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Abstract: Nutrient concentrations in runoff from beef cattle feedlots were esti-
mated using two different adaptive network-based fuzzy inference systems (ANFIS),
which were: (1) grid partition (ANFIS-GP) and (2) subtractive clustering based
fuzzy inference system (ANFIS-SC). The input parameters were pH and electrical
conductivity (EC); and the output parameters were total Kjeldahl nitrogen (TKN),
ammonium-N (NH4-N), orthophosphate (ortho-P), and potassium (K). Models per-
formances were evaluated based on root mean square error, mean absolute error,
mean bias error, and determination coefficient statistics. For the same dataset, the
ANFIS model outputs were also compared with a previously published nutrient
concentration predictability model for runoff using artificial neural network (ANN)
outputs. Results showed that both ANFIS-GP and ANFIS-SC models successfully
predicted the runoff nutrient concentration. The comparison results revealed that
the ANFIS-GP model performed slightly better than ANFIS-SC model in estimat-
ing TKN, NH4-N, ortho-P, and K. When compared with the ANN model for the
same dataset, ANFIS outperformed ANN in nutrient concentration prediction in
runoff.
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1. Introduction

With expanding livestock facilities, animal agriculture is facing increasing envi-
ronmental concerns, i.e., water and air pollution due to increased manure volume.
Although manure is an excellent source of nutrients for plants and a good soil con-
ditioner, improper manure management, especially from feedlots, can negatively
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influence water quality. Runoff from open animal feeding operations has long
been known as a source of groundwater and surface water pollution. According
to Koelsch [10], runoff from feedlots is a major contributor and will continue to be
a contributor to surface and groundwater impairment.

Transport and accumulation of nutrients in downstream surface water can se-
riously affect the living organisms in the water body since the excess amount of
nutrient loading promote algal growth, cause oxygen depletion and ultimately cause
eutrophication in the water ecosystem [14, 16, 18]. Controlling runoff from feedlots,
barnyards and other livestock facilities prevents the surface water contamination
from runoff. Discrete sampling is good to get an idea of nutrient concentration,
but it does not provide any diurnal trend. Continuous monitoring of nutrient con-
centrations overcome discrete sampling limitation, but in case of runoff sampling
it is an expensive and time consuming process due to automation of a system and
logistical supports needed to set up an automatic system. Therefore, there is a
need to develop a model capable of predicting feedlot runoff quality with easily
measurable parameters such as pH and EC.

There are many available techniques, such as multiple linear regressions (MLR)
and artificial intelligence that can be used for prediction and classification purposes.
MLR, which is a traditional statistical tool, is being widely used to learn about
the relationship between several independent variables and a dependent variable.
However, those well-established statistical tools are not suitable to address more
complex and nonlinear problems. Artificial intelligence techniques, such as arti-
ficial neural network (ANN) and adaptive network-based fuzzy inference systems
(ANFIS) can overcome these difficulties since these techniques have remarkable
learning capabilities.

The artificial intelligence techniques are broadly used in the field of surface and
groundwater hydrology and hydraulics to predict; sediment transport and accumu-
lation, evaporation, evapotranspiration, rainfall, and surface and watershed runoff
[3-7, 11, 13, 15, 17, 20]. Nevertheless, there is only one study available on the mod-
eling of nutrient concentrations on animal feedlot runoff using ANN [13]. ANFIS
has not been used previously to predict nutrient concentration from feedlot runoff,
or compared its predictability with ANN or other models.

Kisi et al. [15] has performed a gene expression programing (GEP) technique,
which is another intelligence technique, to estimate runoff from rainfall in a small
catchment and they have found that GEP is capable of modeling the rainfall-runoff
data successfully. Another intelligence technique, explicit neural network (ENN)
has been used to estimate sediment volume carried by a river [3]. Results from
that study showed that ENN performs better than MLR and nonlinear regression
models on estimating sediment volume. In the study, ANFIS model predictability
has been compared with ANN.

Fuzzy inference system (FIS) can describe the complex and non-linear phenom-
ena with the precise rules [6, 11]. The fuzzy model, which relies on the fuzzy logic,
was first created by Zadeh [20] as a mathematical tool to build a fuzzy logic of
a system that works by applying neural learning rules to identify the structure of
a FIS. It is a powerful design technique that serves as a basis to build a fuzzy
“if-then” rules or fuzzy conditional statements as a form of “if A then B”. In the
statement, A and B represent the fuzzy set characterized by membership function
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(MF). Takagi and Sugeno [17] conducted a systematic study on fuzzy modeling
to identify the structure of the FIS and they improved the fuzzy implication by
reducing the number of implication and simplifying the reasoning.

Following the previous studies on fuzzy logic, Jang [7] developed the architecture
and learning procedure to transform human knowledge or experience into a fuzzy
inference system and he called this technique as ANFIS. ANFIS uses ANN learning
algorithms and fuzzy reasoning to employ fuzzy if-then rules. The model minimizes
the sum of squared errors between the desired and the actual output by creating
a fuzzy decision tree. There are two types of ANFIS, which are the grid partition
based fuzzy inference system (ANFIS-GP) and subtractive clustering based fuzzy
inference system (ANFIS-SC) [5]. In this study, ANFIS-GP and ANFIS-SC, were
used to investigate the relationship between nutrient content, and physical and
chemical properties of runoff samples from beef cattle feedlots. Also, these models
output using the same dataset was compared with previously published nutrient
concentration in runoff prediction capability using the ANN. In both cases, the
model has two inputs and one output parameters. The input parameters were EC
and pH and output parameters were TKN, NH4-N, ortho-P, and K, where only one
output parameter was used at a time.

