utilization. Therefore, it is important to select the range of the number of threads
depending on the architecture.

In this paper, SVR, MFANN and Multiple Linear Regression (MLR) have been
employed to predict the performance measures of the 2-D SOME-Bus multiproces-
sor architecture using the message passing programming model. OPNET Modeler
is used to simulate the message passing 2D SOME-Bus multiprocessor architecture
and to create the training and testing datasets. The obtained dataset has five
input variables (T/R, node number, thread number, spatial distribution of traffic
and traffic mode) and five output variables (average channel utilization, average
channel waiting time, average network latency, average processor utilization and
average input waiting time). Using 10-fold cross validation, the performance of
the prediction models are evaluated by calculating their multiple correlation coef-
ficients (R’s), root mean square errors (RMSE’s), mean absolute errors (MAE’s),
root absolute errors (RAE’s) and relative root square errors (RRSE’s). The results
show that the SVR model using the radial basis function kernel (SVR-RBF) has
the lowest prediction error. The performance of the linear SVR (SVR-Linear) and
MLR models are much lower than the performance of MFANN model, which shows
the second best performance among all models.

The rest of this paper is organized as follows: Section 2 summarizes the optical
1D SOME-Bus and 2D SOME-Bus interconnection networks. Section 3 presents
an overview of MFANN, SVR and MLR. Section 4 describes simulation framework
and dataset generation. Section 5 is devoted to the details of prediction models.
Section 6 presents results and discussion. Finally, Section 7 concludes the paper.

2. Overview of the Some-Bus architecture

The 2D SOME-Bus consists of N horizontal and N vertical 1D SOME-Bus [13]
networks and N2 nodes (Fig. 1). Each of N nodes connected to one 1D SOME-
Bus has a dedicated broadcast channel and an input channel interface based on an
array of N receivers monitoring all N channels and allowing multiple simultaneous
broadcasts. At each node, an electro-optical converter consisting of a dual receiver

243

Neural Network World 3/15, 241–265

and transmitter pair allows messages broadcast on one bus to be forwarded and
broadcast (in a cut-through manner) on the bus in the other dimension [14].

If a node Nij (connected to vertical bus Vi and horizontal bus Hj sends a
message to node Nmn, and either i = m or j = n, then only one bus (vertical or

Fig. 1 2D SOME-Bus architecture.

244

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

horizontal, respectively) is used. The message header includes the identification of
the destination node and the message is broadcast on the proper bus. If both i 6= m
and j 6= n, then the message is broadcast first on horizontal bus Hj to node Nmj

with the header containing an indication that node Nmj broadcast the message
on vertical bus Vm so it can be delivered to its final destination, node Nmn. By
symmetry, the source node may choose to broadcast the message first on vertical
bus Vi to intermediate node Nin for rebroadcast on horizontal bus Hn [14].

We summarize below the performance characteristics of the 1D SOME-Bus and
2D SOME-Bus in terms of the order of time required to perform a number of basic
operations as functions of the number of processors so that one can understand the
differences among the complexities of the two architectures:

1. With regard to the task of having an all-to-all communication, where each
processor sends a distinct message to every other processor, the 1D SOME-
Bus can accomplish this in O (N) time, while the 2D SOME-Bus can do this
in O

(

N2
)

time.

2. With regards to the complexity of performing a barrier synchronization (where
all processors synchronize with each other), the 1D SOME-Bus provides a
synchronization time of O (1) whereas the 2D SOME-Bus provides a syn-
chronization time of O (N).

3. The diameter of the 1D SOME-Bus architecture is 1, whereas the diameter
of the 2D SOME-Bus architecture is N .

4. The number of transmitters and channels required in the 1D SOME-Bus is
O (N), whereas the same in the 2D SOME-Bus is O

(

N2
)

.

5. The number of receivers required in the 1D SOME-Bus is O
(

N2
)

, whereas

the same in the 2D SOME-Bus is O
(

N3
)

.

6. The 1D SOME-Bus grows by O (N) whereas the 2D SOME-Bus grows by
O
(

N2
)

.

3. Overview of prediction methods

3.1 Multi-layer feed-forward neural networks

Neural networks are composed of simple elements operating in parallel. These
elements are inspired by biological nervous systems. As in nature, the network
function is determined by the connections among elements. A neural network can
be trained to perform a particular function by adjusting the values of the connec-
tions (weights) between the elements. Commonly neural networks are adjusted,
or trained, so that a particular input leads to a specific target output. Such a
situation is shown in Fig. 2. Here, the network is adjusted, based on a compar-
ison of the output and the target, up to the network output matches the target.
Typically many such input/target output pairs are used to train a network. Batch
training of a network proceeds by making weight and bias changes based on an
entire set (batch) of input vectors. Incremental training changes the weights and

245

Neural Network World 3/15, 241–265

biases of a network as needed after presentation of each individual input vector.
Incremental training is sometimes referred to as “online” or “adaptive” training.
Neural networks have been trained to perform complex functions in different fields
of application including pattern recognition, identification, classification, speech,
and vision and control systems. Today neural networks can be trained to solve
problems that are difficult for conventional computer programs or human beings
[18].

