
INTELLIGENT
NETWORK-MISUSE-DETECTION-SYSTEM

USING NEUROTREE CLASSIFIER

B. Muthukumar∗, S.S. Sivatha Sindhu†, S. Geetha‡, A. Kannan§

Abstract: Intrusion detection systems (IDSs) are designed to distinguish normal
and intrusive activities. A critical part of the IDS design depends on the selec-
tion of informative features and the appropriate machine learning technique. In
this paper, we investigated the problem of IDS from these two perspectives and
constructed a misuse based neurotree classifier capable of detecting anomalies in
networks. The major implications of this paper are a) Employing weighted sum
genetic feature extraction process which provides better discrimination ability for
detecting anomalies in network traffic; b) Realizing the system as a rule-based
model using an ensemble efficient machine learning technique, neurotree which
possesses better comprehensibility and generalization ability; c) Utilizing an ac-
tivation function which is targeted at minimizing the error rates in the learning
algorithm. An extensive experimental evaluation on a database containing normal
and anomaly traffic patterns shows that the proposed scheme with the selected fea-
tures and the chosen classifier is a state-of-the-art IDS that outperforms previous
IDS methods.

Key words: intrusion detection system, misuse detection, genetic algorithm, neural
network, decision tree, neurotree

Received: November 27, 2014 DOI: 10.14311/NNW.2015.25.027
Revised and accepted: June 6, 2015

1. Introduction

1.1 Motivation and misuse detection scenario

One of the biggest hurdles to having a secure and safe network is the large amount
of human expertise and domain knowledge required to manage and at the same
time non-availability of suitable personnel to man them. A mechanism that par-
tially automates the network security management procedures, thus reducing the

∗Balasubramaniam Muthukumar, Department of Information Technology, Syed Ammal Engi-
neering College, Ramanathapuram, India

†Siva S. Sivatha Sindhu, Security Associate, Shan Systems, New Jersey, USA
‡Subbiah Geetha – Corresponding author, School of Computing Science and Engineering, VIT

Campus Chennai, India, E-mail: geethabaalan@gmail.com
§Arputharaj Kannan, School of Information Science and Technology, Anna University, Chen-

nai, India

c⃝CTU FTS 2015 541



Neural Network World 5/15, 541–564

total dependence on human experts alone is required. Moreover, the mechanism
should be intelligent enough to cope with unseen events and should contain a learn-
ing strategy to keep itself updated so that human intervention can be minimized.
With this as the objective, research on building intelligent IDS was carried out by
many researchers [12, 14, 16, 25, 26]. Intelligent IDS is a dynamic defensive system
that is capable of adapting to dynamically changing traffic patterns and is present
throughout the network rather than only at its boundaries, thus helping to catch all
types of attacks. Humans have intuitive characteristics of sensing the incorrect pat-
terns that differ from normal and this is what differentiates a man from a machine.
This is the most important property of humans which is not available easily in
the computer based systems and hence such intelligence must be incorporated into
IDS. Soft-computing techniques impart artificial intelligence to IDS to make them
self-functioning as much as possible. These techniques utilize tolerance for tackling
ambiguity, uncertainty, partial truth and approximation to achieve robustness at
low solution cost. An IDS using soft-computing technique has been proposed by
Cannady [6] in which he used artificial neural network for classification. Moreover,
there are many other works that use soft-computing techniques for intrusion de-
tection including Genetic Algorithm (GA) [13], Support Vector Machine (SVM),
Naive Bayes (NB) [4], Decision Tree (DT) [22, 28, 33] for the discovery of useful
knowledge in order to detect intrusive activities. The proposed work develops an
advanced intelligent system using ensemble soft-computing techniques for intrusion
detection. Integration of soft-computing techniques like Neural Network (NN) [14],
GA and DT has lead to the discovery of useful knowledge to detect and prevent in-
trusion on the basis of observed activity happening in a network. The hybridization
[2, 5, 16, 19, 23, 24, 32] of these learning and adaptation techniques overcomes the
limitations of individual soft-computing techniques and achieves synergetic effects
for intrusion detection.

1.2 Solution strategy and contribution

A misuse detection system tries to discover intrusions by searching for unique pat-
terns or signatures of known attacks. This detection system forms rules based
on the known attacks which are stored in knowledge bases for making further in-
ferences. They employ soft-computing techniques like DT algorithm to form the
rules which are to be used for deductive inference. As most of the existing mis-
use detection systems [2, 17, 19, 22] are generally incapable of adapting to the
change of circumstances, they report high false alarm rate. However, algorithms
based on NN [3, 9, 12] have the capability of capturing the dynamics of network
traffic behavior. Unlike traditional statistical models, NNs are data driven, non-
parametric weak models (as they take long time to compute a stable output) and
they let the data speak for themselves. Also, NNs are universal function approxi-
mators that can handle any nonlinear system even without prior assumption about
the data. So NNs are less susceptible to the model misspecification problem than
most of the parametric models and are more powerful in describing the dynamics
of network behaviour than traditional statistical models. In addition, NN meth-
ods scale up much better than linear statistical models as the size and complexity
of the learning task grows. These characteristics of NN based algorithms make

542



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

them more suitable and effective for misuse detection. In IDS, the network pro-
files may change over time. To handle such dynamic profiles learning algorithms
are required to closely track the network behaviour and adapt to the dynamically
changing scenario. Therefore, this work proposes an IDS by integrating NN and
DT for multi-class categorization i.e., neurotree. The proposed neurotree algorithm
generates rules automatically without manual intervention and the rules thus gen-
erated possess both generalization and comprehensibility. The generated rules are
used to detect a network traffic pattern as either normal or intrusive.

1.3 Structure of the paper

The rest of this paper is organized as follows: Section 2 surveys the related works
on intrusion detection, evaluates other related works and presents the need for the
proposed model. Section 3 provides the functional framework of neurotree. In Sec-
tion 4, we detail the design of the neurotree detection methodology which is used for
performing the misuse detection. Section 4 also explains the feature extraction al-
gorithm employed, the proposed neurotree algorithm and the performance metrics.
Section 5 focuses on the experimental analysis of neurotree detection paradigm with
the Neural Network Ensemble (NNE) and extended C4.5 detection model. Section
6 explains the different phases of experiments that have been conducted and also
presents the experimental results and analysis of the obtained using preprocessed
Knowledge Discovery and Data mining (KDD) dataset. Finally, Section 7 draws
conclusion of the work.

