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Abstract: The isolated rupture degree for a connected graph G is defined as
ir(G) = max{i(G−S)−|S|−m(G−S) : S ∈ C(G)}, where i(G−S) and m(G−S),
respectively, denote the number of components which are isolated vertices and the
order of a largest component in G − S. C(G) denotes the set of all cut-sets of G.
The isolated rupture degree is a new graph parameter which can be used to measure
the vulnerability of networks. In this paper, we firstly give a recursive algorithm for
computing the isolated rupture degree of trees, and determine the maximum and
minimum isolated rupture degree of trees with given order and maximum degree.
Then, the exact value of isolated rupture degree of gear graphs are given. In the
final, we determine the rupture degree of the Cartesian product of two special
graphs and a special permutation graph.
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1. Introduction

Throughout this paper, a graph G = (V,E) always means a simple connected graph
with vertex set V and edge set E. The number of vertices |V | is known as the order
of G. For v ∈ V , we denote the degree of v by dG(v). The maximum degree of a
graph G is denoted by ∆(G). A vertex set S ⊆ V (G) is a cut set of G, if either
G − S is disconnected or G − S has only one vertex. C(G) denotes the set of all
cut-sets of G. For S ⊆ V (G), let ω(G− S), i(G− S) and m(G− S), respectively,
denote the number of components, the number of components which are isolated
vertices and the order of a largest component in G − S. We shall use ⌊x⌋ for the
largest integer less than or equal to a real number x. A ∆-edge is an edge which
joins two vertices of degree ∆. A leaf is a vertex of degree 1. An edge incident with
a leaf is called a leaf-edge. An edge is said to be subdivided when it is replaced by
a path of length two connecting its ends, and the internal vertex in this path is a
new vertex. A subset S of V is called an independent set of G if no two vertices of
S are adjacent in G. An independent set S is called a maximum independent set
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if G has no independent set S′ with |S′| > |S|. The independence number of G,
α(G), is the number of vertices in a maximum independent set of G. By κ(G) we
denote the connectivity of G. For any V ′ ⊆ V , we let G[V ′] denote the induced
subgraph of G. We use Bondy and Murty [2] for terminology and notations not
defined here.

In an analysis of the vulnerability of networks to disruption, three impor-
tant quantities (there may be others) are (1) the number of elements that are not
functioning; (2) the number of remaining connected sub-networks; (3) the size of a
largest remaining group within which mutual communication can still occur.

The communication network can be represented as an undirected and un-
weighted graph, where a processor (station) is represented as a vertex and a com-
munication link between processors (stations) as an edge between corresponding
vertices. If we use a graph to model a network, based on the above three quantities,
a number of graph parameters, such as connectivity [2], toughness [5], scattering
number [7, 17], integrity [1], tenacity [6], rupture degree [8, 10, 11, 12, 14] and their
edge-analogues, have been proposed for measuring the vulnerability of networks.

One of the vulnerability parameters determined above is the scattering num-
ber that takes the quantities (1) and (2) into account. The scattering number
was introduced by Jung in 1978 [7], and the scattering number of an incomplete
connected graph G is defined as

s(G) = max{ω(G − S )− |S | : S ∈ C (G), ω(G − S ) > 1}.

Motivated from Jung’s scattering number by replacing ω(G−S) with i(G−S)
in the above definition, Wang et.al [15] introduced the isolated scattering number,
is(G), as a new parameter to measure the vulnerability of a network. The isolated
scattering number of an incomplete graph G is defined as

is(G) = max{i(G − S )− |S | : S ∈ C (G)}.

The rupture degree is a measure which deals with all the quantities, (1), (2)
and (3). The rupture degree of an incomplete graph is defined as

r(G) = max{ω(G − S )− |S | − m(G − S ) : S ∈ C (G), ω(G − S ) > 1}.

Motivated from the concept of the isolated scattering number, it is natural for
us to replace ω(G−S) with i(G−S) in the above definition, we call this parameter
the isolated rupture degree of graphs. Formally, the isolated rupture degree of an
incomplete connected graph G is defined as follows.

Definition 1.1 [9] Let G be an incomplete graph. Then the isolated rupture degree
ir(G) of G is defined as

ir(G) = max{i(G − S )− |S | − m(G − S ) : S ∈ C (G)}.