Neural Network including

connections (called weights)

between neurons

Compare

Adjust

weights

Target

Input

Fig. 2 Basic principles of artificial neural networks.

Considering the geometry of the network, there are several types of neural
networks: Hopfield, Hamming, Campenter and Grossberg, Kohonen, MFANN and
others. Neural networks with different geometry are used for solving different
problems. The first three types of neural networks are usually used for binary
input data and with problems of classification into classes. The last two types of
neural networks are appropriate for the approximation of an unknown function [5].

The geometry of an MFANN is shown in Fig. 3. Input units are connected
to the first layer of hidden units which are further connected to the units of the
next hidden layer. The units of the last hidden layer are connected to the output
units. The input units represent the input data, and the output units represent the
output data. The hidden layers may be considered as a black box which performs
the necessary transformations of the input data so that the target output data are
obtained. The i-th unit in k-th layer is represented by its value yki . Each connection
between the units is represented by its weight wk

ij , where index i corresponds to
the unit number of the (k − 1)-st layer and j to the k-th layer. The input layer
is denoted by 0, whereas the output layer is denoted by l. The signals travel in
one direction only, i.e. from the input layer towards the output layer. The output
value of a unit is multiplied by the corresponding weight and added to the value
of the signal of the unit of the next layer. In addition, the value of bias neuron
or threshold ϑk

i is added to the input. The output of a unit in k-th layer can be
therefore computed as

yki = f

(

nk−1
∑

i=1

wk
ijy

k−1
i + ϑk

i

)

. (1)

246

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

Fig. 3 A typical Multi-layer Feed-forward artificial neural network.

Here, f is the so-called activation function which enables the modeling of an ar-
bitrary nonlinear relation between input and output variables. Different functions
could be used as an activation function. The usual choices of activation function
are a sigmoid function, Gaussian and RBF.

The behavior of the neural network depends on the values of weights wk
ij and

thresholds ϑk
i , which have to be determined by the training procedure. The super-

vised training is in fact a general optimization problem in which the minimum of
back-propagation error Ep is sought

Ep =
1

2

n0
∑

i=1

(

tpi − ynlpi

)2
, (2)

where tpi are the target output values, ynlpi are the values of neurons in the output
layer, i.e. the output values evaluated by neural network, n0 is the number of
neurons in output layer, i.e. the number of output variables [5].

247

Neural Network World 3/15, 241–265

3.2 Support vector regression

3.2.1 Linear SVR

We are given the training data (xi, yi), (i = 1, . . . , ℓ), where x is a d-dimensional
input with x ∈ ℜd and the output is y ∈ ℜ. The linear regression model can be
written as follows [21]:

f(x) = 〈ω, x〉+ b, ω, x ∈ ℜd b ∈ ℜ, (3)

where f(x) is an unknown target function and 〈., .〉 denotes the dot product in ℜd.
In order to measure the empirical risk [7], we should specify a loss function. The

most common loss function is the ε-insensitive loss function proposed by Vapnik
[21] which is defined as

Lε(y) =

{

0 for |f(x)− y| ≤ ε
|f(x)− y| − ε otherwise

. (4)

The optimal parameters ω̄ and b̄ in (3) are found by solving the primal optimiza-
tion problem

min
1

2
‖ω, ‖2 + C

ℓ
∑

i=1

(ξ−i + ξ+i), (5)

with constraints
yi − 〈ω, , xi〉 − b ≤ ε+ ξ+i ,
〈ω, , xi〉+ b− yi ≤ ε+ ξ−i ,
ξ+i , ξ

−

i ≥ 0, i = 1, . . . , ℓ.
(6)

In (6), C is a pre-specified value that determines the tradeoff between the flatness
of f(x) and the amount up to which deviations larger than the precision ε are toler-
ated. The slack variables ξ− and ξ+ represent the deviations from the constraints
of the ε-tube.

Usually the dual problem is solved. The corresponding dual optimization prob-
lem is defined as

maxα,α∗ −
1

2

ℓ
∑

i=1

ℓ
∑

j=1

(α∗

i − αi)(α
∗

j − αj) 〈xi, xj〉 −

ℓ
∑

i=1

yi(α
∗

i − αi)− ε

ℓ
∑

i=1

(α∗

i + αi),

(7)
with constraints

0 ≤ αi, α
∗

i ≤ C, i = 1, . . . ,ℓ,
ℓ
∑

i=1

(αi − α∗

i) = 0.
(8)

Solving the optimization problem defined by (7) and (8) gives the optimal Lagrange
multipliers α and α∗, while ω̄, and b̄ are given by

ω̄ =
ℓ
∑

i=1

(α∗

i − αi)xi

b̄ = − 1
2
〈ω̄, (xr + xs)〉

(9)

where xr and xs are support vectors.