2. Literature review

Shun [27] presented a NN-based IDS for detecting internet-based attacks on a com-
puter network. They used NN to identify and predict current and future attacks.
Feed-forward NN with the back propagation training algorithm was employed to
detect intrusion. Sarasamma et al. [25] proposed a novel multilevel hierarchical
Kohonen net to detect intrusions in network. Randomly selected data points from
KDD Cup ‘99 dataset were used by them to train and test the classifier. The pro-
cess of learning the behavior of a given program by using evolutionary NN based on
system-call audit data was proposed by Han et al. [12]. The benefit of using evo-
lutionary NN by them is that it takes lesser amount of time to obtain better NNs
than when using conventional approaches. This is because they evolve structures
and weights of the NNs simultaneously. They performed the experiment with the
KDD Cup ’99 intrusion detection evaluation data. Thomas et al. [30] addressed
the problem of optimizing the performance of IDS using fusion of multiple sensors.
In their approach, trade-off between detection rate and false alarms highlighted
that the performance of the detector is better when the fusion threshold is de-
termined according to the Chebyshev inequality. A NN supervised learner was
designed by them to determine the weights of individual IDS depending on their
reliability in detecting a certain attack. The final stage of their data dependent
fusion architecture is a sensor fusion unit which does the weighted aggregation in
order to make an appropriate decision. The major limitation with their approach
is that it requires large computing power. Linda et al. [17] presented an IDS-NNM

543



Neural Network World 5/15, 541–564

- intrusion detection system using NN based Modeling for detection of anomalous
activities. The major contributions of their approach are (i) use and analyses of
real network data obtained from an existing critical infrastructure; (ii) the devel-
opment of a specific window based feature mining technique; (iii) construction of
training dataset using randomly generated intrusion vectors and (iv) the use of a
combination of two NN learning algorithms namely the Error-Back Propagation
and Levenberg-Marquardt, for normal behavior modeling. Stefanos et al. [16] pre-
sented a NN classifier ensemble system using a combination of NN which is capable
of detecting network attacks on web servers. Their system identifies unseen attacks
and categorizes them. The performance of their proposed NN in detecting attacks
from audit dataset is fair with success rates of more than 78% in detecting novel
attacks and suffers from high false alarms rates.

Comprehensibility, i.e., the ability to explain the learned knowledge is essential
in terms of usage in reliable applications like IDS. The existing NN based IDS dis-
cussed in the literature lack comprehensibility and this is incorporated by means of
extended C4.5 decision tree in the proposed system. Also, a variation in activation
function is proposed in order to reduce the error rate thus increasing the detection
performance.

An intrusion detection based on the AdaBoost algorithm was proposed by
Weiming et al. [32]. In their algorithm, decision stumps were used as weak classi-
fiers and decision rules were provided for both categorical and continuous features.
They combined the weak classifiers for continuous attributes and categorical at-
tributes into a strong classifier. The main advantage of their approach is that rela-
tions between these two different types of features were handled naturally, without
any type conversions between continuous and categorical attributes. Yasami et
al. [34] presented a host based IDS using combinatorial of k-means clustering and
ID3 decision tree learning algorithms [28] for unsupervised classification of abnor-
mal and normal activities in computer network. The k-means clustering algorithm
is first applied by them to the normal training data and it is partitioned into k
clusters using Euclidean distance measure. DT was constructed on each cluster
using Iterative Dichotomiser 3 (ID3) algorithm. Anomaly score’s value from the
k-means clustering algorithm and decision rules from ID3 were extracted. Resul-
tant anomaly score value was obtained by them using a special algorithm which
combines the output of these two algorithms.

Unlike existing DT based IDS discussed above, the generated rules fired in this
proposed work are more efficient in classification of known and unknown patterns,
because the proposed system uses a neurotree that incorporates NN to preprocess
the data in order to increase the generalization ability. Since the existing DT based
approaches discussed in the literature lack generalization ability and they are less
effective and inaccurate to classify unseen pattern.

3. Functional framework of neurotree detection
paradigm

The system framework of neurotree detection paradigm proposed in this work is
shown in Fig. 1. It consists of two phases namely pre-processing phase and detection

544



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

Fig. 1 Functional framework of neurotree detection paradigm.

phase. The pre-processing phase generates a training set and creates a trained
NNE. The detecting phase constructs a neurotree and classifies a network traffic
pattern as normal or attack types.

4. Design of the proposed system

The proposed system has three phases:

• Phase I — Preprocessing of dataset,

• Phase II — Feature extraction,

• Phase III — Classifier construction.

4.1 Rationale for the choice of preprocessing of dataset

The need for data preprocessing can be seen from the fact that redundant data may
often confuse the classification algorithm, leading to the discovery of inaccurate or
ineffective knowledge. The preprocessing module of the proposed system performs
the following functionalities:

i. Performs redundancy check and handles null/missing values,

ii. Converts categorical data to numerical data.

545



Neural Network World 5/15, 541–564

4.2 Rationale for the choice of weighted sum GA as feature
extraction

4.2.1 Need for genetic feature extraction

The proposed work for misuse detection approach is based on multi-feature vector
decisional framework. The time complexity of the proposed intrusion detection
is linear with the size of data points and the number of features. Also, it is very
crucial if IDS is operated in real time. Too many features increase the training time
and in most cases all these features are not required. Thus, the extraction of useful
features for IDS forms the critical part of classification process [6, 8, 20]. The KDD
dataset includes 41 network traffic features (Tab. I) and it is not known precisely
which of these features are significant in classification of network traffic patterns. If
there exists a paradigm or a mathematical formulation which extracts independent
features or the complex relationship among features, then IDS task becomes easy.
Since there is no such straightforward technique available, a wrapper approach
based on genetic feature extraction algorithm is proposed that selects features
based on the performance of IDS. This feature extraction approach is based on
cascading the weighted sum GA and neurotree. The predictive accuracy of the
neurotree is used as a metric in extracting significant features i.e., the importance
of the features selected by GA is evaluated based on neurotree.

4.2.2 Algorithm for feature extraction

Algorithm: Feature set extraction using weighted sum GA.
Input: Network traffic pattern (all features), Number of generations (2000), Pop-
ulation size (100), Crossover probability (Pc = 0.7), Mutation probability (Pm =
0.001).
Output: Set of selected features.
Genetic Feature Extraction()

1. Initialize the population randomly with chromosomes of length 41. Each gene
value in the chromosome can be ‘0’ or ‘1’. A bit value of ‘0’ represents that the
corresponding feature is not included in chromosome and ‘1’ represents that the
feature is included.

2. Initialize the weights W1 = 0.7, W2 = 0.3, N (total number of records in the
training set), Pc and Pm.

3. For each chromosome in the new population:

a. Apply uniform crossover with a probability Pc,

b. Apply mutation operator to the chromosome with a probability Pm,

c. Evaluate fitness = W1 ×Accuracy +W2 × (1/Count of Ones).

4. If (Current fitness–Previous fitness < 0.0001) then exit.

5. Select the top best 60% of chromosomes into new population using tournament
selection.

6. If number of generations is not reached, go to line 3.

546



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

4.2.3 Chromosome representation

Each network traffic pattern is represented as a vector of 41 features, which are the
signatures of the respective network behavior. Every chromosome in the population
has 41 genes. Each feature is linked with one bit in the chromosome. If the i-th
bit is 1, then the i-th feature is selected and used in classification of pattern for
intrusion detection, otherwise, that feature is not selected. Each chromosome thus
represents a different subset of features. A sample chromosome is shown below:

10011110000000000001111110101011111000111

4.2.4 Initial population

The initial population is generated randomly. The number of 1’s for each individual
is generated randomly, to form different subset of features. Then, the 1’s are
randomly placed in the chromosome.