Here, i(G−S) and m(G−S), respectively, denote the number of components which
are isolated vertices and the order of a largest component in G− S. C(G) denotes
the set of all cut-sets of G.

In particular, the isolated rupture degree of a complete graph Kn is defined to
be 1− n.
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Definition 1.2 [9] Let G be an incomplete connected graph. A set S ∈ C(G) is
called an ir-set if it satisfies ir(G) = i(G− S)− |S| −m(G− S).

Definition 1.3 [6] The tenacity of an incomplete connected graph G is defined as

T (G) = min

{
|S |+ m(G − S )

ω(G − S )
: S ∈ C (G), ω(G − S ) > 1

}
.

Here, ω(G−S) and m(G−S), respectively, denote the number of components and
the order of a largest component in G− S.

As a new graph parameter to measure the vulnerability of networks, isolated
rupture degree, isolated scattering number, rupture degree and tenacity differ in
showing the vulnerability of networks. This can be shown as follows. Consider the
graphs G1 and G2 in Fig. 1, it is not difficult to check that T (G1) = T (G2) =

1
2 ,

but ir(G1) = 0 ̸= 4 = ir(G2). On the other hand, we consider graphs G3 =
K1 + (Kn−b−1 ∪Eb) and G4 = K2 + (Kn−b−3 ∪Eb+1). It is obvious that is(G3) =
is(G4) = b−1, but ir(G3) = 2b−n+1 ̸= 2b−n+3 = ir(G4), where b(b ≤ n−4) is
an positive integer. In the next, we consider graphs G5 = K1+(bK2∪En−2b−1) and
G6 = K1+((b−3)K2∪K3∪En−2b+2). It is obvious that r(G5) = r(G6) = n−b−4,
but ir(G5) = n−2b−3 ̸= n−2b−1 = ir(G6), where b(4 ≤ b ≤ ⌊n−2

2 ⌋) is a positive
integer.

Hence, isolated rupture degree is a reasonable parameter for distinguishing the
vulnerability of these graphs. It is easy to see that the less the isolated rupture
degree of a network the more stable it is considered to be. In [7], the author gives
formulas for the isolated rupture degree of join graphs and some bounds of the
rupture degree. And the author also determines the isolated rupture degree of
grids, and that of the hypercubes as a special case.

G
1

G2

Fig. 1 Two graphs G1 and G2 satisfy that T (G1) = T (G2), but ir(G1) ̸= ir(G2).

In this paper, we firstly give a recursive algorithm for computing the isolated
rupture degree of trees, and determine the maximum and minimum isolated rupture
degree of trees with given order and maximum degree. Then, the exact value
of isolated rupture degree of gear graphs are given. In the final, we determine
the rupture degree of the Cartesian product of two special graphs and a special
permutation graph.
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2. A recursive algorithm for computing the
isolated rupture degree of trees

In computer science, tree is a commonly used data formation that feigns a hier-
archical tree structure with a set of linked nodes. So, it is interesting for us to
study the isolated rupture degree of trees. In this section, we provide a recursive
algorithm for computing the isolated rupture degree of trees.

For a graphG, the neighborhood of vertex v, NG(v), is the set of vertices adjacent
to v in G. A vertex v ∈ V (T ) is called an outside branch vertex of a tree T if it
satisfies that dT (v) ≥ 2 and it is adjacent to dT (v) − 1 number of leaves. For an
outside branch vertex v ∈ V (T ), we denote Γ+(v) = {u : u ∈ NT (v), dT (v) = 1}.
It is obvious that |Γ+(v)| ≥ 1, and if the tree T is not a star, then |V (T )| ≥ 4.

Lemma 2.1 [9] Let K1,n−1 and Pn be a star and a path of order n ≥ 3, respectively.
Then

ir(K1,n−1) = n− 3; (1)

ir(Pn) =

{
−1, if n is even

0, if n is odd.
, (2)

Lemma 2.2 [9] Let G be a connected bipartite graph. Then ir(G) ≥ −1.

Lemma 2.3 [9] Let G be a connected bipartite graph of order n. Then ir(G) =
2α(G)− n− 1.

We have the following computational complexity result.