2. Material and method

2.1 Study site

The study site is located at +46o 33’ 45.46” N and -97o 8’ 27.60” W in Fargo,
ND, USA. The average annual rainfall in the study area is 468 mm. The soil type
is sandy loam. The length and width of the pen were 76 and 62 m, respectively,
and overall aggregate slope of the feedlot about 5% was achieved by incorporating
mounds in the pen. Feedlot has sandy loam soil and classified as hydrologic soil
group A. The feedlot was designed for 500 head of beef cattle with two pens, but
only one pen was operational, and runoff was collected from that pen only. Feedlot
manure was scrapped once in a year during fall. Additional information can be
found in Rahman et al. [15].

2.2 Experimental procedure and description of data

About 380 runoff samples were collected using automatic samplers (ISCO 6712,
Teledyne ISCO Inc., Lincoln, NE). ISCO samplers were powered by heavy duty
marine batteries, which were charged by solar panel. Runoff in each sampling lo-
cation was accumulated into a 60 liter bucket, and samples were collected from the
bucket using ISCO samplers, which were activated via liquid level actuator (model:
1640, sampler actuator, Teledyne ISCO Inc., Lincoln, NE). Immediately after col-
lection, samples were brought to laboratory for analyses. Standard methods of
analysis were employed to analyze runoff samples for determining nutrients (ortho-
P, TP, NH4-N, NO3-N, TKN, TN, and K), solids concentrations, pH, and electrical
conductivity (EC). Electrical conductivity and pH were analyzed using a handheld
meter (YSI Pro Plus, YSI Inc., Ohio, USA). Solids and nutrients were analyzed at
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Soil Testing and Waste Management Laboratory of North Dakota State University.
A detailed analysis procedure has been described in Rahman et al. [15].

2.3 Application of artificial intelligence techniques

Artificial intelligence techniques are suitable to solve high dimensional and nonlin-
ear problems because of their ability to recognize and learn from input and output.
In this study, two types of ANFIS, the grid partition based fuzzy inference system
(ANFIS-GP) and subtractive clustering based fuzzy inference system (ANFIS-SC)
were used to investigate the relationship between nutrient content, and physical
and chemical properties of runoff samples from beef cattle feedlots. At the same
time, runoff nutrient predictability using ANN in a previous study [4] has been
compared with the current ANFIS method using the same dataset. These results
were used to compare the predictability of two models.

Both ANN and ANFIS have learning process, additionally, ANFIS has sufficient
number of fuzzy rules created from expert knowledge to describe the input and
output relation of a problem. Overall, the selection of the tools to predict the
output with a high accuracy depends on the type of problem to be solved [3, 13,
17]. Each ANFIS systems have been described below.

2.3.1 Adaptive neuro-fuzzy interference system (ANFIS)

ANFIS is a non-linear, data driven, self-adaptive approach, and it can identify and
learn correlated patterns between input data sets and corresponding target values,
even when the underlying data relationship is unknown [19]. ANFIS have many
applications in many areas, such as function approximation, intelligent control,
time series prediction and agricultural information [1, 2, 12]. In ANFIS, it has
generated a large numbers of rules for the system, but not all the rules are being
used. This is one of the advantages of ANFIS where it will extract the best rules
from the system. The most significant advantage of using ANFIS is that all its
parameters can be trained within the structure of a fuzzy logic system [9].

ANFIS-GP used in this study has three different membership functions (MFs)
named as: triangular (tri), trapezoidal (trap), and Gaussian (Gauss). All MFs were
performed for each training, testing, and validation purposes, but only training and
testing results were presented. For the single input parameter, which was EC, 3
and 4 MFs were tested while, for two input parameters, which were EC and pH,
3×3 and 4×4 MFs were tested for each training, testing and validation data sets.

ANFIS-SC is important to determine the influential radius parameter for ANFIS-
SC using trial-and-error approach. For the ANFIS-SC model, 3 and 4 MFs were
tested for a single input parameter (EC) with three different radii (0.6, and 0.8 cm
for MF-4, and 1.25 cm for MF 3). However, 4, 6, 4×4, and 5×5 MFs were tested
for two input parameters (EC-pH) with three different radii (0.6 cm for MF 8×8,
0.8 cm for MF 6×6, and 1.25 cm for MF 4×4) for training, testing and validation
data sets.