4.2.5 Weighted sum fitness evaluation

The aim of weighted sum fitness evaluation is to use fewer features to attain similar
or better performance. Fitness of a chromosome is evaluated based upon the accu-
racy from the validation dataset and number of features present in a chromosome.
Accuracy is calculated using the formula (TP + TN)/(P + N), where TP (True
Positive) and TN (True Negative) are the number of records correctly classified in
normal and abnormal classes respectively. Positive – P and Negative – N are the
total number of records in normal and abnormal classes respectively. Each feature
subset contains a list of features. If two subsets attain the same performance, while
having different number of features, the subset with fewer features have been cho-
sen. Among accuracy and number of features, accuracy is the key concern, so more
weightage is given to accuracy (W1 = 0.7) than the number of features (W2 = 0.3)
to be selected. The fitness function is obtained by combining the above terms:

fitness = 0.7×Accuracy + 0.3× (1/Count of Ones), (1)

where “Accuracy” is the classification rate that an individual achieves on valida-
tion dataset and “Count of Ones” is the number of ones in the chromosome. The
number of ones ranges from 1 to 41 where 41 is the length of the chromosome.
Here, the second term assumes values in the interval 0 (If none of the feature is
selected) to 12.3 (If all the features are selected i.e., 0.3 × 41 = 12.3). Among
the 41 bits in the chromosome, it is ensured that at least one of the bits in the
chromosome is 1 – i.e., there is no chromosome with all bits set to zeroes i.e., indi-
rectly making sure that at least one feature is required for classification of normal
and anomalous pattern. In general, higher accuracy implies higher fitness. Also,
fitness increases if less number of features are used i.e., if less number of 1’s are
present in a chromosome. A point to be noted is that chromosome with higher
accuracy would outweigh chromosome with lower accuracy, independent of number
of features present.

547



Neural Network World 5/15, 541–564

S.No.FeatureName Description Type

1 Duration
length (number of seconds) of the connec-
tion

Continuous

2 Protocol type type of the protocol, e.g. tcp, udp, etc. Discrete

3 Dst bytes
number of data bytes from destination to
source

Continuous

4 Flag normal or error status of the connection Discrete

5 Land
1 if connection is from/to the same
host/port; 0 otherwise

Discrete

6 Wrong fragment number of “wrong” fragments Continuous
7 Urgent number of urgent packets Continuous
8 Hot number of “hot” indicators Continuous
9 Num failed logins number of failed login attempts Continuous
10 Logged in 1 if successfully logged in; 0 otherwise Discrete
11 Num compromised number of “compromised” conditions Continuous
12 Root shell 1 if root shell is obtained; 0 otherwise Discrete

13 Su attempted
1 if “su root” command attempted; 0 oth-
erwise

Discrete

14 Num root number of “root” accesses Continuous
15 Num file creations number of file creation operations Continuous
16 Num shells number of shell prompts Continuous
17 Num access files number of operations on access control files Continuous

18 Num outbound cmds
number of outbound commands in an ftp
session

Continuous

19 Is host login
1 if the login belongs to the “host” list; 0
otherwise

Discrete

20 Is guest login 1 if the login is a “guest”login; 0 otherwise Discrete

21 Count
number of connections to the same host
as the current connection in the past two
seconds

Continuous

22 Serror rate % of connections that have “SYN” errors Continuous
23 Rerror rate % of connections that have “REJ” errors Continuous
24 Same srv rate % of connections to the same service Continuous
25 Diff srv rate % of connections to different services Continuous

26 Srv count
number of connections to the same service
as the current connection in the past two
seconds

Continuous

27 Diff srv rate % of connections to different services Continuous

28 Srv count
number of connections to the same service
as the current connection in the past two
seconds

Continuous

29 Srv serror rate % of connections that have “SYN” errors Continuous
30 Srv rerror rate % of connections that have “REJ” errors Continuous
31 Srv diff host rate % of connections to different hosts Continuous

32 Dst host count
count of connections having the same des-
tination host

Continuous

33 Dst host srv count
count of connections having the same des-
tination host and using the same Service

Continuous

34 Dst host same srv rate
% of connections having the same destina-
tion host and using the same Service

Continuous

548



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

S.No.FeatureName Description Type

35
Dst host diff srv
rate

% of different services on the current Host Continuous

36
Dst host same src
port rate

% of connections to the current host having
the same src port

Continuous

37
Dst host srv diff
host rate

% of connections to the same service com-
ing from different hosts

Continuous

38 Dst host serror rate
% of connections to the current host that
have an S0 error

Continuous

39
Dst host srv serror
rate

% of connections to the current host and
specified service that have an S0 error

Continuous

40 Dst host rerror rate
% of connections to the current host that
have an RST error

Continuous

41
Dst host srv rerror
rate

% of connections to the current host and
specified service that have an RST error

Continuous

Tab. I List of features available in KDD Cup ’99 dataset.

4.2.6 Crossover and mutation operators

Crossover operator explores the combinations of current chromosome while mu-
tation operator generates new chromosome. There are 41 features present in the
traffic pattern and these features may be independent or dependent on each other.
If dependent features are away from each other in the chromosome, it is possible
that single point crossover may destroy the schemata. To overcome this difficulty,
uniform crossover is used. In uniform crossover, bits are randomly copied from the
first or from the second parent chromosome depending on the value of mask. A
mask is generated randomly with length equal to the length of the chromosome
used for crossover. The mask determines which bits are copied from one parent
and which bits from the other parent. Mutation inverts a bit in the population
with a probability Pm. The role of mutation operator is to restore the lost genetic
material. The parameters Pc and Pm are adjusted to achieve good results for the
experiments conducted.

4.2.7 Selection operator

Selection operator selects chromosome from population of individuals for next gen-
eration. The proposed GA utilizes tournament selection to select the fittest chro-
mosome. Tournament selection selects subgroup of chromosomes from the initial
population where individuals within each subgroup compete against each other.

4.3 Rationale for the choice of neurotree as detection
methodology

The proposed neurotree detection algorithm uses a bagging approach which gen-
erates multiple training datasets from the original KDD dataset and then trains
multiple Back Propagation Neural Network (BPNN) named NNE using these mul-
tiple datasets. The predicted results produced by these NNs are combined based

549



Neural Network World 5/15, 541–564

on a new algorithm called voting algorithm. Then, the trained NNE is employed
to generate a new training set by replacing the desired class labels of the original
training examples, with those output from the trained NNE. Some extra train-
ing examples are also generated from the trained NNE and are added to the new
training set. Finally, an enhanced C4.5 DT is grown from the new training set.
The fusion of the improved NNE and enhanced C4.5 is used to detect the intru-
sions. From the experiments carried out in this work, it has been observed that
this enhanced C4.5 provides higher detection rates on unseen samples and known
samples.