Theorem 2.1 [9] Let G be a connected bipartite graph of order n with bipartition
[X,Y ]. Then the isolated rupture degree of G can be computed in O(min{|X|, |Y |} ·
|E(G)|) time.

Lemma 2.4 Let T be a tree of order n(≥ 4). Then T has exactly one outside
branch vertex if and only if T = K1,n−1.

Proof. The sufficiency is obvious by the definition of outside branch vertex. In
the following, we will prove the necessity. We assume that T ̸= K1,n−1. Let S be
the set of all leaves in T , and let T ′ = T [V (T ) − S]. It is easy to see that T ′ is
a tree such that |V (T ′)| ≥ 2. Thus, T ′ have at least two leaves. Without loss of
generality, we suppose that u and v be two distinct leaves in T ′. By the definition,
we know that u and v be two outside branch vertices in T , a contradiction. Thus,
T = K1,n−1. This completes the proof.

By Lemma 2.4, we know that if T ̸= K1,n−1 be a tree of order n ≥ 4, then T has
at least two outside branch vertices. So, for any outside branch vertex v ∈ V (T ),
Tv = T − (Γ+(v) ∪ {v}) is a tree such that |V (Tv)| ≥ 2.
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Theorem 2.2 Let T ̸= K1,n−1 be a tree of order n(≥ 4). Then for any outside
branch vertex v ∈ V (T ),

ir(T ) = ir(T − (Γ+(v) ∪ {v})) + |Γ+(v)| − 1.

Proof. Let Tv = T − (Γ+(v) ∪ {v}). By Lemma 2.4, Tv is a tree. Let S be a
maximum independent set of T . Then, by Lemma 2.3, ir(T ) = 2|S| − n− 1. And,
it is easily seen that S∗ = S − (Γ+(v) ∪ {v}) is an independent set of Tv. In the
next, we will prove that |S∗| = |S| − |Γ+(v)|. If v /∈ S, then Γ+(v) ⊆ S. This
implies that |S∗| = |S| − |Γ+(v)|. If v ∈ S, then Γ+(v) ∩ S = ∅. It is easy to see
that S′ = (S ∪ Γ+(v))− {v} is an independent set of T . Because S is a maximum
independent set of T , then |S| ≥ |S′| = |S|+ |Γ+(v)|−|{v}| = |S|+ |Γ+(v)|−1, i.e.,
|Γ+(v)| ≤ 1. By the definition of outside branch vertex, we know that |Γ+(v)| ≥ 1.
Hence, we know that |Γ+(v)| = 1. Thus, in this case we have |S∗| = |S| − 1 =
|S| − |Γ+(v)|. So, it is proved that |S∗| = |S| − |Γ+(v)| whether v ∈ S or not. Let
S′′ = V (Tv)−S∗. Then |S′′| = |V (Tv)|− |S∗| = |V (T )|− |S|−1, i(Tv−S′′) = |S∗|,
and m(Tv − S′′) = 1. So, by the definition of isolated rupture degree and Lemma
2.3, we have

ir(Tv) ≥ i(Tv − S′′)− |S′′| − 1 = 2|S| − |Γ+(v)| − n = ir(T )− |Γ+(v)|+ 1.

On the other hand, let S′ be a maximum independent set of Tv, then S′′ =
S′ ∪ Γ+(v) is an independent set of T . Let S∗ = V (T ) − S′′. We know that
|S∗| = |V (T ) − S′′| = |V (Tv)| − |S′| + 1, i(T − S∗) = |S′′| = |S′| + |Γ+(v)|, and
m(T − S∗) = 1. By the definition of isolated rupture degree and Lemma 2.3, we
get that

ir(T ) ≥ i(T − S∗)− |S∗| −m(T − S∗) = 2|S′| − |V (Tv)|+ |Γ+(v)| − 2

= ir(Tv) + |Γ+(v)| − 1.

By combining the above two inequalities, we have

ir(T ) = ir(Tv) + |Γ+(v)| − 1.

This completes the proof.