248

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

3.2.2 Nonlinear SVR

For nonlinear regression problems, a nonlinear mapping ϕ of the input space onto
a higher dimension feature space can be used, and then linear regression can be
performed in this space [19]. The nonlinear model is written as

f(x) = 〈ω, φ(x)〉 + b,ω, x ∈ ℜd, b ∈ ℜ (10)

where

ω =
ℓ
∑

i=1

(αi − α∗

i)φ(xi),

〈ω, φ(x̄)〉 =
ℓ
∑

i=1

(αi − α∗

i) 〈φ(xi), φ(x)〉 =
ℓ
∑

i=1

(αi − α∗

i)K(xi,x),

b̄ = − 1
2

ℓ
∑

i=1

(αi − α∗

i)(K(xi,xr) +K(xi,xs)),

(11)

where xr and xs are support vectors. Note that we express dot products through
a kernel function Kthat satisfies the so-called Mercer’s conditions [21].

If the term b̄ is accommodated within the kernel function, Eq. (10) can be
written as

f(x) =

ℓ
∑

i=1

(αi − α∗

i)K(xi,x). (12)

Several kernel functions have appeared in the literature. The RBF has received
significant attention, most commonly in the Gaussian form:

K(x, x′) = exp

(

−
‖x− x′‖

2

2ρ2

)

, (13)

where ρ is the width of the RBF kernel.

3.3 Multiple linear regression

MLR analysis is a widely used and well documented statistical procedure [20]. MLR
attempts to model the relationship between two or more explanatory variables and
a response variable by fitting a linear equation to the observed data. The dependent
variable is modeled as

y = β0 +

k
∑

i=1

βixi + ε, (14)

where xi are the explanatory independent variables, βi are the regression coeffi-
cients, k is the number of independent variables, and ε is the error associated with
the regression and assumed to be normally distributed with both expectation value
zero and constant variance [3].

The predicted value given by the regression model is then calculated as

y′ = β0 +

k
∑

i=1

βixi. (15)

249

Neural Network World 3/15, 241–265

The most common method to estimate the regression parameters βi is the mini-
mization of the sum of square errors. The equation is as follows [17]:

βi = argmin+
n
∑

i=1

(

yi − y
′

i

)2

. (16)

4. Simulation and dataset generation

OPNET Modeler [16] provides a development environment for the specification,
simulation and performance analysis of networks. OPNET provides different tools
called editors (for instance Node and Process editors) to develop a representation of
a system to be modeled. The node model contains highly programmable modules
referred to as processors and queues. The logic flow and behavior of these modules
are defined by their process models.

In this study, we use OPNET Modeler as a simulation environment. Commu-
nication between nodes is performed by broadcasting messages. The processor at
each node extracts a data message from an input queue, processes it for a period
of time and when that period expires, it generates an output data message. A
processor becomes idle only when all its input queues are empty. The underlying
process model that controls queue modules’ behavior is OPNET’s built-in acb fifo

model, which is given in Fig. 4. The “init” state is used to initialize the process
and setting the appropriate variables. If a packet arrives when the process is in
“init” state, the process transitions to the “arrival” state, else it transitions to
the “idle” state where it waits for packet arrival. The “arrival” state is used for
receiving packets and starting service. In the “arrival” state, if the server is not
busy then the process moves into the “svc start” state, which in turn transitions
to the “idle” state, where it waits either for packet arrival or service completion.
While in the “idle” state, if the processing of a packet is completed, the process
moves into the “svc comp” state. While in the “svc comp” state, if the queue is
not empty, the process moves into the “svc start” state [1].

Fig. 4 A typical process model for the queues.

250

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

Synthetic traffic workloads have been used in OPNET simulation. Regarding
spatial distributions, we have used a collection of well-known distributions: bit
reverse, perfect shuffle, uniform and hot region. Bit permutations such as bit
reverse and perfect shuffle are those in which each bit di of the b-bit destination
address is a function of the one bit of the source address [8]. Uniform traffic pattern
can be represented by a traffic matrix, where each matrix element λs,d gives the
fraction of traffic sent from node s destined to node d. In the uniform traffic, the
destination node is selected using uniform distribution with the mean in range from
1 to N . In the hot region pattern, the destinations of the 25% of the packets are
chosen randomly within a small hot-region consisting of 12.5% of the nodes [2].
Tab. I lists the destination node selection for these traffic patterns.

Name Pattern
Uniform λs,d = 1/N
Bit reverse di = bi+1

Perfect shuffle di = si−1mod b
Hot region The 25% of the packets are sent to 12.5% of the node group

Tab. I Destination node selection for traffic patterns.

In the 2D SOME-Bus, if the destination of a message is not on the same 1D
SOME-Bus as the source, then the message is sent to an intermediate node for
retransmission. At that intermediate node the message may be queued or pass
through the bypass hardware without any queuing. If bypass is not possible for a
certain message, then that message is queued twice, once at some input queue in
one dimension and once in the output queue in the other dimension.