ANFIS algorithm was used to build a fuzzy model of a system to predict un-
known data. Fig. 1 represents a typical architecture of two-input ANFIS model
with fixed nodes (circles) and adaptive nodes (squares). The figure contains input
nodes (layer 1), hidden layers (layers 2, 3, and 4), and an output node (layer 5).
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The nodes in the hidden layers are functioning as MFs and rules. Layer 1 is re-
ferred to as premise parameters contain two MFs (fuzzy subspace) associated to
each input parameter. Each subspace in layer 1 is partitioned to other subspaces
in layer 2 and 3. Both layers 2 and 3 are governed by a fuzzy if-then rule. Finally,
layer 4 is referred to as consequent parameters delineate the output with in fuzzy
subspace [7]. The ANFIS architecture in Fig. 1 is the same as the architecture used
in the model with either one or two input parameters (pH and EC) or the best
prediction results were presented in this study.
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Fig. 1 A typical architecture of an ANFIS [7].

Jang [7] simplified a typical rule set with two fuzzy “if-then” rules as follows:

Rule 1: If x is A1 and y is B1, then f1 = p1x+ q1y + r1,

Rule 2: If x is A2 and y is B2, then f2 = p2x+ q2y + r2.

Here x and y are two input variables, the A and B denote the linguistic terms of
the node function, and the r, p and q are referred to as consequent parameters.
The details and mathematical background of ANFIS and the detailed description
of each layer in Fig. 1 can be found in Jang and Jang et al. [7, 8].

Training, testing, and validation processes were performed for both ANFIS-GP
and ANFIS-SC with only one input parameter (EC) or two input parameters (EC
and pH) to estimate one output such as NH4-N, TKN, ortho-P, or K at a time.
Training processes were applied to minimize the mean square error (MSE) between
the input parameter(s) and the desired output parameter of the system. Weights of
the connections were adjusted in the neural network. In order to obtain sufficiently
accurate and reliable results, the training data set must represent all the important
characteristics of the entire data set. Based on this criterion, training data set was
formed using independent variables on the data available. Before starting to run
the model to predict the unknown data, the model was tested using the data set
that was not used during the training process.

Testing process provides more reliable evaluation and comparison of the data.
Root mean square error (RMSE), mean absolute error (MAE), mean bias error
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(MBE) and coefficient of determination (R2) statistics are used as comparing cri-
teria for the evaluation of the models’ performances. The statistical parameters,
which are mean, standard error (SE), standard deviation (SD), minimum values
(min), maximum values (max), and coefficient of variance (CV) were calculated for
training and testing data sets for input and output parameters.

3. Results and discussion

In this study, NH4-N, TKN, ortho-P, and K concentrations were estimated as
output parameters using EC and pH inputs. The best estimation data set was
determined by analyzing the statistical parameters for testing and training data
sets. The statistical parameters, which were mean, SE, SD, CV, minimum and
maximum values were presented in Tab. I for training and testing data sets. Tab. I
showed that the minimum and maximum values of the training and testing data
sets for both input (EC and pH) and output parameters (NH4-N, TKN, ortho-P,
and K) were comparable which explained that the data obtained in this study were
sufficient to run the model. Similarly, other parameters such as mean, SE, SD,
and CV values for either input or output parameters were observed and found very
close each other in both training and testing data sets. These results proved that
selected input and output data sets were acceptable to run the model.

3.1 Estimation of NH4-N, TKN, ortho-P, and K

ANFIS-GP and ANFIS-SC models were applied for the single (EC) and two (EC-
pH) input parameters to estimate NH4-N, TKN, ortho-P, and K. Cemek et al.,
[4] conducted a study in the same sampling area to determine the relationship
between input and output parameters. They found that output parameters (NH4-
N, TKN, ortho-P, and K) are affected when the input parameters (EC and pH)
are varied. Modeling results from this study also proved that there is a strong
relationship between input and output parameters. Additionally, Cemek et al. [4]
applied MLR and ANN methods to predict NH4-N, TKN, ortho-P, and K for the
same dataset used in this study, and their results were compared with the ANFIS
output.

For ANFIS-GP models with tri, trap, and Gauss MFs were tested for each
input parameter. The number of MFs was 3 and 4 for EC parameter and 3×3
and 4×4 for EC-pH parameters. All the results for ANFIS-GP were presented in
the Tabs. II, IV, VI, and VIII. For ANFIS-SC model, the number of MFs was 3
and 4 for EC parameter and 4×4, 5×5, 6×6, 8×8, 9×9, and 10×10 for EC-pH
parameters. Additionally, radii for ANFIS-SC were 0.6, 0.8, and 1.25 cm for either
EC or EC-pH inputs. All the results for ANFIS-SC were presented in the Tabs. III,
V, VII, and IX. The best estimated results for both models were presented in the
Tabs. II through IX and highlighted in gray color. Estimated versus measured data
for the best estimated results were plotted and presented in the figures following
each table.