Note that any tree is a bipartite graph. By Theorem 2.1, we know that the
isolated rupture degree of trees can be computed in polynomial time. Now, based
on Lemma 2.1 and Theorem 2.2, we present a polynomial time recursive algorithm
for computing the isolated rupture degree of trees. Firstly, let us describe the basic
idea of the algorithm. If the tree is a path or a star, then its isolated rupture degree
can be obtained by Lemma 2.1. Otherwise, by choosing an outside branch vertex
vertex v1 ∈ V (T ), we obtain a new tree Tv = T − (Γ+(v) ∪ {v}). If Tv is a star,
then the isolated rupture degree of Tv is obtained. By Theorem 2.2, we can get
the isolated rupture degree of T . Otherwise, select an outside branch vertex vertex
u ∈ V (Tv1). Then, we get a new tree Tu = Tv − (Γ+(u) ∪ {u}). Repeating the
above process, we finally get a tree which is a star or |V (T )| ≤ 4. Then the isolated
rupture degree of T is obtained.
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ALGORITHM 2.1

Input: A tree T such that |V (T )| ≥ 2.

Output: Isolated rupture degree of tree T , ir(T ).

Step 1. If the tree T is a star or the order of T is no more than 4, then stop
algorithm; Otherwise go to Step 2.

Step 2. Find an outside branch vertex v, let Tv = T − (Γ+(v) ∪ {v}). Set ir(T ) =
ir(Tv) + |Γ+(v)| − 1. Replace T by Tv and go to Step 1.

Now, let us analyze the complexity of the above algorithm.

Theorem 2.3 Let T be a tree with order n(n ≥ 2). Then the isolated rupture
degree of T can be computed in O(n2) time.

Proof. The correctness of this algorithm follows from Lemma 2.1 and Theorem
2.2. It is easy to see that Step 1 can be done in time O(1) in a straightforward
manner. In Step 2, we spend O(n) time to search the outside branch vertices of T .
Deleting an outside branch vertex v and Γ+(v) will make the order of tree reduce
at least 2, so, in Step 2, the above deletion process will carry out at most ⌊n

2 ⌋
time. Hence, Step 2 can be done in time O(n2). Consequently, the total number of
computations required for this algorithm is approximately O(n2). This completes
the proof.

3. Maximum and minimum isolated rupture de-
gree with given order and maximum degree

In this section, we determine the maximum and minimum isolated rupture degree of
trees with given order and maximum degree. In addition, a method for constructing
such trees is presented. The following Lemmas are used later.

Lemma 3.1 [15] For three positive integers m, n (m ≥ n) and s, there exists an
integer r(0 ≤ r ≤ n− 1) such that m = sn+ r.

Lemma 3.2 [9] Let H be a connected spanning subgraph of a connected graph G.
Then ir(H) ≥ ir(G).

Lemma 3.3 [13] If T is a tree with maximum degree ∆ and order n, then T has
at most ⌊ n−2

∆−1⌋ vertices of degree ∆.

Lemma 3.4 Let T1, T2 be two trees with n vertices. If α(T1) ≥ α(T2), then
ir(T1) ≥ ir(T2).

Proof. It is easily seen that a tree T is a bipartite graph. By Lemma 2.3, we
know that ir(T ) = 2α(T ) − n − 1. From the fact that |V (T1)| = |V (T2)| = n, if
α(T1) ≥ α(T2), then we have ir(T1) ≥ ir(T2). This proof is completed.
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Definition 3.1 [13] A tree is called a saturated tree with maximum degree ∆ if
every vertex has degree equal to either 1 or ∆.

Example 3.1 Consider a tree T with order n = 14 and ∆ = 5. So we have
⌊ n−2
∆−1⌋ = ⌊ 14−2

5−1 ⌋ = 3, and thus the saturated tree is constructed as follows:

Step 1 Construct a path P3 of length 2 such that its vertices are labelled as
v1, v2, v3 from left to right.

Step 2 Join v1 to four new vertices v4, v5, v6, v7, join v3 to four new vertices
v8, v9, v10, v11, and then join v2 to three new vertices v12, v13, v14. The tree is
shown in Fig. 2.

v
4

v
8

v
6

v
14

v
9

v
11

v
7

v
12 v

13
v
10

v
5

v
1

v
2 v3

Fig. 2 A saturated tree with three vertices of degree ∆ = 5.

It is easy to see that the unique tree with order n and maximum degree ∆ = 2
is the path Pn, and ir(Pn) was determined by Lemma 2.1. So, in the following, we
always assume that ∆ ≥ 3.