4.3.1 Neural network ensemble

In the first step, it collects data randomly from the KDD dataset for each NN and
constructs a training dataset using bagging approach. Bagging and boosting [2]
are the two widely applied techniques for combining multiple classifiers in order to
improve the prediction accuracy. These techniques aggregate multiple hypotheses
produced by the same learning algorithm (NN) invoked over different distributions
of KDD dataset. They generate a classifier with a smaller error on the dataset as it
combines multiple hypotheses which individually have a huge error. In bagging [2]
if a single classifier is unstable i.e., if it has high variance, the aggregated classifier
(NNE) has a smaller variance than a single base classifier. Boosting generates a
series of NNs whose training datasets are determined by the performance of the
previous networks. Training instances that are wrongly predicted by the previous
networks play a major role in the training of the later networks. This results in
high error rate if the initial NN trained produces false prediction results. Also,
bagging is more suitable if the induced classifier is unstable. As NN and DT are
unstable classifiers (since these classifiers generate different classification accuracy
as the number of records in the training dataset varies) bagging approach has been
employed in the proposed work. Bagging creates a training dataset by sampling
with replacement n times from the dataset containing n records. The created
dataset has some duplicated records and some of the records are not selected from
original dataset. These unpicked records are placed in the testing set. As the KDD
dataset has large number of records, about 36.8% of the original records are placed
in the testing set.

Consider the case in which there are n records in the dataset then the probability
of particular record being picked is 1/ n. Therefore, the probability of record not
being picked is 1− (1/n). As these records are picked n times then the chance that
particular record not being picked is (1− 1/n)n ≈ e− 1 = 0.368 for n > 20, where
e is the base of natural logarithms (2.7183). From this, it can be concluded that
around 36.8% of the original unique records are placed in the testing set and about
63.2% of unique records are placed in the training set. Some of the records are
repeated in training set and the total size of the generated training set is the same
as that of the original dataset.

In the second step, each of the NN is trained using training dataset generated to
identify the network pattern based on feature vector. Some extra training examples
are also generated from the trained NNE and are added to the training set. In the
final stage, the trained NNE is employed to generate a new training set through re-

550



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

placing the desired class labels of the original training examples, with those output
from the trained NNE. The network pattern is identified based on the predicted
output from each of the NN using voting algorithm. The voting algorithm chooses
the class label which receives the most number of votes as the final output of the
ensemble.

4.3.2 Extended C4.5

DT induction algorithms have been applied in various fields. Some of the DT
algorithms are ID3, C4.5 and C5.0 [1, 7, 21]. C4.5 is an extension of the basic ID3
algorithm. The proposed system utilizes enhanced C4.5 which is an improvement
over C4.5. The ID3 and C4.5 algorithms utilize the information theoretic approach
in classifying a network traffic pattern. The decision tree is initially created from
the preclassified dataset. Each instance is defined by the values of the attributes.
In this proposed work, there are 17 attributes which include protocol type, service,
flag etc as shown in Tab. II. A decision tree consists of nodes, edges and leaves.
A node of a decision tree identifies an attribute by which the instance is to be
partitioned. Every node has a number of edges, which are labeled according to a
potential value of edges and a probable value of the attribute in the parent node.
An edge links either two of the nodes in a tree or a node and a leaf. Leaves are
labeled with class labels for classification of the instance. In DT based classification
[21, 22], information gain is calculated for each of the attribute. The best attribute
to divide the subset at each stage is selected using the information gain of the
attributes. The instances are divided according to the values of these attributes.
If the value of attributes is nominal then a branch for each value of the attribute
is formed, but if it is numeric a threshold value is determined and two branches
are created. This procedure is recursively applied to each partitioned subset of
the instances. The procedure ceases when all the instances in the current subset
belong to the same class. The concept of information gain tends to favor attributes
that have a large number of values. For example, if there are set of records T
and an attribute X that has a distinct value for each record, then Info(X, T) is
0, thus Gain(X, T) is maximal. To overcome this, an extended C4.5 algorithm is
used in this work which employs gain ratio instead of information gain which takes
into account the potential information from the partition itself. To categorize an
unknown instance, the detection algorithm starts at the root of the DT and follows
the branch indicated by the result of each test until a leaf node is arrived. The
name of the class at the leaf node is the resulting classification.

4.3.3 Proposed neurotree algorithm

Algorithm: Neurotree algorithm.
Input: Network audit data T = (x1, y1), (x2, y2), . . . , (xn, yn) from MIT Lincoln
Labs, extra data ratio η, trials of bootstrap sampling B, number of records in the
training set n where xi denote the list of attributes and yi their corresponding class
labels on Neural Network Ensemble NNE
Output: Set of Rules.

551



Neural Network World 5/15, 541–564

1. Train the NN from T via Bagging. Call the procedure NNE = (T , NN, B).

2. Initialize generated training set T ′ = ϕ.

3. Process the original training set with the trained NNE and classify an instance
xi by counting votes for which NNE (xi) represents the class with most votes:

for (i = 1 to n)
begin

i. Replace the class label (yi) with those output from the NNE y′i = NNE(xi :
(xi, yi) ∈ T ).

ii. Add the new samples generated to the generated training set T ′ = T ′ ∪
(xi, y

′
i).

end

4. Generate extra training data from the trained NNE:

for (j = 1 to η · n)
begin

i. Randomly generate attribute vector x′
i = Random() and feed it into NNE

and add the outcome yi’ to the attribute vector as the last label. y′i =
NNE(x′

i).

ii. Append the attribute vector (x′
i, y

′
i) to the generated training set T ′ =

T ′ ∪ (x′
i, y

′
i).

end

5. Read records from the NNE generated training set T ’ .

6. Tokenize each record and store it in an array.

7. Find the probability of occurrence for each value for each class.

8. Find the entropy

I(P ) = −p1 log2 p1 + p2 log2 p2 + · · ·+ pn log2 pn. (2)

9. Calculate the information gain

Gain(X,T ′) = Info(T ′)− Info(X,T ′). (3)

10. Compute
GainRatio(X,T ′) = Gain(X,T ′)/SplitInfo(X,T ′), (4)

where SplitInfo(X,T ′) is the information due to the split of on the basis of the
value of the categorical attribute X. Thus (T ′

1, T
′
2, . . . , T

′
m) is the partition of

induced by the value of attribute X.

11. Construct extended DT with the highest GainRatio attribute as the root node
and values of the attribute as the arc labels.

552



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

12. Repeat steps 7 to 11 until categorical attributes or the leaf nodes are reached.

13. Derive rules following each individual path from root to leaf in the tree.

14. The condition part of the rules is built from the label of the nodes and the labels
of the arcs: the action part is the classification (Normal or specific attack types).

Procedure Bagging (T, NN, B) returns NNE

for (i = 1 to B)
begin

1. Generate new training set of size n with replacements for each B trials, Ti=
bootstrap sample from T .

2. Generate a classifier NNi for each training set. Call procedure NeuralNetwork
(Ti).

3. Form NNE classifier by aggregating the B classifiers.

4. Return trained NNE.

end

Procedure NeuralNetwork (TrainingSet T i) returns NN

begin

1. Get input file T i for training.

2. Read records from T i.

3. Initialize weights and bias to random values.

4. Calculate the output for every neuron from the input layer, through the hidden
layer(s), to the output layer. Here, hidden layer is the layer between input and
output layer.

5. Calculate the error at the outputs using ER, where ER = (W1× FP + W2×
FN), FP is false positive rate, FN is false negative rate, W1 and W2 are their
respective weight values.