About 70% data sets were used to train the model while the rest of the data sets
were used for testing purposes to predict the outputs. RMSE and R2 were crucial
for determining ANFIS-SC model that were consisted of different number of fuzzy
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Parameter Mean SE SD Min Max CV

input pH 7.65 0.03 0.3 6.95 8.24 3.92
Training input EC 1591 79.4 895 329 3507 56.24

output NH4-N 10.2 0.57 6.44 0.32 35.53 63.04

input pH 7.6 0.05 0.31 6.77 8.05 4.12
Testing input EC 1486 159 931 379 3441.5 62.6

output NH4-N 10.59 1.35 7.89 0.4 31.78 74.4

input pH 7.67 0.03 0.32 7.03 8.24 4.17
Training input EC 1685 97.1 1027 329 3735 60.95

output TKN 74.0 4.06 42.95 1 161 58.06

input pH 7.76 0.03 0.2 7.4 8.12 2.54
Testing input EC 1837 170.8 981 379 3318 53.4

output TKN 76.4 8.25 47.37 8.6 147 62

input pH 7.7 0.02 0.31 6.95 8.24 4.03
Training input EC 1785 68.6 905 329.0 3636 50.71

output ortho-P 14.5 0.49 6.48 0.11 26.03 44.69

input pH 7.65 0.04 0.31 6.81 8.13 4
Testing input EC 1921 142.1 1044 379.5 3442 54.3

output ortho-P 14.21 1.07 7.83 0.11 24.47 55.1

input pH 7.7 0.02 0.3 6.95 8.21 3.90
Training input EC 1837 61.1 862 329 3736 46.92

output K 436 18.13 255 10.73 992 58.57

input pH 7.66 0.04 0.28 6.77 8.18 3.64
Testing input EC 2041 120.8 958 379.5 3423 46.96

output K 492 34 277 12.26 903 56.34

Tab. I Statistical parameters for input (EC and pH) and output (NH4 -N, TKN,
ortho-P and K) variables.

rules. The different numbers of MFs were tested and the lowest RMSE values were
selected. In a previous study, ANFIS-SC model has been used for estimating daily
pan evaporation and different RMSE values were found for the different number
of inputs [9]. RMSE values were 0.95, 0.77, 0.50, and 0.22 for one, two, three,
and four inputs, respectively. Adding fourth input to the model increased ANFIS
model’s performance by reducing RMSE values to 56% [9]. In this study, the best
estimated training results were selected from each tables and corresponding testing
data set for the same MF also selected accordingly. The best estimated results are
also shaded to gray color each table. The statistical parameters, which were R2,
MBE, MAE, and RMSE were calculated for each training and testing data set and
presented in Tabs. II through V. RMSE and correlation played important roles in
determining ANFIS model which were consisted of different number of fuzzy rules.
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3.1.1 Estimation of NH4-N

The effect of a single input parameter, EC, and two input parameters, EC-pH,
on the NH4-N was modeled using ANFIS-GP and ANFIS-SC models. Based on
the multiple linear regression analysis conducted by Cemek et al. [4] for the same
study site, NH4-N concentrations were found highly correlated with EC and pH
input parameters since the highest ammonium was observed at high EC and low
pH values or lowest ammonium concentration was observed with high EC and high
pH values. Statistical parameters were analyzed and the best NH4-N prediction
data was selected for both ANFIS-GP and ANFIS-SC models and results were
presented in Tabs. II and III, respectively.

Name Input No. of MF Input MF R2 MBE MAE RMSE

T
ra
in
in
g
d
a
ta

se
t

Tri 0.87 −0.02 1.78 2.29
ANFIS-GP EC 3 Trap 0.89 0.02 1.74 2.14

Gauss 0.85 −0.24 1.93 2.46

Tri 0.89 −0.39 1.53 2.20
ANFIS-GP EC 4 Trap 0.86 −0.28 1.75 2.44

Gauss 0.87 0.33 1.70 2.32

Tri 0.87 0.00 1.82 2.33
ANFIS-GP EC-pH 3×3 Trap 0.95 0.00 1.11 1.47

Gauss 0.96 0.01 1.02 1.35

Tri 0.97 0.00 0.84 1.15
ANFIS-GP EC-pH 4×4 Trap 0.97 0.00 0.80 1.09

Gauss 0.97 0.00 0.77 1.08

T
es
ti
n
g
d
a
ta

se
t

ANFIS-GP EC 3
Tri 0.92 0.10 1.59 1.98
Trap 0.93 0.44 1.54 1.98
Gauss 0.93 0.17 1.53 1.91

ANFIS-GP EC 4
Tri 0.93 0.16 1.44 1.90
Trap 0.96 0.75 1.08 1.66
Gauss 0.97 0.42 1.01 1.34

ANFIS-GP EC-pH 3×3
Tri 0.89 0.26 1.75 2.35
Trap 0.91 −0.21 1.72 2.17
Gauss 0.91 −0.35 1.64 2.12

ANFIS-GP EC-pH 4×4
Tri 0.93 −0.28 1.44 1.81
Trap 0.92 −0.42 1.39 2.10
Gauss 0.94 0.24 1.14 1.76

Tab. II Estimating NH4 -N for the inputs of EC and pH data using ANFIS-GP
model.

For ANFIS-GP model, the best estimated NH4-N values were selected for the
EC-pH input parameters for 3×3 and 4×4 MF and tri, trap, and Gauss methods.
All the EC-pH inputs produced suitable results since R2 values are varied between
0.87 and 0.97 and RMSE values are varied between 1.08 and 2.33. Testing for
EC-pH inputs are also acceptable since R2 s are higher and RMSEs are lower.
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Gauss method for 4×4 MF with the highest R2 values (0.97), the lowest RMSE
values (1.08), and the lowest MBE and MAE values for training data sets and
corresponding testing data sets for this training data with high R2 value (0.94),
the low RMSE value (1.76), and the low MBE and MAE values were presented in
Fig. 2.
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Fig. 2 The measured and estimated NH4 -N concentrations [mg/L] for the inputs
of EC-pH using ANFIS-GP and ANFIS-SC models.