Theorem 3.1 Let T [n,∆] be the set of all trees having order n(n ≥ 4) and maxi-
mum degree ∆(∆ ≥ 3). Then

max
T∈T [n,∆]

ir(T ) =


n− 2

⌊
n− 2

∆− 1

⌋
− 1, if d

(
n− 2

∆− 1

)
<

⌊
n− 2

∆− 1

⌋
n− 2

⌊
n− 2

∆− 1

⌋
− 3, if d

(
n− 2

∆− 1

)
≥

⌊
n− 2

∆− 1

⌋
,

(3)

where d( n−2
∆−1 ) denotes the remainder of n− 2 divided by ∆− 1.

Proof. We distinguish two cases:

Case 1. d( n−2
∆−1 ) < ⌊ n−2

∆−1⌋.
We construct a tree T1 ∈ T [n,∆] as follows:
(1) Construct a saturated tree T0 with n−d( n−2

∆−1 ) vertices and with ⌊ n−2
∆−1⌋ vertices

of degree ∆.
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(2) It is easy to see that T0 has (⌊ n−2
∆−1⌋ − 1) ∆-edges. Arbitrarily select d( n−2

∆−1 )
∆-edges and subdivide them just once. This gives a tree T1 with order n that
has ⌊ n−2

∆−1⌋ vertices of degree ∆. From the construction we know that α(T1) =

n− ⌊ n−2
∆−1⌋. By Lemma 2.3, we know that

ir(T1) = n− 2

⌊
n− 2

∆− 1

⌋
− 1.

In this case, it is obvious that T1 is a tree has the maximum independence
number in T [n,∆]. So, by Lemma 3.4, we have ir(T ) ≤ ir(T1) for any tree T ∈
T [n,∆], i.e., the tree T1 constructed above has the maximum isolated rupture
degree in T [n,∆].

Case 2. d( n−2
∆−1 ) ≥ ⌊ n−2

∆−1⌋.
We construct a tree T ′

1 ∈ T [n,∆] as follows:
(1) Construct a saturated tree T ′

0 with n−d( n−2
∆−1 ) vertices and with ⌊ n−2

∆−1⌋ vertices
of degree ∆.
(2) It is easy to see that there exist (⌊ n−2

∆−1⌋ − 1) ∆-edges in T ′
0. First, Subdivide

every ∆-edge of T ′
0 just once to get a new tree T ′

1 with n − d( n−2
∆−1 ) + ⌊ n−2

∆−1⌋ − 1

vertices. By Lemma 3.1, we know that d( n−2
∆−1 ) ≤ ∆ − 2. So, we have d( n−2

∆−1 ) −
⌊ n−2
∆−1⌋+1 < ∆− 1− ⌊ n−2

∆−1⌋ < ∆− 1. Then, we randomly select a leaf v0 ∈ V (T ′
1),

and, connect it to a set of d( n−2
∆−1 ) − ⌊ n−2

∆−1⌋ + 1 independence vertices. Thus, we

get a new tree T ′
1 with order n and with ⌊ n−2

∆−1⌋ vertices of degree ∆. From the

construction we know that α(T ′
1) = n− ⌊ n−2

∆−1⌋ − 1. By Lemma 2.4, we know that

ir(T ′
1) = n− 2

(⌊
n− 2

∆− 1

⌋)
− 3.

In this case, it is obvious that T ′
1 is a tree has the maximum independence

number in T [n,∆]. So, by Lemma 3.4, we know that for any tree T ∈ T [n,∆], we
have ir(T ) ≤ ir(T ′

1), i.e., the tree T ′
1 constructed above has the maximum isolated

rupture degree in T [n,∆]. This completes the proof.

It is easy to see that Theorem 3.1 gives the methods of constructing trees
with maximum isolated rupture degree when their order and maximum degree are
given. Moreover, from the proof of Theorem 3.1, we also find that such trees are
not unique. Now we give some examples.