In our simulations, we utilized client-server (i.e. a server node sends packets to
respond to the reception of packets from clients) and asynchronous traffic modes.
The processing time (R) is assumed to be exponentially distributed with a mean
of 100 clock cycles. The message transfer time (T) is assumed to be uniformly
distributed with mean in range from 5 to 100 clock cycles. The other parameters
of the simulation are the number of nodes in the system (selected as 16 and 64),
the initial number of threads run by each processor (selected as 4, 6, 8 and 10).
The outputs of the simulation are average channel utilization (i.e. percent of time
that the channel server is busy), average channel waiting time (i.e. average waiting

Predictor Variables Min. Max. Mean
Standard

Deviation
T/R 0.10 1 0.55 0.29
Node number 16 64 40 24.02
Thread number 4 10 7 2.24
Spatial distribution of traffic 1 4 2.50 1.12
Spatial distribution of traffic mode 1 2 1.50 0.50

Tab. II Descriptive statistics of the predictor variables.

251

Neural Network World 3/15, 241–265

time of a packet in the channel queue until it is transmitted on the link), average
network latency (i.e. the time between a request message is enqueued at the output
channel and the corresponding data message is received in the input queue), average
processor utilization (i.e. percent of time that threads are run by a processor) and
average input waiting time (i.e. waiting time of a packet in the input queue until
it is serviced by the processor).

The dataset obtained as a result of the statistical simulation includes 640 sam-
ples. Tab. II and Tab. III give descriptive statistics of the predictor variables and
performance measures, respectively.

Performance Measures Min. Max. Mean
Standard

Deviation
Average channel utilization 0.14 0.99 0.72 0.20
Average channel waiting time 0.95 1627.33 377.46 381.98
Average network latency 18.98 6065.74 1529.87 1191.29
Average processor utilization 0.20 0.99 0.65 0.20
Average input waiting time 33.04 892.85 333.25 233.72

Tab. III Descriptive statistics of the performance measures.

5. Methodology

5.1 Motivation

The performance analysis of a multiprocessor architecture is a very crucial factor
in designing message passing multiprocessor systems. Very often, simulation is the
only feasible method because of the nature of the problem and because analytical
techniques become too difficult to handle. Simulation occurs at many levels, from
circuit to system, and at different degrees of detail as the design evolves. Execution-
driven and trace-driven multiprocessor simulations have been extensively used to
obtain a reliable and accurate prediction of the final design. One of the problems
with simulation is that although simulations can be done at a high level of ab-
straction, they still are extremely time consuming. There are several reasons why
this is the case. First, the benchmarks that need to be simulated typically con-
sist of several hundreds of billions of dynamically executed instructions. Second,
multiple of these benchmarks need to be simulated to cover a representative set
of applications. Third, the complexity of the target system reflects itself in the
complexity of the simulator making the simulator at least four orders of magnitude
slower than native hardware execution. Fourth, during design space exploration,
all benchmarks need to be simulated multiple times to identify the optimal design
for a given cost function covering performance, power, area, cost, and reliability.

Due to the reasons given above, one needs alternative methods to predict the
performance measures (average channel utilization, average processor utilization,
average network latency, average channel waiting time and average input waiting

252

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

time) of a multiprocessor system without carrying out simulations for all different
values of the parameters such as the node number, thread number, traffic pattern
and traffic mode. With no doubt, the alternative methods will use machine learning
techniques such as MFANN and SVR which have shown big success in the solution
of learning problems on different fields.

5.2 SVR model

The type of kernel function, kernel function parameters, the value of C, and the
value of ε for the ε-insensitive loss function are the major components that affect
the quality and performance of a SVR model. We chose to use the RBF kernel for
developing our SVR model. The parameter that should be optimized for the RBF
kernel is the function parameter γ.

It is not known beforehand which C, εand γ are the best for a given regression
problem, therefore some sort of parameter search must be conducted. The purpose
is to find optimized values of the triple (C, ε, γ) so that the regression model
can predict testing data with minimum error. Many methods for selecting the
optimal parameters have been proposed, for example, cross validation, grid search
[22], particle swarm optimization [11], genetic algorithm [9], etc. For medium-sized
problems, the grid search method is an efficient method for finding the optimum
values of C, ε and γ. In grid search, the parameters are varied by fixed step-
sizes through a range of values, and the performance of each set of parameters
is measured and compared. When performing a search for optimal parameters,
different criteria such as maximizing correlation coefficient, minimizing root mean
squared error or mean absolute error can be used for determining the optimum
function value. To improve the generalization ability, grid search can use a cross
validation process. In k-fold cross validation, the original dataset is partitioned
into k subsets. Of the k subsets, a single subset is retained as the validation data
for testing the model, and the remaining k − 1 subsets are used as training data.
The cross validation process is then repeated k times (the folds), with each of the
k subsets used exactly once as the validation data. The k results from the folds
then can be averaged (or otherwise combined) to produce a single estimation.