6. Use the output error to compute error value for hidden layers.

7. Use the calculated error value to compute weight adjustments.

8. Apply the weight adjustments.

9. Repeat until the error value doesn’t change in consecutive 5 iterations.

10. Return trained NN.

end

553



Neural Network World 5/15, 541–564

4.3.4 Performance measurement indices

Performance of IDS is evaluated using the following indices:

• Detection Rate (DR) — Ratio between number of anomaly (normal) correctly
classified and total number of anomaly (normal).

• Error Rate (ER) — Ratio between number of anomaly (normal) incorrectly
classified and total number of anomaly (normal).

• False Positive (FP) — Classifying normal class as an anomaly class.

• False Negative (FN) — Classifying anomaly class as a normal class.

These are good indices of performance, as they measure what percentage of intru-
sions the system is able to detect and how many incorrect classifications are made
in the course of action.

Other metrics include

• Mean Absolute Error (MAE) — Average over the verification sample of the
absolute values of the differences between forecast and the corresponding
observation.

• Root Mean Squared Error (RMSE) — Quadratic scoring rule which measures
the average magnitude of the error. Measures the difference between forecast
and corresponding observed values, are each squared and then averaged over
the sample. Finally, the square root of the average is taken.

• Relative Absolute Error (RAE) — Similar to the relative squared error in the
sense that it is also relative to a simple predictor, which is just the average
of the actual values.

• Relative Squared Error (RSE) — Calculates the total squared error and nor-
malizes it by dividing the total squared error of the simple predictor.

5. Experimental analysis

The proposed model has been implemented using Java and the procedure used to
implement the neurotree algorithm proposed in this work is as follows: The input to
the system is given as an Attribute Relation File Format (ARFF) file. The dataset
is created using the name specified in “relation”. The attributes are specified under
“attribute” correspondingly specifying the type of attribute and instances specified
under “data” are retrieved from the ARFF file and then they are used for training
by the classifier. This procedure is followed for test set also. The classifier has
been trained and evaluated using the preprocessed dataset, formed from the KDD
dataset [15].

554



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

5.1 Test objectives

1: To investigate the impact of proposed feature extraction algorithm on the per-
formance of IDS.

2: To identify the set of misuse sensitive features and to find out the discriminative
power of selected features.

3: To evaluate the impact of proposed neurotree classification algorithm on the
proposed framework.

4: To investigate the detection capability of neurotree in two different test scenar-
ios.

i: Dataset with five partitions namely Normal, DoS, U2R, R2L and Probe
classes.

ii: Dataset with 23 partitions containing Normal and specific attack type classes
such as Neptune, Back, Smurf, Buffer overflow etc.

5: To investigate the impact of training and test dataset on detection accuracy.

5.2 Influence of feature vector

In this experiment, different feature vectors have been selected by the feature se-
lection algorithms to see the influence on detectability of the proposed approach.
Initially, to extract relevant features using proposed method, dataset with 41 at-
tributes of feature vector and 22 different attack types is considered. These relevant
features extracted are written into a file with their corresponding data values for
each and every class. The above procedure is repeated with the other feature ex-
traction algorithm and the results have been stored for comparison. The results
obtained using the proposed feature extraction has been found to be better when
compared to the existing algorithms. This satisfies objective 1 and objective 2.

5.3 Influence of neurotree classifier

To test the performance of the proposed method, the training and test dataset
consists of network traffic patterns from KDD dataset [15]. It formed a network
traffic database containing diverse data with 22 different attack types and normal
class with selected feature vector to satisfy objective 4-scenario 2. Another database
is formed in which class labels present in the existing dataset is replaced by DoS,
R2L, Probe and U2R class accordingly with selected feature vector in order to
satisfy objective 4-scenario 1. Cross-validation has been applied to the dataset
formed for estimating the generalization error based on re-sampling and to estimate
how accurately the intrusion detection paradigm performs in real time.

Experiments have been conducted using stratified 10-fold cross-validation [11].
In stratified 10-fold cross-validation, the sample of data instances are split into 10
approximately equal partitions such that the mean response value is approximately
equal in all the partitions, i.e., each partition contains roughly the same proportions
of all types of class labels present in the original dataset. After partitioning, 9/10 of

555



Neural Network World 5/15, 541–564

dataset is used for training and 1/10 of dataset is used for testing. This procedure
has been repeated 10 times and the overall error rate is calculated by taking average
of error rates on each partition, i.e., the final output is the average result of these
ten folds. After ten-fold cross-validation, it has been found that TP rate and FP
rate of classes like imap, phf, perl, spy, and multihop are nil as the number of
records in these class types are less than 10 and therefore these records are not
present in most of the partition. The results obtained shows that the proposed
neurotree classification algorithm is able to detect intrusive activities in network.
This satisfies objective 3.

5.4 Detection with mismatch between training and test
dataset

The performance of the proposed work is analyzed using different types of attacks
in training and testing. The training set and the test set are denoted as TR and
TE respectively. First, we created TR by including anomaly records of 22 attack
types and some normal traffic patterns. On the other hand, TE is constituted of
anomaly traffic patterns of 22 attack types and normal patterns that are not present
in the training dataset. Additionally, 17 new attack types (like Mailbomb, Saint,
Sqlattack etc.) that are not present in TR have been also included. Essentially,
TR and TE are made disjoint. This satisfies objective 5.

5.5 Redundancy check

In this analysis, redundant records present are replaced by a single copy. After
redundancy check, it has been found that the anomaly class had more redundancy
than the normal class. Some invalid records which are found in the original KDD
are also removed. This process assists the neurotree learner from getting biased
towards frequent records.

6. Test results and discussions

6.1 Feature extraction

The purpose of this work is to examine the various existing attribute selection
algorithms in terms of detection accuracy and to compare those algorithms with the
proposed algorithm. Out of the total 41 network traffic features, used in detecting
intrusion, some features are potential in revealing evidence of anomalies. Therefore,
such predominant features are extracted from the 41 features.

6.2 Attribute evaluators

Attribute evaluator is used for ranking all the features according to some metric.
Various attribute evaluators available in Waikato Environment for Knowledge Anal-
ysis (WEKA) [31] are used in this work which includes CfsSubsetEval, ChiSquare-
dAttributeEval, ConsistencySubsetEval, InfoGainAttributeEval and GainRatioAt-
tributeEval.

556



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

No. of
S.No. Algorithm features Detection rate

selected

1 BestFirst+ Consistency SubsetEval 11 97.01
2 GeneticSearch + CfsSubsetEval 20 98.16
3 GeneticSearch + ConsistencySubsetEval 20 97.86
4 GreedyStep wise + CfsSubsetEval 9 97.97
5 Ranker+ ChiSquared AttributeEval 36 98.13
6 RankSearch + CfsSubsetEval 22 98.40
7 RankSearch + ConsistencySubsetEval 34 98.15
8 Proposed Feature Selection 17 98.93
9 NIL 41 98.96

Tab. II List of features selected by various feature selection algorithms.

6.3 Search methods

These methods search the set of all possible features in order to find the best set of
features. Five search methods including BestFirst, GeneticSearch, GreedyStepwise,
Ranker and RankSearch available in WEKA [31] are used in this proposed work
for comparison purpose. The details of the combinations and the features selected
by each combination and their detection accuracy are in Tab. II.

