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Abstract: In the article a new sparse low-rank matrix decomposition model is
proposed based on the smoothly clipped absolute deviation (SCAD) penalty. In
order to overcome the computational hurdle we generalize the alternating direction
method of multipliers (ADMM) algorithm to develop an alternative algorithm to
solve the model. The algorithm we designed alternatively renew the sparse ma-
trix and low-rank matrix in terms of the closed form of SCAD penalty. Thus, the
algorithm reduces the computational complexity while at the same time to keep
the computational accuracy. A series of simulations have been designed to demon-
strate the performances of the algorithm with comparing with the Augmented
Lagrange Multiplier (ALM) algorithm. Ultimately, we apply the model to an on-
board video background modeling problem. According to model the on-board video
background, we can separate the video background and passenger’s actions. Thus,
the model can help us to identify the abnormal action of train passengers. The
experiments show the background matrix we estimated is not only sparser, but the
computational efficiency is also improved.
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1. Introduction

It is well known that many countries have improved the video inspector ability
of public facilities after the 911 terrorist attack. Many exception events (such as
fighting, rubbing) happened sometimes in the trains. When passengers have some
dangerous behavior, the video monitoring system identifies the abnormal action and
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alarm security staff to deal with promptly. How to fast identify the abnormal action
of passengers is an urgent and researchable problem for the security of an operating
train. Generally speaking, a video involves abnormal action has strong kinetic
action and relatively stable background. According to the properties, we model
the abnormal action identification problem as a matrix decomposition problem in
this paper.

A common approach to deal with engineering problems is to decompose the
complex system to several simple systems to study. Especially, the complex system
can be decomposed by a sparse matrix and a low-rank matrix, when the complex
system is expressed by the summation of a sparse matrix and a low-rank matrix.
The sparse low-rank matrix decomposition problem has attracted interest in the
research community due to the successful applications to collaborative filtering and
video background modeling.

Let us suppose matrix D can be expressed by a summation of a low-rank ma-
trix A and a sparse matrix E. A natural question is how to obtain an accurate
estimations of A and E based on D. This problem has been modeled by the l0
regularization form

min
A,E∈Rm×n

rank(A) + λ‖E‖l0 ,

s.t. D = A+ E,
(1)

where rank(A) is the rank of A, ‖E‖l0 is the number of non-zero entries of E,
and λ > 0 is a regularization parameter. Obviously, sparse low-rank matrix de-
composition problem is an ill-posed problem. However, with the development of
compressive sensing and sparse modeling, [5, 6, 8, 2] found the solvable condi-
tions can be obtained based on rank-sparsity incoherence property. In addition,
[4, 10, 13, 14, 15] introduced the principle component pursuit to handle this prob-
lem. The formulations (l1 regularization form) are as follows:

min
A,E∈Rm×n

‖A‖∗ + λ‖E‖l1 ,

s.t. D = A+ E,
(2)

where ‖‖∗ is the kernel norm (the summation of all the singular values), and ‖‖l1
is the summation of the absolute value of all entries. Moreover, matrix D can not
be exactly expressed by the summation of E and A due to the noisy effect in the
real system. Hence, [16] proposed the robust principle component pursuit based
on the constrain‖D −A− E‖F ≤ δ. That is

min
A,E∈Rm×n

‖A‖∗ + λ‖E‖l1 ,

s.t. |D −A− E‖F ≤ δ.
(3)

[15] has introduced an iterative thresholding algorithm to solve (2) and (3). How-
ever, the convergence speed is slow due to the singular value decomposition proce-
dure at each iterative step. So, it cannot solve large-scale real application problems.
Furthermore, [12] proposed APG algorithm to solve the original problem and a kind
of gradient ascent algorithm to solve the dual problem which are justified that they
can be used to deal with 1000×1000 matrix. These two algorithms enhance conver-
gence speed 50 times than the thresholding algorithm. Moreover, [11] introduced an
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approximate ALM algorithm which cannot only improve the convergence speed but
also keep the computational accuracy. It becomes the best well-known algorithm
for large-scale problem (sparse low-rank matrix decomposition).

Recently, developed SCAD regularization theory indicates the SCAD penalty
can obtain more sparse and robust (stable) solution than l1 [1, 9]. So, we would
like to share the same light with SCAD and apply SCAD penalty to design a new
model to handle sparse low rank matrix decomposition problem. To obtain a better
estimation of D, we utilize the SCAD regularization to replace l1 regularization in
this article, and generalize SCAD regularization to describe from 1-dimensional
vector to 2-dimensional matrix. The basic formulation we propose as follow:

min
A,E∈Rm×n

‖A‖SCAD + λ‖E‖ala ,

s.t. |D −A− E‖F ≤ δ,
(4)

where ‖A‖SCAD = Pλ(σ), σ = (σ1, ..., σr) are the singular values of A, Pλ function

satisfies P ′λ(x) = λ{I(x ≤ λ) + (bλ−θ)+
(b−1)λ I(x > λ)}, b > 2 is a constant, and ‖E‖ala =

(
∑m
i=1

∑n
j=1 |Eij |a)1/a.