In this study, we used grid search together with 5-fold cross validation to de-
termine the best values of C, ε and γ. To guarantee that the models developed by
using SVR are valid and can be generalized for making new predictions regarding
new data, the dataset is partitioned into training and independent test sets via a
10-fold cross validation. Fig. 5 shows the flowchart of our SVR-RBF model for a
single fold. Initially, the train and test subsets are normalized. This process avoids
predictor variables in greater numeric ranges dominate those in smaller numeric
ranges and the computational difficulty associated with using larger numeric val-
ues. For each value of (C, ε, γ) triple, 5-fold cross validation is conducted on the
training subset and root mean squared errors of each prediction are calculated. The
(C, ε, γ) triple that yields the lowest overall root mean squared error is chosen for
training the train subset. The prediction model is developed after training subset
is trained with the optimized values of C, ε and γ. Lastly, the prediction model is
used to estimate target values in the test subset.

253

Neural Network World 3/15, 241–265

Train subset Test subset

Standardize predictor variables to have zero mean and unity variance

New train subset New test subset

Train the new train subset with the

optimized parameters to obtain the SVR

predictor model

Use the SVR predictor model to predict

the performance measure

Calculate R and RMSE

Grid search to find optimized (C, ε, γ)

Fig. 5 SVR model using grid search to optimize model parameters.

5.3 MFANN model

Back-propagation MFANN is used to develop a model for predicting the perfor-
mance measures. The performance of an MFANN depends on the number of hidden
layers and the number of neurons in each hidden layer. The less neuron used, the
less information will be obtained; in contrast, the local minimum may increase,
and the network may converge to a local minimum mostly. Thus the network’s
precision will fall. However, there is not a rule in defining the number of neurons
in a hidden layer. In general, the optimal number is empirically chosen based on
the physical complexity of the problem. In this study, the number of hidden layers
and the number of neurons in the hidden layer are selected by trial-and-error for
all MFANN prediction models.

The inputs and outputs are normalized before training the networks. The ac-
tivation function in the hidden layer is a sigmoid function and a linear function
is used in the output layer. The Levenberg-Marquardt algorithm is utilized for

254

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

training the networks. The other important parameters of the MFANN models
are the number of epochs, the learning rate and momentum. The values of these
parameters have been selected as 500, 0.3 and 0.2, respectively, due to fact that
using these values yielded the lowest RMSE’s for the prediction models.

6. Results and discussion

The performance of all models are evaluated by using 10-fold cross validation and
calculating the R, RMSE, MAE, RAE and RRSE, whose formulas are as

R =

√

√

√

√

√

√

√

1−

n
∑

i=1

(Y − Y ′)
2

n
∑

i=1

(

Y − Ȳ
)2

, (17)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Y − Y ′)
2
, (18)

MAE =
1

n

n
∑

i=1

|Y − Y ′|, (19)

RAE =

√

√

√

√

√

√

√

n
∑

i=1

|Y − Y ′|

n
∑

i=1

∣

∣Y − Ȳ
∣

∣

, (20)

RRSE =

√

√

√

√

√

√

√

n
∑

i=1

(Y − Y ′)
2

n
∑

i=1

(

Y − Ȳ
)2

. (21)

In (17) through (21), Y is the actual value, Y ′is the predicted value, Ȳ is the mean
of the actual values, Ȳ ′is the mean of the predicted values and n is the number of
samples in the test set.

Tab. IV and Tab. V show the values of the utilized parameters of SVR-RBF and
SVR-Linear for reproducibility purposes of the presented results. The compared
convergence curves of RMSE’s in training process for each machine learning method
are given in Fig. 6 through Fig. 10. The performance of the prediction models are
summarized in Tab. VI through Tab. X, which shows the R, RMSE, MAE, RAE
(%), and RRSE (%) for the prediction of the average channel utilization, average
channel waiting time, average network latency, average processor utilization and
average input waiting time, respectively. Fig. 11 illustrates the percentage decrease
rates in RMSE’s of the predicted variables for SVR-RBF, SVR-Linear and MFANN
methods compared to RMSE’s obtained by MLR. Finally, Fig. 12 through Fig. 16
show the scatter plots for each performance measure using the SVR-RBF method.

255

Neural Network World 3/15, 241–265

Performance SVR-RBF Parameters
Measure Epsilon (ε) Loss Gamma (γ) Cost (C)

Channel utilization 0.001 0.1 0.1 1900
Channel waiting time 0.001 0.1 0.3 4000
Network response time 0.010 0.8 0.8 5000
Processor utilization 0.001 0.1 0.3 1200
Input waiting time 0.001 0.1 0.2 1100

Tab. IV List of the values of the utilized SVR-RBF parameters.

Performance SVR-Linear Parameters
Measures Epsilon (ε) Loss Cost (C)

Channel utilization 0.001 0.01 700
Channel waiting time 0.001 0.10 1500
Network response time 0.200 0.01 1600
Processor utilization 0.001 0.08 1200
Input waiting time 0.001 0.01 900

Tab. V List of the values of the utilized SVR-Linear parameters.