The proposed algorithm uses weighted sum genetic feature selection algorithm
to select distinguishing features. The GA parameters are: Chromosome Length =
41 (one gene per network traffic feature), Population Size = 100, Crossover Proba-
bility Pc = 0.7 and Mutation Probability Pm = 0.001. It has been found that the
best set of features is selected within 2000 generations by the genetic algorithm.
Finally, 17 salient features as in Tab. II have been selected by the proposed genetic
algorithm and the classification is based on these predominant features.

Tab. II proves the findings of Breiman et al. [15] that detection accuracy is not
much affected by the choice of attribute selection measure. Although the detection
accuracy obtained by various algorithm is near to the proposed algorithm, the
number of features selected by the proposed feature selection algorithm is less
when compared to other algorithms. Thus the detection time of intrusion detection
by using the features selected by the proposed feature selection algorithm is less
when compared to other algorithms. However, the number of features selected
by BestFirst+ ConsistencySubsetEval and GreedyStepwise + CfsSubsetEval is less
when compared to other algorithms but their detection accuracy is reduced by
approximately 2.

6.4 Building and training classifier

A multi-layer feed forward NN has been used in this proposed work due to its
simple structure and easy realization. Back-propagation algorithm has been used
to train the network in order to adjust the weights effectively to reduce the errors.
The number of NNs used for bagging is 10. Each NN in the NNE consists of input

557



Neural Network World 5/15, 541–564

layer, hidden layer and output layer. The number of input nodes in the input
layer is equal to the number of selected features (in the proposed work, 17 input
nodes are used) and the output layer based on number classes used. For example, 5
nodes in the output layer indicate the classes namely normal, DOS attack, probing
attack, R2L attack and U2R attack. The value of the output node ranges from 0
to 1. The output node with the highest value is chosen and its corresponding class
is named as its output.

Hidden layer consists of number of nodes (called hidden nodes) that connect
the input and output nodes. The number of neurons in the hidden layer must be
chosen carefully. This is because if it is too small, the network will not be trained
adequately to acquire the learning behaviour of the series. If it is too large, the
network will become exceedingly specialized and thereby loses its generalizing ca-
pability. Therefore, we adapted the design rules suggested by Baum [3] for carrying
out experiments to achieve better performance. According to the rule, the preferred
number of hidden layers is 2 and the combination of first hidden layer with 28 nodes
and the second hidden layer with 16 neurons combination worked out well. Various
NN architectures have been examined by varying the number nodes in the hidden
layers to test their learning performance in terms of fitness value. The network
with 17-28-16-5 neurons is better than those of the other architectures.

Activation functions for hidden layers are required in order to introduce non-
linearity into the network and it is the non-linearity that makes multilayer feed
forward networks very powerful. For back propagation learning, the activation
function must be differentiable and therefore sigmoidal function has been utilized
in this work. The maximum number of epochs for training NN is set as 1000. In
order to avoid over-fitting, training of NN is stopped when the error value does not
change in the consecutive five epochs. Moreover, an extended C4.5 DT algorithm
has been implemented to classify the records. The generated training records are
given and the corresponding gain ratio for each of the attribute is calculated. The
discrete and continuous attributes are identified from the input records. Then the
tree is constructed based on the gain ratio. Following the each individual path in
the tree, the rules are generated.

6.5 Evaluation of neurotree on proposed framework

The evaluation of the proposed neurotree algorithm has been carried out using the
detection rate (DR) as the metrics.

6.5.1 Performance comparisons of neurotree with NN and C4.5

To demonstrate the increase in detection performance, the detection rate of neu-
rotree classifier with other classifiers like C4.5 and NN has been compared. The
performance comparison of the proposed system with C4.5 and NN has been pre-
sented in Tab. III. It has been observed that the neurotree provides a better de-
tection performance in classifying the network traffic patterns. Although, the DRs
for U2R and R2L are less for NN and C4.5, the neurotree approach proposed and
implemented in this work outperforms these two techniques and provides detection
rate more than 86% for both U2R and R2L type of attacks. Fig. 2 shows the detec-
tion rate comparison of NN based IDS, C4.5 based IDS and neurotree based IDS.

558



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

Fig. 2 Detection rate comparisons of NN, C4.5 and neurotree.

From the graph, it has been observed that the proposed neurotree model based
IDS outperforms the other techniques especially in R2L and U2R attack types.

Tab. IV shows the error rate of normal and various anomaly classes. It also
depicts the number of test samples incorrectly classified by each of the classifier
namely NN, C4.5 and neurotree. Also, the overall error rates of each of three
approaches are depicted. From Tab. IV, it has been observed that error rate for
neurotree is 20% less when compared to NN. Fig. 3 shows the error rate comparison
of various classes. It has been observed that among the different attack types, R2L
has higher error rate of 14.5% when compared with other classes for neurotree.

Fig. 3 Error rate comparisons of various IDS.

6.5.2 Analysis of error rate of NNE

Reduction of error is more important in IDS as mentioned in the previous section.
It could be noted from Tab. V that the decrease in the mean absolute error, on
an average, is 0.32 from 0.56% to 0.24%. Similarly, the root mean squared error
has a drop of 0.98 from 4.53% to 3.55% on an average, relative absolute error has
reduced by 5.7393 from 10.1917% to 4.4524% and root relative squared error has

559



Neural Network World 5/15, 541–564

S
.N

o
.

C
la
ss

T
o
ta

l
N
e
u
ra

l
N
e
tw

o
rk

C
4
.5

N
e
u
ro

tr
e
e

T
y
p
e
s

T
e
st

C
o
rr
e
c
tl
y

D
e
te
c
ti
o
n

C
o
rr
e
c
tl
y

D
e
te
c
ti
o
n

C
o
rr
e
c
tl
y

D
e
te
c
ti
o
n

S
a
m
p
le
s

C
la
ss
ifi
e
d

R
a
te

C
la
ss
ifi
e
d

R
a
te

C
la
ss
ifi
e
d

R
a
te

1
N
or
m
al

47
91

1
38

01
1

0.
79

34
46

00
8

0.
96

03
47

31
3

0.
98

75
2

D
oS

74
58

57
01

0.
76

44
67

56
0.
90

6
73

31
0.
98

3
3

R
2L

27
54

13
20

0.
47

93
14

80
0.
53

74
23

54
0.
85

48
4

U
2R

20
0

10
7

0.
53

5
16

7
0.
83

5
17

8
0.
89

5
P
ro
b
e

24
21

17
56

0.
72

53
20

33
0.
83

97
23

37
0.
96

53

O
ve
ra
ll
A
cc
u
ra
cy

60
74

4
46

89
5

0.
77

20
56

44
4

0.
92

92
59

28
0

0.
97

97

T
a
b
.
II
I
D
et
ec
ti
o
n
ra
te

co
m
pa
ri
so
n
s
o
f
N
N
,
C
4
.5

a
n
d
n
eu
ro
tr
ee

a
p
p
ro
a
ch
es
.