The rest of this paper is organized as follows. In Section 2, we introduce an
alternative thresholding algorithm based on the ADMM framework [3, 7]. The
algorithm utilizes the alternative projection idea to renew low rank matrix and
sparse matrix simultaneously. We design a series of simulations to demonstrate
the performance of the algorithm with comparing with some baseline algorithms in
Section 3. The Section 4 describes how to use the model we proposed to model on-
board video background. A real case is studied from an inspector video of subway,
which can help staffs identify the abnormal actions of passengers.

2. Iterative thresholding algorithm based on
ADMM

2.1 ADMM framework

ADMM is a kind of efficient algorithm framework to handle the distributed con-
vex optimization. It uses the decomposition coordination procedure to construct a
decomposed gradient ascent and extended Lagrange multiplier method simultane-
ously. The basic framework is as follows:

min
x,z

f(x) + g(z),

s.t. Mx+Nz = c,
(5)

where x ∈ Rn, z ∈ Rm, M ∈ Rp×n, N ∈ Rp×m, and f , g are convex functions. Let
us consider the extended Lagrange formulation

Lµ(x, z, y) = f(x) + g(z) + y>(Mx+Nz − c) +
1

2
µ‖Mx+Nz − c‖22, (6)

where y is the multiplier of linear equation constrains, and µ is the multiplier of
inequality constrains, that is extended Lagrange parameter. The three main steps
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of ADMM are constructed by
xk+1 = arg min

x
Lµ(x, zk, yk),

zk+1 = arg min
z
Lµ(xk+1, z, yk),

yk+1 = yk + µ(Mxk+1 +Nzk+1 − c).
(7)

Obviously, it includes minimizing x, minimizing z and renewing dual variable
y three steps. The convergence theory of ADMM is developed in terms of the
convexity of f and g. However, the basic steps can be generalized to nonconvex
situations. As we known, the SCAD function is nonconvex function, so we consider
a new extended Lagrange multiplier formulation

Lµ(A,E, Y ) = ‖A‖SCAD + λ‖E‖ala + 〈Y,D −A− E〉+
1

2
µ‖D −A− E‖2F , (8)

where µ is a parameter which depends on δ. To minimize Lµ(A,Ek, Yk), we itera-
tively solve three sub problems

Ak+1 = arg min
A

Lµ(A,Ek, Yk),

Ek+1 = arg min
E

Lµ(Ak+1, E, Yk),

Yk+1 = Yk + µ(D −Ak+1 − Ek+1).

(9)

To simplify the formulation of the three main steps, we reform them as
Ak+1 = arg min

A

1

2
µ‖A− (D − Ek +

1

µ
Yk)‖2F + ‖A‖SCAD,

Ek+1 = arg min
E

µ

2λ
‖E − (D −Ak+1 +

1

µ
Yk)‖2F + ‖E‖ala ,

Yk+1 = Yk + µ(D −Ak+1 − Ek+1).

(10)

The crucial point of the above alternative thresholding algorithm is renewing the
low rank matrix, sparse matrix and Lagrange multiplier simultaneously until con-
vergence condition holds.

In order to renew the spare and low-rank matrix, we have to solve two subprob-
lems in Eq. (10):

min
X
‖X −W‖2F + λ‖X‖ala , (11)

min
X
‖X −W‖2F + λ‖X‖SCAD. (12)

Subproblem in Eq. (11) is relatively simple. When a = 1, the optimal solution
STλ/2(W ) of Eq. (11) is the soft thresholding function [8]. Namely, shrinking all
entries of E based on λ/2 and soft thresholding function STλ/2, where

STλ(x) =

{
x− sgn(x)λ/2 if |x| > λ/2,

0 otherwise.
(13)

Solving subproblem in Eq. (12) is relatively difficult, so we show the next theorem
to give some insights to figure it out.
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Theorem 1. Suppose the rank of matrix W ∈ Rm×n(m ≥ n) is r ∈ [1,min(m,n)].
The W = Um×rDr×rV

T
r×n is the singular value decomposition, where D = diag(σ1.