Models R MAE RMSE RAE (%) RRSE (%)
SVR-RBF 0.92 0.05 0.07 37.12 37.44
MFANN 0.90 0.06 0.08 40.66 43.87
SVR-Linear 0.70 0.11 0.14 69.95 71.30
MLR 0.69 0.15 0.18 89.80 89.65

Tab. VI Results for prediction of average channel utilization.

Models R MAE RMSE RAE (%) RRSE (%)
SVR-RBF 0.97 42.73 82.62 13.04 21.63
MFANN 0.96 58.88 96.99 17.97 25.39
SVR-Linear 0.91 116.37 153.71 35.52 40.24
MLR 0.91 127.51 161.14 38.92 42.18

Tab. VII Results for prediction of average channel waiting time.

Models R MAE RMSE RAE (%) RRSE (%)
SVR-RBF 0.97 184.60 277.96 19.76 23.31
MFANN 0.96 245.09 331.83 26.24 27.83
SVR-Linear 0.92 380.97 520.12 37.56 38.16
MLR 0.87 462.36 629.08 49.50 52.76

Tab. VIII Results for prediction of average network latency.

256

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

Models R MAE RMSE RAE (%) RRSE (%)
SVR-RBF 0.94 0.05 0.06 34.96 35.73
MFANN 0.91 0.06 0.07 35.40 40.01
SVR-Linear 0.76 0.10 0.12 59.47 64.77
MLR 0.74 0.12 0.14 72.83 73.64

Tab. IX Results for prediction of average processor utilization.

Models R MAE RMSE RAE (%) RRSE (%)
SVR-RBF 0.97 39.48 53.66 19.96 22.95
MFANN 0.96 49.39 63.04 24.97 26.96
SVR-Linear 0.92 72.75 90.34 36.79 38.64
MLR 0.91 84.97 105.90 42.97 45.32

Tab. X Results for prediction of average input waiting time.

0 50 100 150 200 250 300 350 400 450
0

1

2

3

4

5

6

Epochs

R
M

S
E

SVR−RBF
MFANN
SVR−Linear

Fig. 6 Convergence curves of RMSE for channel utilization.

The following observations could be gained from the results:

• In general, the results show that the SVR-RBF method performs much bet-
ter than SVR-Linear, MFANN and MLR methods, independent of whether
the average channel utilization, average channel waiting time, average net-
work latency, average processor utilization or average input waiting time is
predicted. Similarly, MFANN-based prediction models yield more accurate
results than SVR-Linear-based and MLR-based prediction models, and fi-
nally SVR-Linear-based prediction models lead to better results than the
ones obtained by MLR-based prediction models.

257

Neural Network World 3/15, 241–265

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

Epochs

R
M

S
E

SVR−RBF
MFANN
SVR−Linear

Fig. 7 Convergence curves of RMSE for channel waiting time.

0 200 400 600 800 1000
0

500

1000

1500

2000

2500

3000

Epochs

R
M

S
E

SVR−RBF
MFANN
SVR−Linear

Fig. 8 Convergence curves of RMSE for network response time.

• It is not known beforehand whether or not the characteristics of the per-
formance measures are nonlinear. The performance of both the SVR-Linear
and MLR models are significantly lower than that of SVR-RBF and MFANN
models. This result suggests us that the performance measures have nonlinear
characteristics.

• The SVR-RBF model yields the lowest error (RMSE = 0.06) for the predic-
tion of average processor utilization.

258

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Epochs

R
M

S
E

SVR−RBF
MFANN
SVR−Linear

Fig. 9 Convergence curves of RMSE for processor utilization.

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

Epochs

R
M

S
E

SVR−RBF
MFANN
SVR−Linear

Fig. 10 Convergence curves of RMSE for input waiting time.

• The MFANN model yields the lowest error (RMSE = 0.07) for the prediction
of average processor utilization.

• The SVR-Linear and MLR models yield the lowest error (RMSE = 0.12 and
RMSE = 0.14, respectively) for the prediction of average processor utilization.

• The R of all SVR-RBF models is over 0.92, whereas the R of all MFANN
models is over 0.90. The R of all SVR-Linear and MLR models is over 0.69.

259

Neural Network World 3/15, 241–265

0

10

20

30

40

50

60

70

Channel

Utilization

Channel Waiting

Time

Network Response

Time

Processor

Utilization

Input Waiting

Time

P
e
rc
e
n
ta
g
e
s
(%

)

Performance Measures

SVR-RBF MFANN SVR-Linear

Fig. 11 Percentage decrease rates in RMSE’s of predicted performance measures

for SVR-RBF, MFANN and SVR-Linear compared to RMSE’s obtained by MLR.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

P
re
d
ic
t
e
d
C
h
a
n
n
e
l
U
t
il
iz
a
t
io
n

Actual Channel Utilization

Fig. 12 Scatter plot of actual channel utilization vs. predicted channel utilization

using SVR-RBF.