Single input (EC) modeling results are also acceptable to estimate ammonium
since R2 s are higher than 0.85 for training and higher than 0.92 for testing data
sets. This result explained that ammonium can be estimated using only EC input
if pH is not available.

The relationships between inputs and outputs were 97% for training and 94%
for testing data sets explained that the ANFIS-GP model produced high accuracy
for two input parameters (EC-pH) compare to single input (EC) parameter. This
outcome explained that the model can predict NH4-N with 3% error for training and
6% error for testing data sets for EC-pH (Fig. 2a, c). Cemek et al. [4] found slightly
lower correlation (R2 value was 0.92 and 0.85 for ANN and MLR, respectively) to
estimate NH4-N in runoff sample.

For ANFIS-SC model, the estimated NH4-N values were modeled for the EC
and EC-pH input parameters with 3, 4, 4×4, 6×6, 8×8 MF and 0.6, 0.8, and
1.25 cm radii. All the EC-pH inputs produced suitable results since R2 values
are varied between 0.91 and 0.94 and RMSE values are varied between 1.56 and
1.94 for training data sets. Testing data for these training data are also produced
high R2 (varied between 0.92 and 0.96) and low RMSE (varied between 1.45 and
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Name Input Radii No. of MF R2 MBE MAE RMSE

T
ra
in
in
g
d
a
ta

se
t 0.6 4 0.87 −0.35 1.75 2.3

ANFIS-SC EC 0.8 4 0.89 −0.31 1.55 2.13
1.25 3 0.83 −0.35 2.10 2.66

0.6 8×8 0.94 0.07 1.09 1.56
ANFIS-SC EC-pH 0.8 6×6 0.92 0.00 1.35 1.78

1.25 4×4 0.91 0.00 1.47 1.94

T
es
ti
n
g
d
a
ta

se
t

ANFIS-SC EC
0.6 4 0.97 0.52 1.08 1.41
0.8 4 0.97 0.55 0.99 1.4
1.25 3 0.95 0.20 1.23 1.6

ANFIS-SC EC-pH
0.6 8×8 0.92 0.12 1.43 1.97
0.8 6×6 0.92 −0.14 1.41 1.94
1.25 4×4 0.96 0.08 1.07 1.45

Tab. III Estimating NH4 -N for the inputs of EC and pH data using ANFIS-SC
model.

1.97) values. The best estimated NH4-N value was selected for the EC-pH input
parameters with radii of 1.25 and MF of 4×4 for both training and testing data
sets and the measured and estimated NH4-N concentrations [mg/L] were presented
in Fig. 2a and c, which are; (a): 4×4 MF using Gauss method for training data
sets, (c): 4×4 MF using Gauss method for testing data sets.

Tab. III shows that single input parameter EC may also be used to predict
ammonium in runoff with high R2 (≥ 0.87) and low RMSE (≤ 2.66) values for
both training and testing data. Overall, the results explain that either EC or
EC-pH inputs can be used to predict ammonium accurately.

For ANFIS-SC, the relationships between inputs and outputs were 91% for
training and 96% for testing data sets expressed that the model predicted NH4-
N with 9% and 4% errors for training and testing, respectively, for two input
parameters (EC-pH) compare to single input (EC) parameter in Fig. 2b and d,
which are; (b): 1.25 cm radius and 4×4 MF for training data sets, (d): 1.25 cm
radius and 4×4 MF for testing data sets.

3.1.2 Estimation of TKN

EC and EC-pH inputs were analyzed for the estimated TKN parameters and results
showed that EC-pH inputs produced the best outcome compare to single parameter
(EC) for both ANFIS-GP and ANFIS-SC models (Tab. IV). Tri, trap, and Gauss
methods; 3, 4, 3×3, 4×4, and 10×10 MFs; and 0.6, 0.8, and 1.25 cm radii were used
for both models. Trap method with 4×4 MFs was selected for the best ANFIS-GP
model for EC-pH inputs (Figs. 3a and c). In Fig. 3, (a) is 4×4 MF with Gauss
method for training data sets; (c) is 4×4 MF with Gauss method for testing data
sets. The highest R2 is 0.98 and the lowest RMSE is 6.17 and MBE and MAE
values were lowest for training and testing data sets (Tab. IV).

The ANFIS-GP model results explained that single input parameter EC pro-
duced a good estimation data to predict TKN with high R2 (high as much as 0.98)
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Measured TKN, mg/L
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Fig. 3 The measured and estimated TKN values [mg/L] for the inputs of EC and
pH using ANFIS-GP and ANFIS-SC model.

and low RMSE (low as much as 6.17) values for both training and testing data.
Overall, the results explain that either EC or EC-pH inputs can predict TKN with
a high accuracy.