Example 3.2 Denote by T [n,∆] the set of trees of order n and maximum degree ∆.
(1) Construct a tree T with order 15 and ∆ = 4, such that T has the maximum
isolated rupture degree in T [15, 4]. Since n = 15, ∆ = 4 and d( n−2

∆−1 ) = d( 133 ) =

1 < 4 = ⌊ 13
3 ⌋ = ⌊ n−2

∆−1⌋, such a tree is contained in Fig. 3.
(2) Construct a tree T with order 21 and ∆ = 6, such that T has the maximum
isolated rupture degree in T [21, 6]. Since n = 21, ∆ = 6 and d( n−2

∆−1 ) = d( 195 ) =

4 > 3 = ⌊ 19
5 ⌋ = ⌊ n−2

∆−1⌋, such a tree is contained in Fig. 4.
It is well-known that any connected graph has a spanning tree with the same

maximum degree as the graph itself. Thus, we have the following Corollary.
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Fig. 3 A tree with the maximum isolated rupture degree in T [15, 4].

Fig. 4 A tree with the maximum isolated rupture degree in T [21, 6].

Corollary 3.1 If G = (V,E) is a connected graph with the order |V (G)| = n ≥ 4
and ∆(G) = ∆ ≥ 3. Then we have

ir(G) ≤


n− 2

⌊
n− 2

∆− 1

⌋
− 1, if d

(
n− 2

∆− 1

)
<

⌊
n− 2

∆− 1

⌋
n− 2

⌊
n− 2

∆− 1

⌋
− 3, if d

(
n− 2

∆− 1

)
≥

⌊
n− 2

∆− 1

⌋ ,

where d( n−2
∆−1 ) denotes the remainder of n− 2 divided by ∆− 1.

Proof. By Lemma 3.2 we know that ir(G) ≤ ir(T ), where T is a spanning tree of
G with ∆(G) = ∆(T ). It follows from Theorem 3.1 that

ir(G) ≤ ir(T ) ≤


n− 2

⌊
n− 2

∆− 1

⌋
− 1, if d

(
n− 2

∆− 1

)
<

⌊
n− 2

∆− 1

⌋
n− 2

⌊
n− 2

∆− 1

⌋
− 3, if d

(
n− 2

∆− 1

)
≥

⌊
n− 2

∆− 1

⌋ ,

where d( n−2
∆−1 ) denotes the remainder of n−2 divided by ∆−1. This completes the

proof.

Theorem 3.2 Let T [n,∆] be the set of all trees of order n (n ≥ 4) and maximum
degree ∆ (∆ ≥ 3). Then

min
T∈T [n,∆]

ir(T ) =


∆− n− 1, if n ≤ 2∆− 2

0, if n is odd and n ≥ 2∆− 1

−1, if n is even and n ≥ 2∆− 1.

Proof. We distinguish two cases:

Case 1. n ≤ 2∆− 2.
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It is easily seen that ∆ ≥ n−∆+2 > n−∆−1. By subdividing n−∆−1 number
of leaf-edges just once in K1,∆, we get a new tree T ′ ∈ T [n,∆]. Let S be set of
added new vertices in subdivision process. Then, |S| = n−∆−1. For convenience,
let S = {v1, v2, · · · , vn−∆−1}. By the definition, we know that all vi ∈ S(i =

1, 2, · · · , n−∆−1) are outside branch vertices, and T ′−
∪n−∆−1

i=1 (Γ+(vi)∪{vi}) =
K1,2∆−n+1. By Lemma 2.1 and Theorem 2.1, we have

ir(T ′) = ir(K1,2∆−n+1) = 2∆− n− 1.

In the next, we will prove that for any T ∈ T [n,∆] of the order n ≤ 2∆− 2,
we have ir(T ) ≥ 2∆−n−1. In fact, by Lemma 2.3, we have ir(T ) = 2α(T )−n−1
for any T ∈ T [n,∆]. On the other hand, from the structure of T ∈ T [n,∆], we
know that α(T ) ≥ ∆, so we have ir(T ) ≥ 2∆− n− 1.

Case 2. n ≥ 2∆− 1.
By Lemma 2.3, it is easily seen that for any tree T , ir(T ) and |V (T )| have the
different parity. And by Lemma 2.2, we know that ir(T ) ≥ −1. So, if n is even,
then ir(T ) ≥ −1, otherwise ir(T ) ≥ 0. Let T1 be a tree obtained by subdividing
∆− 1 leaf-edges of the star K1,∆−1 just once, and then identifying one end vertex
of the path Pn−2∆+2 with the vertex v ∈ T1 whose degree dT1

(v) = ∆ − 1. Thus,
we get a new tree T2 ∈ T [n,∆]. By Lemma 2.1 and Theorem 2.2, we know that

ir(T2) = ir(Pn−2∆+2) =

{
0, if n is odd

−1, if n is even.

