
A NETWORK TRAFFIC HYBRID
PREDICTION MODEL OPTIMIZED BY

IMPROVED HARMONY SEARCH
ALGORITHM

Z. Tian, S. Li, Y. Wang, X. Wang

Abstract: The telecommunication and Ethernet traffic prediction problem is stud-
ied. Network traffic prediction is an important problem of telecommunication and
Ethernet congestion control and network management. In order to improve net-
work traffic prediction accuracy, a network traffic hybrid prediction model was
proposed by using the advantages of grey model and Elman neural network, grey
model and Elman neural network predictive values were independently obtained,
the different weight coefficients of two prediction models were given. In terms
of weight coefficients optimization, an improved harmony search algorithm with
better convergence speed and accuracy was proposed, the optimal weight coef-
ficients of network traffic hybrid prediction model were determined through this
algorithm, two prediction models results were multiplied by the weight coefficients
to obtain the final prediction value. The network traffic sample data from an actual
telecommunication network was collected as simulation object. The simulation re-
sults verified that the proposed network traffic hybrid prediction model based on
improved harmony search algorithm has higher prediction accuracy.
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1. Introduction

The telecommunication or Ethernet network traffic is an important parameter of
the network management. During designing a telecommunication or Ethernet net-
work congestion control strategy for the case that network source is limited, an
accurate network traffic prediction is very important for reducing network conges-
tion, reasonably allocating network resource, improving the service quality of the
network and finding abnormal network behavior [1, 12].
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Leland et al., studies found that Ethernet network traffic has self similarity
characteristic [8], the self similarity can be measured by Hurst index. The study
pointed out that the Hurst index of the network traffic is greater than 0.5. Network
traffic has self similarity characteristic, thus the network traffic is predictable. Their
study laid the foundation work for the network traffic prediction.

At present, many scholars made a lot of research work for telecommunication
and Ethernet network traffic prediction. Some linear prediction models such as
auto regressive moving average (ARMA) [6, 18], auto regressive integrated moving
average (ARIMA) [16, 19] and fractional auto regressive integrated moving average
(FARIMA) [13] were used for network traffic prediction. The literature [5] studied
the above linear models, in which the prediction accuracy of each model with
different time scales is performed by experiment, through the simulation, the author
pointed out that the appropriate time scale of each model. But with the complexity
of the network increases, network traffic characteristics are beyond the Poisson or
Markov distribution. Therefore, the linear prediction models has the deficiencies
in theory, it is difficult to ensure the accuracy of the prediction. The network
nonlinear prediction models include least square support vector machine (LSSVM)
[9], artificial neural networks [17, 11] and GM (1,1) grey model [20], etc. Although
nonlinear prediction model can improve predictive accuracy more than the linear
model, there are also disadvantages. Neural network is easy to fall into local optimal
value, also it is difficult to determine the network structure. LSSVM prediction
model needs small sample, but it is difficult to determine the key model parameters.
Grey model has good prediction effect only for stationary time series. So the
nonlinear prediction model of network traffic is also very difficult to guarantee the
prediction accuracy.

From the current research results, single prediction model is difficult to achieve a
more accurate prediction effect, prediction error is relatively large. Combing differ-
ent prediction models together can compensate the shortcomings of each prediction
model, and can describe the characteristics of the network traffic more accurately.

GM (1,1) grey model has good prediction accuracy for smooth time series,
when the network traffic fluctuation is relatively large, the prediction precision will
decreased. The Elman neural network has good prediction effect for nonlinear time
series. This paper proposed a network traffic hybrid prediction model through the
combination of the two models with their respective advantages. GM (1,1) grey
model can weaken the randomness of the original network traffic sequence, and the
Elman neural network has good prediction ability for nonlinear sequence, through
hybrid model for taking better prediction effect. Two prediction models are given
different weight coefficients, two prediction models predictive values are multiplied
by the respective weighting coefficients to obtain a final prediction value. Weight
coefficients are optimized by using an improved harmony search algorithm proposed
in this paper. The actual network traffic data collected from telecommunication
network is treated as simulation object. Through simulation and comparison with
other common prediction models, it indicates that the proposed model has higher
prediction precision and smaller prediction errors.
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2. Predictability analysis of network traffic