For ANFIS-SC model of TKN, the best radius for EC-pH inputs was 0.6 cm
with 10×10 MF and the highest R2 (0.95) and the lowest RMSE (9.82) for train-
ing and values. R2 value for the ANFIS-SC was 0.84 and RMSE was 22.88 for
the corresponding testing data sets with 0.6 cm radius and 10×10 MF (Tab. V,
Figs. 3b and d). In Fig. 3, b is 0.6 cm radius and 10×10 MF for training data
sets; (d) is 0.6 cm radius and 10×10 MF for testing data sets. For EC, R2s are
higher than 0.75 and RMSEs are lower than 23.79, which indicate that single input
parameter can be used to predict TKN (Tab. V). Overall, these results explained
that ANFIS-GP model produced slightly better prediction for both single and two
inputs than ANFIS-SC model for TKN estimation. For the same dataset, the TKN
concentration predictability using the MLR model was R2 = 0.88, RMSE = 20.45
and for the ANN model the predictability was R2 = 0.88, RMSE = 17.03 [4].
Whereas, the ANFIS model improved the TKN predictability R2 = 0.98, RMSE
= 6.17). Therefore, both models may be used for predicting nutrient in runoff, but
ANFIS model might improve predictability in some cases.
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Name Input No. of MF Input MF R2 MBE MAE RMSE
T
ra
in
in
g
d
a
ta

se
t

ANFIS-GP EC 3
Tri 0.69 0 18.59 23.68
Trap 0.60 0 23.42 27.13
Gauss 0.66 0 20.4 24.96

ANFIS-GP EC 4
Tri 0.79 0 14.28 19.80
Trap 0.78 0 13.48 20.06
Gauss 0.78 0 13.75 19.97

ANFIS-GP EC-pH 3×3
Tri 0.93 −0.01 7.32 11.06
Trap 0.95 −0.19 6.6 9.25
Gauss 0.97 0 5.68 7.89

ANFIS-GP EC-pH 4×4
Tri 0.96 0 5.77 8.25
Trap 0.97 0 5.4 7.91
Gauss 0.98 −0.1 4.56 6.17

T
es
ti
n
g
d
a
ta

se
t

ANFIS-GP EC 3
Tri 0.74 −5.46 19.13 26.12
Trap 0.80 −8.63 20.97 25.44
Gauss 0.75 −6.41 19.99 26.12

ANFIS-GP EC 4
Tri 0.84 −2.03 14.07 20.21
Trap 0.84 −1.59 13.85 20.1
Gauss 0.86 −1.98 13.5 18.91

ANFIS-GP EC-pH 3×3
Tri 0.91 −8.53 13.46 17.99
Trap 0.87 −9.7 15.04 21.81
Gauss 0.85 −13.42 18.36 27.21

ANFIS-GP EC-pH 4×4
Tri 0.69 −13.02 22.05 34.19
Trap 0.77 −9.74 19.79 28.84
Gauss 0.91 −3.25 10.81 16.07

Tab. IV Estimating TKN for the inputs of EC and pH data using ANFIS-GP
model.

3.1.3 Estimation of ortho-P

The effect of single (EC) and two (EC-pH) input parameters on the estimation of
ortho-P was examined using the ANFIS-GP and the ANFIS-SC models. A previous
study showed that EC and pH inputs were highly correlated on the estimation of
ortho-P and there was a curvilinear relationship between EC, pH and ortho-P. It
was found that the ortho-P concentration increased when EC value was high and
pH was low [4].

Tri, trap, and Gauss methods with 3, 4, 3×3, and 4×4 MFs for ANFIS-GP
model were used to estimate ortho-P. Statistical results showed that the accuracy on
the estimation of ortho-P was acceptable in both single and two input parameters.
In ANFIS-GP model for ortho-P, R2 values of EC inputs were lower compare to
EC-pH inputs for training data, even though higher for testing data (Tab. VI).
The highest R2 values were 0.88 for training and 0.91 for testing, the lowest RMSE
values were observed 2.22 for training and 2.66 for testing. One of the suitable
results, which were 3×3 MF with trap method was selected to present in Fig. 4.
In the Fig. 4; (a): EC-pH inputs for 3×3 MF using trap method for training
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Name Input Radii No. of MF R2 MBE MAE RMSE

T
ra
in
in
g
d
a
ta

se
t

ANFIS-SC EC
0.6 9 0.83 0.01 12.00 17.71
0.8 6 0.83 0.77 12.81 17.59
1.25 3 0.75 0.00 15.24 21.48

ANFIS-SC EC-pH
0.6 10×10 0.95 0.05 6.31 9.82
0.8 6×6 0.93 −0.01 7.51 11.45
1.25 4×4 0.91 0.00 8.67 12.51

T
es
ti
n
g
d
a
ta

se
t

ANFIS-SC EC
0.6 9 0.85 2.20 11.72 19.21
0.8 6 0.86 3.04 12.68 19.19
1.25 3 0.77 −1.61 16.81 23.79

ANFIS-SC EC-pH
0.6 10×10 0.84 −8.19 15.89 22.88
0.8 6×6 0.84 −7.24 15.75 22.60
1.25 4×4 0.87 −6.31 14.34 20.34

Tab. V Estimating TKN for the inputs of EC and pH data using ANFIS-SC model.
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Fig. 4 The measured and estimated ortho-P concentrations [mg/L] for the inputs
of EC-pH using ANFIS-GP and ANFIS-SC models.