-500

0

500

1000

1500

2000

0 100 200 300 400 500 600 700P
r
e
d
ic
t
e
d
C
h
a
n
n
e
l
W
a
it
in
g
T
im

e

Actual Channel Waiting Time

Fig. 13 Scatter plot of actual channel waiting time vs. predicted channel waiting

time using SVR-RBF.

260

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

P
re
d
ic
te
d
N
e
tw

o
rk

R
e
sp
o
n
se

T
im

e

Actual Network Response Time

Fig. 14 Scatter plot of actual network response time vs. predicted network response

time using SVR-RBF.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 100 200 300 400 500 600 700

P
re
d
ic
te
d
P
ro
ce
ss
o
r
U
t
il
iz
a
t
io
n

Actual Processor Utilization

Fig. 15 Scatter plot of actual processor utilization vs. predicted processor utilization

using SVR-RBF.

• For all performance measures, as compared to the RMSE’s obtained by MLR,
the maximum percentage decrement rates in RMSE’s obtained by SVR-RBF,
MFANN and SVR-Linear are 58.20%, 51.07% and 20.42%, respectively.

• The training phase for SVR-RBF model consumes the longest time, as com-
pared to that of the other methods. This is because of the usage of the grid
search algorithm in the SVR-RBF model to compute the optimum values of
the related parameters.

• The execution times of the SVR-RBF and SVR-Linear prediction models
range from 6 to 30 seconds. The execution times of MFANN models are
between 1 and 2 seconds. MLR models have negligible execution times (close
to zero).

261

Neural Network World 3/15, 241–265

-200

0

200

400

600

800

1000

0 100 200 300 400 500 600 700

P
re
d
ic
te
d
In
p
u
t
W
a
it
in
g
T
im

e

Actual Input Waiting Time

Fig. 16 Scatter plot of actual input waiting time vs. predicted input waiting time

using SVR-RBF.

0 200 400 600 800 1000 1200 1400
0

5

10

15

Dataset Size

T
es

t R
M

S
E

SVR−RBF
MFANN
SVR−Linear

Fig. 17 RMSE of the test set for varying dataset sizes.

• Since there is no training phase in MLR, the MLR models produce results
much faster than MFANN and SVR prediction models.

• The lowest RMSE’s have been observed for prediction of average processor
utilization and average channel utilization. This is due to the fact that the
range of processor and channel utilizations is between 0 and 1.

• The highest RMSE’s have been observed for prediction of average network
latency because the gap between the minimum and maximum values of the

262

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

average network latency is the highest compared to that of the other perfor-
mance measures.

• Additional experiments have been conducted with different sample sizes to
predict average network latency. Fig. 17 shows the RMSE of the test set for
dataset sizes of 160, 320, 640 and 1280 samples using SVR-RBF, MFANN and
SVR-Linear as regression methods. It is clearly seen from Fig. 12 that RMSE
of the test set decreases considerably as the dataset size is increased from 160
to 640 samples; however we do not observe a significant difference when the
dataset size is further increased from 640 to 1280 samples. Therefore, using
640 samples in our dataset is enough in order not to increase the training
times of MFANN and SVR.

7. Conclusions

The dynamic, large scale applications which will run on a petaflops-scale com-
puter will require very high data rates and small latencies in order to be successful.
Through advances in devices and optical technology, the 2D SOME-Bus intercon-
nection network has become a realistic, highly competitive candidate which achieves
the necessary high bandwidth, low latency and large fan-out, and promises to de-
liver the necessary performance. Obtaining the performance measures of the 2D
SOME-Bus multiprocessor architecture for different values of the message passing
parameters is an important task and simulation is a time-consuming process for
this operation. In this paper, we developed data-driven SVR-RBF, SVR-Linear
MFANN and MLR models to predict the performance measures of the message
passing 2D SOME-Bus multiprocessor architecture. These models let us estimate
the values of the performance measures accurately and fast without running the
time-consuming simulation. Among the models, the SVR-RBF model shows the
best performance for predicting the performance measures of the message passing
2D SOME-Bus multiprocessor architecture.

Acknowledgement

We would like to thank Dr. Constantine Katsinis for letting us include his material
[13] about the SOME-Bus architecture in this paper. We also would like to thank
OPNET Technologies, Inc. for letting us use the OPNET Modeler under the
University Program.

References

[1] ACI C.I., AKAYM.F. A new congestion control algorithm for improving the performance of a
broadcast-based multiprocessor architecture. Journal of Parallel and Distributed Computing.
2010, 70(9), pp. 930–940, doi: 10.1016/j.jpdc.2010.06.003.

[2] ADIGA N.R., BLUMRICH M.A., CHEN D., COTEUS P., GARA A., GIAMPAPA M.E.,
HEIDELBERGER P., SINGH S., STEINMACHER-BUROW B.D., TAKKEN T., TSAO
M., VRANAS P. Blue Gene/L torus interconnection network. IBM Journal of Research and
Development. 2005, 49(2.3), pp. 265–276, doi: 10.1147/rd.492.0265.