σ2, ..., σr), U = (u1, u2, ..., ur), V = (v1, v2, ..., vr), ui ∈ Rm, vi ∈ Rn. Then the
closed form of optimal solution of (12) is X∗ = USλ(D)V >, where Sλ(D) =
(Sλ(σ1), ..., Sλ(σr)) and

Sλ(x) =


sgn(x)(|x| − λ) if |x| ≤ 2λ,

(a− 1)x− sgn(x)aλ/(a− 2) if 2λ < |x| ≤ aλ,

x if |x| > aλ.

(14)

The singular value decomposition of X is

X = U ′D′V
′>,

where D′ = diag(σ′1, ..., σ
′
n), U ′ = [u′1, ..., u

′
n], V ′ = [v′1, ..., v

′
n].

Proof. Based on Eq. (11), we have

‖W −X‖2F + λ‖X‖SCAD = ‖W‖2F − 2
n∑
i=1

σ′iu
′>
i Wv′i +

n∑
i=1

σ
′2
i +

n∑
i=1

Pλ(σ′i). (15)

Let Q(U ′, V ′) = minD′≥0−2
∑n
i=1 σ

′
iu
′>
i Wv′i +

∑n
i=1 σ

′2
i + Pλ(σ′i). So Eq. (11) is

equivalent to
min
U ′,V ′

Q(U ′, V ′),

s.t. U ′>U ′ = In,
V ′>V ′ = In.

(16)

Note ti = u′i
>
Wv′i and fλ(σ′i) = −2σ′iti + σ′i

2
+Pλ(σi), then

Q(U ′, V ′) = min
D′≥0

∑
i=1

(σ′i). (17)

So Eq. (17) is equivalent to

σ∗i = arg min
σ′i≥0

fλ(σ′i). (18)

In terms of [9], the derivative of the objective function is

− 2ti + 2σ∗i + P ′λ(σi) = 0, (19)

thus the solution satisfy the σi = Sλ(ti). So, we can complete our proof to get
X∗ = USλ(D)V >.

2.2 Alternative thresholding algorithm

We will implement an alternative thresholding algorithm to obtain the closed form
of subproblems Eqs. (11) and (12).

The sketch of the algorithm is in the sequence:
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• Initializing {Y0, E0, A0}, and choosing parameter µ and error precision ε and
k = 0;

• Renewing low rank matrix AK+1: D − Ek + µ−1Yk ≈ UrDrV
>
r , Ak+1 =

UrSλ(Dr)V
>
r ;

• Renewing sparse matrix Ek+1:

Ek+1 =

{
Sλ(D −Ak+1 + µ−1Yk),

STλ/µ(D −Ak+1 + µ−1Yk), a = 1;
(20)

• Renewing Lagrange multiplier: Yk+1 = Yk + µ(D −Ak+1 − Yk+1);

• If
‖D −Ak+1 − Ek+1‖F

‖D‖F
< ε, then stop the algorithm,

otherwise let k := k + 1;

It is known that the convergence speed of ADMM depends on parameter µ. To
avoid the dependency of µ and enhance the convergence speed, we adaptively used
parameter as µk+1 = ρµk, ρ ≤ 1. Next section, we will design some simulations to
demonstrate the performance of the algorithm.

3. Simulations

In this section, we compare performance of three algorithms ASS (Adaptive SCAD-
Soft Alternative Thresholding Algorithm), ISS (Inadaptive SCAD-Soft Alternative
Thresholding Algorithm) and ALM in the context of matrices with noise and with-
out noise. We suppose sr to be a measurement of sparsity (proportion of non-zero
elements) and lr to ba a measurement of low rank (the ratio of rank r and di-
mension m) of sparse low rank matrix D. The simulated matrix D is generated
by

• Generate random matrix L and R both in Rm×r independently, and all the
entries of L and R satisfy standard normal distribution independently. Then
we take low rank matrix A = 1√

r
LR> which can guarantee the variance of

each elements is 1.

• Generate sr×m2 independent random numbers from U [0, 1] and choose sr×
m2 positions from sparse matrix E ∈ Rm×m. Then put the random numbers
into the positions.

• Generate a random noise matrix N ∈ Rm×m and Nij ∼ N (0, σ), i.i.d. If
σ > 0, we say D = A+ E +N is the noise matrix.