The predictability characteristic of the time series can be measured through Hurst
index that expressed as H [15]. A time series is random when H is 0.5, and it
means no correlation between events. Time series is described as anti-persistent
when H ∈ [0, 0.5), and is described as persistent when H ∈ [0.5, 1). It is means
there is self-similarity between events when H ∈ (0.5, 1). H is greater then the
time series similarity is greater. Therefore, the larger the Hurst index, self-similar
(long associated) and nonlinearity characteristic is higher [21]. The typical Hurst
index calculation method is Rescaled Range (R/S) analysis, can be expressed as:

(R/S)n = AnH , (1)

wherein, n is the number of time series samples, R is rescaling range and be ex-
pressed as

R = max(Xt,n −minXt,n), t = 1, 2, . . . , n, (2)

S is standard deviation, H is Hurst index, and A is a constant. Drawing the
diagram lg (R/S)n corresponding to lgn, calculating slope of data points using
least square method, that is Hurst index.

In this paper, 500 groups of network traffic data from a core 3G communication
router in Liaoning branch of China Unicom are collected, the sampling period of
network traffic is 10 minutes. Fig. 1 shows the sample data. The Hurst index
of network traffic time series is obtained by rescaled R/S method, as shown in
Fig. 2. The Hurst index of network traffic time series have 0.8525, apparently
satisfied 0.5 < H < 1, so the network traffic time series has predictability, self
similar, nonlinear and long-related characteristics. Therefore, how to select the
appropriate prediction model is very important, the paper will discuss this problem
in the following sections.
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Fig. 1 Network traffic sample data.
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Fig. 2 The Hurst index of network traffic time series.

3. Network traffic hybrid prediction model

The prediction model has a great influence on the prediction accuracy. According
to the characteristics of network traffic discussed in Section 2, this paper proposed
grey model and Elman neural network hybrid prediction model. The grey model
can predict the general trend of network traffic. The Elman neural network model
can reduce the influence caused by nonlinear factors. The final predicted value is
not obtained through a simple addition, but through an appropriate optimization
algorithm to obtain different weight coefficients. The proposed hybrid prediction
model combines the advantages of grey model and Elman neural network, so it has
good prediction results.

3.1 Grey model

GM (1,1) prediction model is the basic model of grey model, the network traffic
sequence D0 as

{d0(k)}, k = 1, 2, . . . , n. (3)

Because the network traffic sequence is random variation, it is unable to build
a prediction model for network traffic sequence directly. Therefore sequence D1 is
generated by one-accumulate of sequence D0.

{d1(k)}, k = 1, 2, . . . , n, (4)

where

d1(k) =
n∑

k=1

d0(k). (5)

Then
d0(k) + ad1(k) = b. (6)
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The Eq. (6) is the original form of GM (1,1) prediction model. The basic form
of GM (1,1) model is analyzed from network traffic sequence with an average idea,
it can replace d1(k) by z1(k) = 0.5(d1(k) + d1(k − 1)). Generating the mean
consecutive neighbors of D1. Thereby the following form can be obtained as

d0(k) + az1(k) = b, (k = 2, 3, . . . , n). (7)

After differentiating the Eq. (7) it can be obtained

dd1(t)

dt
+ ad1(t) = b. (8)

Parameter identification of Eq. (8) with the least square method is as follows:

â = [a b]T = (ZTZ)−1ZTY, (9)

where

Y =


d0(2)
d0(3)
...
d0(n)

 , (10)

Z =


−z1(2) 1
−z1(3) 1

...
...

−z1(n) 1

 . (11)

Thus GM (1,1) prediction model can be obtained as following two equations:

d̂1(k + 1) = (d0(1)− b/a)e−ak + b/a, (12)

d̂0(k + 1) = d̂1(k + 1)− d̂1(k). (13)

3.2 Elman neural network prediction model

Elman neural network is a two layer BP neural network with feedback structure. El-
man neural network add a feedback layer on the basic structure of the traditional
BP neural network, so the system has the ability to adapt to the time-varying
characteristics. It is able to approach to any continuous nonlinear function if ap-
propriate numbers of neurons are selected, at the same time, the convergence speed
is much faster than the BP network. So Elman neural network is very suitable for
nonlinear time series prediction. The structure of Elman neural network is shown
as Fig. 3.