S
.N

o
.

C
la
ss

T
o
ta

l
N
e
u
ra

l
N
e
tw

o
rk

C
4
.5

N
e
u
ro

tr
e
e

T
y
p
e
s

T
e
st

C
o
rr
e
c
tl
y

D
e
te
c
ti
o
n

C
o
rr
e
c
tl
y

D
e
te
c
ti
o
n

C
o
rr
e
c
tl
y

D
e
te
c
ti
o
n

S
a
m
p
le
s

C
la
ss
ifi
e
d

R
a
te

C
la
ss
ifi
e
d

R
a
te

C
la
ss
ifi
e
d

R
a
te

1
N
or
m
al

47
91

1
99

00
0.
20

66
19

03
0.
03

98
59

8
0.
01

25
2

D
oS

74
58

17
57

0.
23

57
70

2
0.
09

41
12

7
0.
01

70
3

R
2
L

27
54

14
34

0.
52

07
12

74
0.
46

26
40

0
0.
14

52
4

U
2R

20
0

93
0.
46

5
33

0.
16

5
22

0.
11

5
P
ro
b
e

24
21

66
5

0.
27

47
38

8
0.
16

03
84

0.
03

47

O
ve
ra
ll
E
rr
o
r

60
74

4
13

84
9

0.
22

8
43

00
0.
07

08
12

31
0.
02

03

T
a
b
.
IV

E
rr
o
r
ra
te

co
m
pa
ri
so
n
s
o
f
N
N
,
C
4
.5

a
n
d
n
eu
ro
tr
ee

a
p
p
ro
a
ch
es
.

560



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

reduced to 21.4525. It has been noted that there is a change in total error as the
error function of NNE is changed based on the ratio of false positive error and false
negative error. Thus, the proposed activation function which has been designed to
reduce the error rates and hence provides a better classification. This proves that
the claim is valid. i.e., reduction of false alarm errors and increase of the detection
rates of the classifier.

Evaluation Metrics NNE Extended C4.5 Neurotree

Mean absolute error 0.0056 0.0026 0.0024
Root mean squared error 0.0453 0.0515 0.0355
Relative absolute error [%] 10.1917 4.8379 4.4524
Root relative squared error [%] 27.3176 31.1162 21.4525
Detection Rate [%] 97.3621 97.08 98.9341

Tab. V Evaluation metrics comparisons of NNE, extended C4.5 and neurotree.

6.5.3 Investigation of detection capability under 2 scenarios

A. Scenario 1

In Scenario 1, dataset is formed using five classes (namely DoS, Normal, R2L,
U2R and Probe) and with 17 features selected using weighted sum GA. In this
testing phase, the detection rate of R2L class is very low when compared to other
classes. The overall detection rate is 97.97%. The TP rate and FP rate for each
class is shown in Tab. VI.

B. Scenario 2

In Scenario 2, dataset is formed using 23 classes like smurf, back, normal
etc. with 17 features selected using weighted sum GA. The overall accuracy is
98.9%. From this, it can be concluded that neurotree detection paradigm performs
better even when specific attack types are provided. The TP and FP value obtained
for each of 23 classes is shown in Tab. VII.

S.No Class TP Rate FP Rate

1 Normal 0.9875 0.0468
2 DoS 0.983 0.0048
3 R2L 0.8548 0.0024
4 U2R 0.89 0
5 Probe 0.9653 0.004

Tab. VI TP and FP rate obtained using neurotree for five classes.

From Tab. VII, it has been observed that the TP rate for Neptune, Teardrop,
Pod and guess passwd is 100%. Also, it has been found that most of the classes
have a TP rate above 98%. In addition, after ten-fold cross-validation it has been

561



Neural Network World 5/15, 541–564

S.No. Class TP Rate FP Rate

1 Normal 0.997 0.005
2 Warezclient 0.884 0
3 Neptune 1 0
4 Ipsweep 0.986 0.001
5 Teardrop 1 0
6 Satan 0.977 0
7 Portsweep 0.985 0
8 Smurf 0.998 0
9 Nmap 0.983 0
10 Warezmaster 0.714 0
11 Back 0.99 0
12 Land 0 0
13 Pod 1 0
14 buffer overflow 0.833 0
15 Loadmodule 0 0
16 Rootkit 0 0
17 guess passwd 1 0
18 ftp write 0 0
19 Imap 0 0
20 Spy 0 0
21 Perl 0 0
22 Multihop 0 0
23 Phf 0 0

Tab. VII TP and FP rate obtained using neurotree for 23 classes.

found that TP rate and FP rate of classes like imap, phf, perl, spy, and multihop
are nil as the number of records in these class types are less than 10 and therefore
these records are not present in most of the partition.

7. Conclusions

This work proposes an IDS by integrating NN and DT for multi-class categoriza-
tion. The system is aimed at making improvements over the existing work in two
perspectives. A neurotree model is employed as the classification engine which im-
parted a detection rate of 99% and an error rate of 1% for 23 classes and 98% for
five classes which is superior to NN and C4.5. Also, an error function based on FN
rate and FP rate is utilized in the learning algorithm which has been targeted at
minimizing the error rates. Experiments conducted summarizes the characteristics
of this proposed method with various performance metrics like TP rate, FP rate,
accuracy, DR and with various error metrics like MAE, RMSE etc. It has been
observed that the proposed system performs well even when the dataset has differ-
ent number of classes and completely unseen data. This justifies that the proposed
method is a promising strategy to be applied on intrusion detection.

562



Muthukumar B. et al.: Intelligent network-misuse-detection-system using . . .

References

[1] AMOR N.B., BENFERHAT S., ELOUEDI Z. Naive Bayes vs decision trees in intrusion
detection systems. In: L.M. LIEBROCK, ed. Proceedings of ACM Symposium on Applied
Computing, Cyprus. New York: ACM, 2004, pp. 420–424.

[2] BAUER E., KOHAVI R. An empirical comparison of voting classification algorithms: Bag-
ging, boosting, and variants machine learning. Machine Learning. 1999, 36(1), 105–139,
doi: 10.1023/A:1007515423169.

[3] BAUM E.B., HAUSSLER D. What size net gives valid generalization? Neural Computation.
1998, 1(1), 151–160, doi: 10.1162/neco.1989.1.1.151.

[4] BENFERHAT S., TABIA K. On the combination of naive Bayes and decision trees for intru-
sion detection. In: M. MOHAMMADIAN, ed. Proceedings of IEEE International Conference
on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria.
IEEE, 2005, pp. 211–216.

[5] BREIMAN L., FRIEDMAN J., STONE C.J., OLSHEN R.A. Classification and Regression
Trees. Monterey, CA: Wadsworth and Brooks, 1984.

[6] CANNADY J. Artificial neural networks for misuse detection. In: R. POSCH, ed. Proceedings
of National Information Systems Security Conference, Arlington, Virginia, USA. National
Institute of Standards and Technology, 1998, pp. 443–456.

[7] COHEN S., ROKACH L., MAIMON O. Decision-tree instance-space decomposition with
grouped gain-ratio. Information Sciences. 2007, 177(1), 3592–3612, doi: 10.1016/j.ins.