3.1 Simulations without noise

The matrix D can be exactly decomposed as a sparse matrix and a low rank
matrix when D does not effect by noise. In this simulation we consider different
size matrices such as m = 500 : 500 : 4000 and set lr = 0.01 and sr = 0.05. We
repeat each size simulation 20 times and make use of the average of errA∗, errE∗,
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rank(A∗)/rank(A) and ‖E‖∗l0/‖E‖l0 to compare the performance of the algorithms.
The definitions are

errA∗ =
‖A−A∗‖F
‖A‖F

, errE∗ =
‖E − E∗‖F
‖E‖F

. (21)

m 500 1000 1500 2000 2500 3000 3500 4000

rank(A*)

ALM 5.8 11 16 21 26 31 36 41
ASS 5 10 15 20 25 30 35 40
ISS 5 10 15 20 25 30 35 40

iterations

ALM 27.5 27.6 28 27.9 28 28 28 28
ASS 7 7 7 7 7 7 7 7
ISS 27.4 27.1 27.3 26.9 26.7 26.7 26.3 26.5

time [s]

ALM 5.42 28.17 72.12 135.63 239.73 375.79 539.10 754.44
ASS 1.82 7.86 19.30 42.03 77.35 121.91 205.56 288.60
ISS 4.76 18.90 42.92 88.71 162.19 254.38 434.71 603.38

Tab. I Results of simulations without noise.

 

  Fig. 1 Comparison of computational complexity (lr = 0.01, sr = 0.05).

Based on the Fig. 1, 2 and Tab. I we can find several facts. First, the relative
errors of estimated sparse matrix and low rank matrix in terms of three algorithms
are all very small. The estimated rank of ALM is relatively bigger while ISS and
ASS can get the corrected rank. Second, from computational speed perspective we
can see the computational time of ALM and ISS increase dramatically and itera-
tive number stays at around 27. However, computational time of ASS algorithm
increase much slower than others and iterative number stays at 7.
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  Fig. 2 Comparison of computational accuracy (lr = 0.01, sr = 0.05).

3.2 Simulation with noise

In this subsection we will compare the performance of the three algorithms to
apply to the noisy sparse low rank matrix. The same to the simulation 1, the
different size matrix D (m = 500 : 500 : 4000) can be considered. We set lr = 0.01,
sr = 0.05 and σ = 0.1 : 0.1 : 1. For each group parameters, the simulations have
repeated 10 times and recorded the average of errA∗, errE∗, rank(A∗)/rank(A)
and ‖E‖∗l0/‖E‖l0 . Based on the results we find that the relative error of ALM is
about 3 times of ASS and ISS, and the estimated rank is much higher than real
rank. Comparing with the iterative numbers to achieve convergence, ALM is about
6 times of ASS and ISS. The convergence time of ALM increases dramatically as
number of dimensionality arising. However, ASS and ISS increase slowly.

4. Application to train passenger abnormal action
identification based on inspector video of sub-
way

Background modeling and abnormal action identification of videos all can be natu-
rally modeled by sparse low-rank matrix decomposition problems [4]. We suppose
each frame of a video is according to each column of D, then the background which
involves each frame have very strong similarity. Thus, it can be constructed by
low-rank matrix A. The moving objects and background changes can be modeled
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by the sparse matrix and noise matrix E + N . In this section, an inspector video
from Chinese subway system is used to demonstrate the performance of the al-
gorithm. The video includes the normal actions (stable background and working
passengers), and abnormal actions (fighting, running). The Fig. 3 shows the de-
composed performance of ASS algorithm. The next table shows the comparison
results of all the algorithms.

Measurements ALM ASS ISS

rank(A*) 134 6 5
iterations 37 9 8
times 108.7414 17.7623 33.2454

Tab. II Results of chinese subway data.

From the Tab. II and Fig. 4 we can find that the ASS algorithm is the most effi-
cient algorithm for this data set. The computational complexity (times) improved
about 10 times comparing with ALM algorithm. And the iterations is also less
than the ALM algorithm. The ASS algorithm was used in subway train passenger

 

  Fig. 3 Comparison of computational accuracy and complexity (lr = 0.01, sr = 0.05,
σ = 0.3).
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  Fig. 4 Identification of abnormal actions.
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Fig. 5 Subway train passenger abnormal action identification system.
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abnormal action analyze. The application system is shown in Fig. 5. Real-time
vehicle monitoring cameras are connected by a CCTV Vehicle Networks. Their
outputs are sent to several Abnormal Analyzers to identify abnormal or dangerous
behavior by means of the ASS algorithm. Abnormal Analyzers transfer alarming
information to Abnormal Alarm. Eventually, Abnormal Alarm prompts emergent
alarm in display terminal for a train driver to deal with the event quickly.

5. Conclusions

In this article, we have introduced a new sparse low-rank matrix decomposition
model based on SCAD penalty. With sharing the light of the SCAD penalty (the
closed form), we designed an efficient iterative algorithm to solve the model. The
performances of the algorithm have been demonstrated by the simulations. Ulti-
mately, we generalize this model directly to abnormal action identification problem
based an on on-board inspector video data set. The results showed ASS algorithm
has the best potential capacity to fast analyze the massive video data.
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