263

Neural Network World 3/15, 241–265

[3] AGIRRE-BASURKO E., IBARRA-BERASTEGI G., MADARIAGA I. Regression and
multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the
Bilbao area. Environmental Modelling & Software. 2006, 21(4), pp. 430–446, doi:
10.1016/j.envsoft.2004.07.008.

[4] AKAY M.F., ABASIKELEŞ I. Predicting the performance measures of an optical distributed
shared memory multiprocessor by using support vector regression. Expert Systems with Ap-
plications. 2010, 37(9), pp. 6293–6301, doi: 10.1016/j.eswa.2010.02.092.

[5] AMBROZIC T., TURK G. Prediction of subsidence due to underground mining by artificial
neural networks. Computers & Geosciences. 2003, 29(5), pp. 627–637, doi:
10.1016/S0098-3004(03)00044-X.

[6] BUNTINAS D., MERCIER G., GROPP W. Design and evaluation of Nemesis, a scalable,
low-latency, message-passing communication subsystem. In: Proceedings of Sixth IEEE In-
ternational Symposium on Cluster Computing and the Grid (CCGRID ’06), Singapore.
IEEE, 2006, 10 pp. – 530.

[7] CRISTIANINI N., SHAWE-TAYLOR J. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[8] DALLY W.J., TOWLES B. Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., 2004.

[9] FRIEDRICHS F., IGEL C. Evolutionary tuning of multiple SVM parameters. Neurocom-
puting. 2005, 64, pp. 107–117, doi: 10.1016/j.neucom.2004.11.022.

[10] GENBRUGGE D., EECKHOUT L. Statistical simulation of chip multiprocessors running
multi-program workloads. In: Proceedings of 25th International Conference on Computer
Design. IEEE, 2007, pp. 464–471.

[11] GUO X.C., LIANG Y.C., WU C.G., WANG C.Y. PSO-Based Hyper-Parameters Selection
for LS-SVM Classifiers. In: Neural Information Processing, Proceedings of 13th International
Conference (ICONIP 2006), Part II, Hong Kong, China. Berlin, Heidelberg: Springer, 2006,
pp. 1138–1147, doi: 10.1007/11893257 124. Lecture Notes in Computer Science 4233.

[12] HOCHSTEIN L., BASILI V.R., VISHKIN U., GILBERT J. A pilot study to compare pro-
gramming effort for two parallel programming models. Journal of Systems and Software.
2008, 81(11), pp. 1920–1930, doi: 10.1016/j.jss.2007.12.798.

[13] KATSINIS C. Performance analysis of the simultaneous optical multi-processor exchange
bus. Parallel Computing. 2001, 27(8), pp. 1079–1115, doi: 10.1016/S0167-8191(01)00071-0.

[14] KATSINIS C., NABET B. A Scalable Interconnection Network Architecture for
Petaflops Computing. The Journal of Supercomputing. 2004, 27(2), pp. 103–128, doi:
10.1023/B:SUPE.0000009318.91562.b0.

[15] KUMAR V., GRAMA A., GUPTA A., KARYPIS G. Introduction to parallel computing.
2nd ed. Pearson, 2003.

[16] OPNET Modeler. OPNET Technologies [software]. [accessed 2015-06-19]. Available from:
www.opnet.com.

[17] PIRES J.C.M., MARTINS F.G., SOUSA S.I.V., ALVIM-FERRAZ M.C.M., PEREIRA
M.C. Selection and validation of parameters in multiple linear and principal compo-
nent regressions. Environmental Modelling & Software. 2008, 23(1), pp. 50–55, doi:
10.1016/j.envsoft.2007.04.012.

[18] SALTAN M., TERZI S. Modeling deflection basin using artificial neural networks with cross-
validation technique in backcalculating flexible pavement layer moduli. Advances in Engi-
neering Software. 2008, 39(7), pp. 588–592, doi: 10.1016/j.advengsoft.2007.06.002.

[19] SCHOLKOPF B., SMOLA A.J. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. Cambridge: MIT Press, 2001.

[20] STEEL S.J., UYS D.W. Influential data cases when the criterion is used for variable selection
in multiple linear regression. Computational Statistics & Data Analysis. 2006, 50(7), pp.
1840–1854, doi: 10.1016/j.csda.2005.02.003.

[21] VAPNIK V. The Nature of Statistical Learning Theory. 2nd ed. New York: Springer, 2000.

264

Akay M.F., Aci Ç.İ, Abut F.: Predicting the Performance Measures. . .

[22] WENWEN L., XIAOXUE X., FU L., YU Z. Application of Improved Grid Search Algorithm
on SVM for Classification of Tumor Gene. International Journal of Multimedia & Ubiquitous
Engineering. 2014, 9(11), pp. 181–188, doi: 10.14257/ijmue.2014.9.11.18.

[23] ZAYID E.I.M., AKAY M.F. Predicting the performance measures of a message-passing mul-
tiprocessor architecture using artificial neural networks. Neural Computing and Applications.
2012, 23(7–8), pp. 2481–2491, doi: 10.1007/s00521-012-1267-9.

265