data sets, (c): EC-pH inputs for 3×3 MF using trap method for testing data
sets. For the same dataset, Cemek et al. [4] found a lower correlation coefficient
for estimating ortho-P using the MLR (R2 = 0.76; RMSE = 1.50) and ANN
(R2 = 0.90; RMSE = 0.69) model.
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For ANFIS-SC model for ortho-P; 0.6, 0.8, and 1.25 cm radius with 3, 4, 6,
5×5, 9×9, and 10×10 MFs were used to estimate ortho-P. Similarly, for ANFIS-
SC model, the highest R2 values were observed as 0.85 for training and 0.91 for
testing, the lowest RMSE values were observed as 2.48 for training and 2.72 for
testing (Tab. VII). Both single and two input parameters were acceptable on the
estimation of ortho-P. As an example, one of the models output for both training
and testing data were presented in Fig. 4. In the Fig. 4; (b): EC-pH inputs for
1.25 cm radius and 5×5 MF for training data sets, (d): EC-pH inputs for 1.25 cm
radius and 5×5 MF for testing data sets.

3.1.4 Estimation of K

The best K prediction data was analyzed for both single (EC) and two (EC-pH)
input parameters for both ANFIS-GP and ANFIS-SC models (Tab. VIII). Model
results were analyzed and both single and two input parameters were found as high

Name Input No. of MF Input MF R2 MBE MAE RMSE

T
ra
in
in
g
d
a
ta

se
t

ANFIS-GP EC 3
Tri 0.78 0 2.48 3
Trap 0.76 0 2.62 3.16
Gauss 0.77 0 2.57 3.08

ANFIS-GP EC 4
Tri 0.78 0 2.51 3.01
Trap 0.78 0 2.5 3.01
Gauss 0.78 0 2.53 3.04

ANFIS-GP EC-pH 3×3
Tri 0.85 0 2.02 2.51

Tramp 0.85 0 2.02 2.52
Gauss 0.87 0 1.8 2.36

ANFIS-GP EC-pH 4×4
Tri 0.87 0 1.76 2.35
Trap 0.87 0 1.76 2.31
Gauss 0.88 0 1.68 2.22

T
es
ti
n
g
d
a
ta

se
t

ANFIS-GP EC 3
Tri 0.90 −0.99 2.31 2.86
Trap 0.88 −0.87 2.42 3.03
Gauss 0.90 −0.92 2.31 2.88

ANFIS-GP EC 4
Tri 0.91 −0.97 2.34 2.83
Trap 0.90 −0.84 2.28 2.86
Gauss 0.90 −0.98 2.35 2.89

ANFIS-GP EC-pH 3×3
Tri 0.83 −0.95 2.45 3.35

Tramp 0.89 −0.69 2.02 2.66
Gauss 0.70 −0.22 3.16 4.25

ANFIS-GP EC-pH 4×4
Tri 0.83 −1.41 2.58 3.49
Trap 0.86 −0.5 2.24 2.92
Gauss 0.65 −1.58 3.35 5.3

Tab. VI Estimating ortho-P for the inputs of EC and pH data using ANFIS-GP
model.
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Fig. 5 The observed and estimated K values for the inputs of EC and pH using
ANFIS-GP and ANFIS-SC models.

Name Input Radii No. of MF R2 MBE MAE RMSE

T
ra
in
in
g
d
a
ta

se
t

ANFIS-SC EC
0.6 6 0.79 0 2.49 2.99
0.8 4 0.78 0 2.53 3.04
1.25 3 0.72 −0.27 2.61 3.45

ANFIS-SC EC-pH
0.6 10×10 0.85 0 1.95 2.48
0.8 9×9 0.85 0 1.95 2.48
1.25 5×5 0.81 0 2.32 2.81

T
es
ti
n
g
d
a
ta

se
t

ANFIS-SC EC
0.6 6 0.91 −0.82 2.22 2.72
0.8 4 0.9 −0.96 2.32 2.86
1.25 3 0.9 −1.02 2.38 2.94

ANFIS-SC EC-pH
0.6 10×10 0.83 −1.06 2.44 3.42
0.8 9×9 0.83 −0.85 2.42 3.3
1.25 5×5 0.87 −0.82 2.26 2.92

Tab. VII Estimating ortho-P for the inputs of EC and pH data using ANFIS-SC
model.

accuracy on estimation of K for both models. As an example, 4×4 MF and Gauss
method for both training and testing data sets were selected for EC-pH inputs and
presented in Fig. 5. All three methods were produced the high

R2 values (varied between 0.97–0.99 for training and 0.97–0.98 for testing) and
the lowest RMSE values (22.78 for training and 40.28 for testing). In the Fig. 5;
(a): EC-pH inputs for 4×4 MF using Gauss method for training data sets, (c):
EC-pH inputs for 4×4 MF using Gauss method for testing data sets.
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Name Input No. of MF Input MF R2 MBE MAE RMSE
T
ra
in
in
g
d
a
ta

se
t

ANFIS-GP EC 3
Tri 0.98 −0.09 8.35 31.9
Trap 0.98 −0.19 8.1 31.55
Gauss 0.98 −0.03 7.93 31.64