This completes the proof.

4. Isolated rupture degree of gear graphs

Geared systems are used in dynamic modelling. These are graph theoretic models
that are obtained by using gear graphs. Similarly the Cartesian product of gear
graphs, the complement of a gear graph can be used to design a gear network.
We know that the isolated rupture degree is a reasonable parameter to measure
the vulnerability of networks. Consequently, these considerations motivated us to
investigate the isolated rupture degree of gear graphs. Now we give the following
definitions.

Definition 4.1 [2] The wheel graph with n spokes, Wn, is the graph that consists
of an n-cycle and one additional vertex, say u, that is adjacent to all the vertices
of the cycle.

Definition 4.2 [3] The gear graph Gn is a graph obtained from the wheel graph
Wn by subdividing each edge of the outer n-cycle of the Wn just once.

It is easily seen that the gear graph Gn has 2n + 1 vertices and 3n edges. In
Fig. 5 we display G6 and we call the vertex u center vertex of Gn. Now we give
the isolated rupture degree of a gear graph.
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u

Fig. 5 Graph G6.

Theorem 4.1 Let Gn be a gear graph. Then ir(Gn) = 0.

Proof. It is easily seen that Gn is a connected bipartite graph. |V (Gn)| = 2n+1,
and α(Gn) = n+ 1. By Lemma 2.3, we know that

ir(Gn) = 2α(Gn)− |V (Gn)| − 1 = 0.

The proof is completed.

In the next, we will study the isolated rupture degree of complement of gear
graph Gn. Firstly, we introduce the concept of the complement of a graph.

Definition 4.3 [2] The complement of a graph G is a graph Gc on the same vertices
such that two vertices of Gc are adjacent if and only if they are not adjacent in G.

Theorem 4.2 Let Gn be a gear graph. Then ir(Gc
n) = 2− 2n.

Proof. We know that a gear graph Gn can be constructed from a wheel graph
Wn by subdividing each edge of the outer n-cycle of the Wn just once. Let S′ be
a set of vertices of the outer n-cycle in Wn, and let S′′ be a set of vertices which
are added to the outer n-cycle in Gn. Let u be the center vertex. Since S′ and
S′′ ∪ {u} are two independent sets in Gn, these vertices form two complete graphs
Gc

n[S
′] and Gc

n[S
′′ ∪ {u}] with order n and n + 1 in Gc

n, respectively. Moreover,
each vertex of Gc

n[S
′] is joined to the vertices of Gc

n[S
′′ ∪ {u}] with n − 2 edges

in graph Gc
n. It is obvious that the vertex u in Gc

n is not adjacent to any vertex
in Gc

n[S
′]. Let S be a vertex cut set of Gc

n. By the definition of vertex cut set of
incomplete graph, we know that n ≤ |S| ≤ 2n − 1. If we remove all the vertices
of S from Gc

n, then the number of remaining components is exactly 2. So we have
two cases:

Case 1. n ≤ |S| ≤ 2n− 2. There exist two component of Gc
n−S, and one of them

is of order 1, m(Gc
n − S) = 2n− |S|. Thus, we have

i(Gc
n − S)− |S| −m(Gc

n − S) = 1− 2n.

Case 2. |S| = 2n− 1. The two components of Gc
n − S are both of order 1. Then

m(Gc
n − S) = 1. And so

i(Gc
n − S)− |S| −m(Gc

n − S) = 2− 2n.
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Thus,
ir(Gc

n) = max{1− 2n, 2− 2n} = 2− 2n.

The proof is completed.

Now we consider the Cartesian product of two graphs.

Definition 4.4 [2] The Cartesian product of two graphs G1 and G2, denoted by
G1×G2, is defined as follows: V (G1×G2) = V (G1)×V (G2), two vertices (u1, u2)
and (v1, v2) are adjacent if and only if u1 = v1 and u2v2 ∈ E(G2) or u1v1 ∈ E(G1)
and u2 = v2.