2007.01.016.

[8] COVOES T.F., HRUSCHKA E.R. Towards improving cluster-based feature selection with
a simplified silhouette filter. Information Sciences. 2011, 181(1), 3766–3782, doi: 10.1016/
j.ins.2011.04.050.

[9] FAYYAD E.M., UTHURUSAMY R. Evolving data mining into solutions for insights. ACM
Communication. 2002, 45(1), 28–31, doi: 10.1145/545151.545174.

[10] GADDAM S.R., PHOHA V.V., BALAGANIR K.S. K-Means+ID3: A novel method for
supervised anomaly detection by cascading K-Means clustering and ID3 decision tree learning
methods. IEEE Transactions on Knowledge and Data Engineering. 2007, 19(1), 345–354,
doi: 10.1109/TKDE.2007.44.

[11] GARCIA S., FERNANDEZ A., LUENGO J., HERRERA F. Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence and data
mining: Experimental analysis of power. Information Sciences. 2010, 180(1), 2044–2064,
doi: 10.1016/j.ins.2009.12.010.

[12] HAN S.-J., CHO S.-B. Evolutionary neural networks for anomaly detection based on the
behavior of a program. IEEE Transactions on System, Man, Cybernetics, Part B. 2006,
36(1), 59-70, doi: 10.1109/TSMCB.2005.860136.

[13] HU Y.-C. Analytic network process for pattern classification problems using genetic algo-
rithms. Information Sciences. 2010, 180(1), 2528–2539, doi: 10.1016/j.ins.2010.03.008.

[14] JOO D., HONG T., HAN I. The neural network models for IDS based on the asymmetric
costs of false negative errors and false positive errors. Expert Systems with Applications.
2003, 25(1), 69–75, doi: 10.1016/S0957-4174(03)00007-1.

[15] KDD CUP 1999 DATA. Competition Dataset [online]. The UCI KDD Archive, Information
and Computer Science, University of California, Irvine, 2007 [viewed 2014-06-01]. Available
from: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[16] KOUTSOUTOS S., CHRISTOU I.T., EFREMIDIS S. A classifier ensemble approach to in-
trusion detection for network-initiated attacks. In: I. MAGLOGIANNIS, K. KARPOUZIS,
M. WALLACE, J. SOLDATOS, eds. Proceedings of the International Conference on Emerg-
ing Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems
with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies, Vi-
enna, Austria. Amsterdam: IOS Press, 2007, pp. 307–319.

563



Neural Network World 5/15, 541–564

[17] LINDA O., VOLLMER T., MANIC M. Neural network based intrusion detection system for
critical infrastructures. In: A. MINAI, ed. Proceedings of IEEE International Joint Confer-
ence on Neural Networks, Atlanta, Georgia, USA. IEEE, 2009, pp. 102–109.

[18] LIU H., YU L. Toward integrating feature selection algorithms for classification and cluster-
ing. IEEE Transactions on Knowledge and Data Engineering. 2005, 17(1), 491–502, doi: 10.
1109/TKDE.2005.66.

[19] MENAHEM E., SHABTAI A., ROKACH L., ELOVICI Y. Improving malware detection by
applying multi-inducer ensemble. Computational Statistics and Data Analysis. 2009, 53(1),
1483–1494, doi: 10.1016/j.csda.2008.10.015.

[20] MITRA P., MURTHY C.A., PAL S.K. Unsupervised feature selection using feature similar-
ity. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(1), 301–312,
doi: 10.1109/34.990133.

[21] QUINLAN J.R. Induction of decision trees. Machine Learning. 1986, 1(1), 81–106, doi: 10.
1007/BF00116251.

[22] RAJESWARI L.P., KANNAN A. An active rule approach for network intrusion detection
with enhanced C4.5 algorithm. International Journal of Communications, Network and Sys-
tem Sciences. 2008, 4(1), 285–385, doi: 10.4236/ijcns.2008.14039.

[23] ROKACH L. Ensemble-based classifiers. Artificial Intelligence Review. 2010, 33(1), 1–39,
doi: 10.1007/s10462-009-9124-7.

[24] ROKACH L. Taxonomy for characterizing ensemble methods in classification tasks: A review
and annotated bibliography. Computational Statistics and Data Analysis. 2009, 53(1), 4046–
4072, doi: 10.1016/j.csda.2009.07.017.

[25] SARASAMMA S., ZHU Q., HUFF J. Hierarchical Kohonen net for anomaly detection in
network security. IEEE Transactions on System, Man, Cybernetics, Part B. 2005, 35(1),
302-–312, doi: 10.1109/TSMCB.2005.843274.

[26] SHON T., MOON J. A hybrid machine learning approach to network anomaly detection.
Information Sciences. 2007, 177(1), 3799–3821, doi: 10.1016/j.ins.2007.03.025.

[27] SHUN J., MALKI H.A. Network intrusion detection system using neural networks. In: M.
GUO, ed. Proceedings of Fourth IEEE International Conference on Natural Computation,
Jinan, China. IEEE, 2008, pp. 242–246.

[28] STEIN G., CHEN B., WU A.S., HUA K.A. Decision tree classifier for network intrusion
detection with GA-based feature selection. In: M. GUIMARAES, ed. Proceedings of the
43rd ACM Annual Southeast Regional Conference, Georgia, USA. ACM, 2005, pp. 136–141.

[29] TAVALLAEE M., BAGHERI E., LU W., GHORBANI A.A. A detailed analysis of the
KDD Cup 1999 data set. In: S. WESOLKOWSKI, ed. Proceedings of IEEE Symposium on
Computational Intelligence in Security and Defense Applications, Ottawa, Canada. IEEE,
2009, pp. 53–58.

[30] THOMAS C., BALAKRISHNAN N. Improvement in intrusion detection with advances in
sensor fusion. IEEE Transactions on Information Forensics and Security. 2009, 4(1), 542–
551, doi: 10.1109/TIFS.2009.2026954.

[31] WEKA 3. Weka 3: Data Mining Software in Java v.3.5.7. [software]. 2008 [accessed 2014-06-
01]. Available from: http://www.cs.waikato.ac.nz/ml/weka/

[32] WEIMING H., WEI H., MAYBANK S. AdaBoost based algorithm for network intrusion
detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B. 2008, 38(1), 577–
583, doi: 10.1109/TSMCB.2007.914695.

[33] XIANG C., YONG P.C., MENG L.S. Design of multiple-level hybrid classifier for intrusion
detection system. Journal of Pattern Recognition Letters. 2008, 29(7), 918-–924, doi: 10.
1016/j.patrec.2008.01.008.

[34] YASAMI Y., MOZAFFARI S.P. A novel unsupervised classification approach for network
anomaly detection by K-Means clustering and ID3 decision tree learning methods. The Jour-
nal of Supercomputing. 2009, 53(1), 231–245, doi: 10.1007/s11227-009-0338-x.

[35] ZHOU Z.-H., JIANG Y. NeC4.5: Neural ensemble based C4.5. IEEE Transactions on Knowl-
edge and Data Engineering. 2004, 16(1), 770–773, doi: 10.1109/TKDE.2004.11.

564