ANFIS-GP EC 4
Tri 0.98 0.14 7.82 37.69
Trap 0.98 0.2 7.81 31.33
Gauss 0.99 0.16 7.83 31.09

ANFIS-GP EC-pH 3×3
Tri 0.98 −8.34 32.79 42.33
Trap 0.98 −3.41 29.01 36.26
Gauss 0.98 −8.14 34.52 45.75

ANFIS-GP EC-pH 4×4
Tri 0.99 0.17 4.32 23.14
Trap 0.99 0.25 5.53 23.55
Gauss 0.97 0.06 4.36 22.78

T
es
ti
n
g
d
a
ta

se
t

ANFIS-GP EC 3
Tri 0.98 −8.34 32.79 42.33
Trap 0.98 −3.41 29.01 36.26
Gauss 0.98 −8.14 34.52 45.75

ANFIS-GP EC 4
Tri 0.97 −9.62 38.69 52.72
Trap 0.97 −9.76 35.89 50.95
Gauss 0.98 −1.96 30.92 40.28

ANFIS-GP EC-pH 3×3
Tri 0.98 −8.34 32.79 42.33
Trap 0.98 −3.41 29.01 36.26
Gauss 0.98 −8.14 34.52 45.75

ANFIS-GP EC-pH 4×4
Tri 0.97 −9.62 38.69 52.72
Trap 0.97 −9.76 35.89 50.95
Gauss 0.98 −1.96 30.92 40.28

Tab. VIII Estimating K for the inputs of EC and pH data using ANFIS-GP model.

Name Input Radii No. of MF R2 MBE MAE RMSE

T
ra
in
in
g
d
a
ta

se
t ANFIS-SC EC 0.6 4 0.99 0.2 7.82 30.98

0.8 4 0.99 0.14 7.82 30.99
1.25 3 0.98 −0.10 8.02 31.79

ANFIS-SC EC-pH 0.6 9×9 0.99 1.01 6.10 25.61
0.8 6×6 0.99 0.80 6.26 25.86
1.25 4×4 0.99 0.99 7.45 29.34

T
es
ti
n
g
d
a
ta

se
t ANFIS-SC EC 0.6 4 0.99 −7.06 27.66 33.80

0.8 4 0.99 −7.30 27.75 33.86
1.25 3 0.99 −8.93 30.07 36.28

ANFIS-SC EC-pH 0.6 9×9 0.99 −3.34 28.84 34.96
0.8 6×6 0.99 −4.58 29.11 35.29
1.25 4×4 0.97 −2.02 27.05 33.56

Tab. IX Estimating K for the inputs of EC and pH data using ANFIS-SC model.
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For ANFIS-SC model, both single and two input parameters produced highly
accurate estimation to predict K. Tab. IX showed that R2 values were extremely
high for both training and testing data sets. One example outcome for training
and testing data has presented in Fig. 5. In the Fig. 5; (b): EC-pH inputs for
1.25 cm radius and 4×4 MF for training data sets, (d): EC-pH inputs for 1.25 cm
radius and 4×4 MF for testing data sets. Comparing ANFIS-GP and ANFIS-SC,
both models were acceptable to estimate K. A Comparison between ANFIS (this
study) and ANN [4] showed that ANFIS provided higher predictability for the K
concentration.

Overall, two types of fuzzy models, ANFIS-GP and ANFIS-SC were used in
the current study for the data collected from a particular beef cattle feedlot. The
same models are applicable to other beef cattle feedlots to estimate NH4-N, TKN,
ortho-P, and K using the pH and/or EC inputs parameters. However, for differ-
ent types of animal feedlots, this model need to be calibrated based on feedlot
nutrient characteristics, since runoff and manure nutrient characteristics may vary
significantly based on animal diets and animal types.

4. Conclusions

The performance of adaptive fuzzy inference system was evaluated to estimate nu-
trient concentrations in runoff from beef cattle feedlot. Two fuzzy inference system
models, which were ANFIS-GP and ANFIS-SC were used to estimate NH4-N, TKN,
ortho-P, and K using either single (EC) or two (EC-pH) input parameters. Results
showed that all the output parameters were well modeled using fuzzy control rules.
In general, GBP-FIS model performed slightly better than the ANFIS-SC model
to estimate output parameters using either EC or EC-pH as inputs. Statistical
results showed that both single and two input parameters were acceptable to es-
timate NH3, TKN, ortho-P, and K for both ANFIS-GP and ANFIS-SC models.
Two input parameters (EC-pH) provided higher accuracy to estimate all four out-
put parameters compare to a single input parameter. Particularly, estimation of
TKN performed better two input parameters. Nevertheless, in case of lack of pH,
only EC value can be also used to predict all four output parameters with good
predictability. In this study, ANFIS outperformed ANN in nutrient concentration
prediction in runoff. GBP-FIS models may be used as means to estimate nutrient
concentration easily and quickly when limited information is available.
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