We note that if G1 and G2 are connected, then G1 × G2 is connected. And
it is well known that, if G is a bipartite graph with bipartition [A,B] and H is
bipartite graph with bipartition [C,D], then the Cartesian product of these two
bipartite graphs G and H, G×H is a bipartite graph with bipartition [(A×C) ∪
(B ×D), (A×D) ∪ (B × C)].

Theorem 4.3 Let Gn be a gear graph. Then ir(K2 ×Gn) = −1.

Proof. Since K2 and Gn are two bipartite graphs, K2×Gn is a connected bipartite
graph with V (K2 ×Gn) = 4n+ 2, and α(K2 ×Gn) = 2n+ 1. By Lemma 2.3, we
have

ir(K2 ×Gn) = −1.

The proof is completed.

Theorem 4.4 Let m(≥ 3) and n(≥ 3) be two positive integers. Then

ir(Gm ×Gn) = 0.

Proof. Gm and Gn are two bipartite graphs. Hence, Gm × Gn is an incomplete
connected bipartite graph with |V (Gm×Gn)| = (2m+1)(2n+1), and α(Gm×Gn) =
2mn+m+ n+ 1. By Lemma 2.3, we know that

ir(Gm ×Gn) = 2α(Gm ×Gn)− |V (Gm ×Gn)| − 1 = 0.

The proof is completed.

5. Some other results on isolated rupture
degrees of graphs

In this section, we determine the isolated rupture degree of a the Cartesian product
of two special graphs and a special permutation graph. The concept of a permuta-
tion graph was introduced by Chartrand and Harary in [4]. It is well known that
permutation graphs have high connectivity properties. Since then, many parame-
ters on this kind of graphs have been determined, such as connectivity, chromatic
number, crossing number, etc.
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Definition 5.1 [4] Let G be a graph whose vertices are labelled v1, v2, · · · , vn and
a permutation α ∈ Sn, where Sn is the symmetric group on {1, 2, · · · , n}. Then
the permutation graph Pα(G) is obtained by taking two copies of G, say Gx with
vertex set {x1, x2, · · · , xn} and Gy with vertex set {y1, y2, · · · , yn}, along with a
set of permutation edges joining xi of Gx and yα(i) of Gy (i = 1, 2, · · · , n).

Lemma 5.1 Let G be a bipartite, k-connected, k-regular graph on n vertices. Then
ir(G) = −1.

Proof. It is easy to see that α(G) = n
2 . Thus, by Lemma 2.3 we have

ir(G) = 2α(G)− n− 1 = −1.

The proof is completed.

Theorem 5.1 Let G1 be a bipartite, n-regular and n-connected graph with p1 ver-
tices, and G2 is a bipartite, m-regular and m-connected graph with p2 vertices.
Then ir(G1 ×G2) = −1.

Proof. It is obvious that the graph G1 × G2 is an (m + n)-regular and (m + n)-
connected bipartite graph with mn vertices. Then, by Lemma 5.1 we have

ir(G1 ×G2) = −1.

The proof is completed.

The Cartesian product of n graphs G1, G2, · · · , Gn, denoted by G1×G2×· · ·×
Gn, is defined inductively as the Cartesian product of G1 × G2 × · · · × Gn−1 and
Gn. In particular, the Cartesian product of k copies of K2, denoted by Qk, is called
a hypercube of dimensional k.

The following two results can be derived from Theorem 5.1 directly.

Theorem 5.2 Let m and n be two even positive integers. Then ir(Cn×Cm) = −1
and ir(Cn ×K2) = −1.

Theorem 5.3 The isolated rupture degree ir(Qk) of the hypercube Qk is −1.

Theorem 5.4 Let G be a bipartite, k-regular and k-connected graph with partition
[M,N ] on n vertices. Then, for a permutation α ∈ Sn satisfies that

α :

{
Mx −→ Ny

My −→ Nx,

we have ir(Pα(G)) = −1, where [Mx,My] is the partition of the first copy of G,
and [Nx, Ny] is the partition of the second copy of G.

Proof. It is easy to verify that the graph Pα(G) is a (k + 1)-regular and (k + 1)-
connected bipartite graph with partition [Mx ∪My, Nx ∪Ny]. By Lemma 5.1, we
know that

ir(Pα(G)) = −1.

The proof is completed.
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