Elman neural network adopts dynamic back propagation learning algorithm.
The gradient descent method is employed to train the network. The target of algo-
rithm is to minimize the mean square error of sample output and system recognition
output by adjusting the weight of each layer of network. u(t) is network external
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Fig. 3 The structure of Elman neural network.

input sequence, yc(t) is feedback layer output, y(t) is network output, w1 is con-
nection weight matrix from feedback layer to the hidden layer, w2 is connection
weight matrix from input layer to the hidden layer, w3 is connection weight matrix
from hidden layer to the output layer. The specific learning algorithm is

E(K) =
1

2
(yd(k)− y(k))T(yd(k)− y(k)), (14)

∆w3
ij = η3δ

0
jxj(k), (15)

∆w2
jq = η2δ

h
j uq(k − 1), (16)

∆w1
jl = η1

m∑
i=1

(δ0l w
3
lj)
∂xj(k)

∂w1
jl

, (17)

δ0i = (ydi(k)− yi(k))g′(·), ∂xj(k)

∂w1
jl

= f ′j(·)xl(k − 1) + a
∂xj(k − 1)

∂wjl
′′ , (18)

δhj =
m∑
i=1

(δ0iw
3
ij)fj

′(.), (19)

wherein, i = 1, 2, · · · ,m; j = 1, 2, · · · , n; q = 1, 2, · · · , r; η1, η2, η3 is learning step
of w1, w2 and w3; f(·) is a nonlinear function, and taken as sigmoid function

f(x) =
1

1 + e−x
. (20)
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3.3 Hybrid prediction model

The network traffic hybrid prediction model in this paper is shown in Fig. 4.
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Fig. 4 The network traffic hybrid prediction model.

The prediction steps of the model in this paper are described below. The
modeling phase:

Step 1: Give the network traffic sample sequence as t(k−m), t(k−m+1), . . . , t(k),
k is sampling time, m is embedding dimension.

Step 2: Use t(k −m), t(k −m + 1), . . . , t(k) as model input, t(k + 1) as output,
modeling and training GM (1,1) model according to Section 3.1, modeling
and training Elman neural network according to Section 3.2, continuous up-
dating k, obtained model parameters.

Step 3: Define the GM(1,1) prediction model output as t̂1(i), the Elman neural
network prediction model output as t̂2(i), the hybrid prediction model output
as t̂(i), t̂(i) satisfies the following Eq. (22), α and β is weighting coefficient.

t̂(i) = αt̂1(i) + βt̂2(i) , −1 < α < 1,−1 < β < 1. (21)

Step 4: Use the root mean square error of actual and prediction value of network
traffic as fitness function, expressed as follows:

fitness(j) =
1

N

√√√√ N∑
k=1

(tk − t̂k)
2
, (22)

wherein N is sequence length, j is the number of iterations. The improved
harmony search algorithm proposed in the next section is used for the opti-
mization of α and β.

The prediction phase:

Step 1: The current sampling time is k, the input sequence as t(k−m), t(k−m+
1), . . . , t(k), the GM(1,1) model prediction output as t̂1(k + 1), the Elman
neural network prediction output as t̂2(k + 1).
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Step 2: The prediction output multiplied by the respective weighting coefficient,
the final prediction value t̂(k + 1) can be obtained according to Eq. (22).

Step 3: Let k = k + 1, t̂(k + 1) obtained in Step2 into sequence t(k −m), t(k −
m+1), . . . , t(k), t̂(k+1) replaced t(k), t(k−m) is removed, go to Step1 until
prediction process end.

Different weight coefficients α and β will affect the prediction precision, so how
to determine the most suitable α and β is the key part of hybrid prediction model.
In this paper, the optimized weight coefficients can be determined by the improved
harmony search algorithm proposed in the next section.

4. Improved harmony search algorithm

4.1 Standard harmony search algorithm

Harmony search (HS) algorithm was proposed in 2001 [22], it is a swarm intelli-
gence optimization algorithm coming from imitation of music creation process. HS
algorithm generated a new individual by all individual cooperation, do not rely on
the initial conditions, it has simple structure, easy to realize and fast convergence
speed and other good characteristics. Literature [10, 7] showed the optimization
performance of HS algorithm is better than genetic algorithm, simulated annealing
algorithm, etc. HS algorithm has been widely applied to power system optimiza-
tion and energy saving [2], economic cost optimization [14], multi-objective flexible
job shop scheduling problem [4], architectural design [3] and other optimization of
the actual problems.

The following is the standard HS algorithm optimization process. For a given
optimization problem

min f(X) , s.t. xi ∈ [Li, Ui], (23)

where X is a u-dimensional real-valued vector and f(X) is a real-valued continuous
function of optimization problem.

Step 1: The HS algorithm first initializes the following parameters: harmony
memory size (HMS), harmony memory consideration rate (HMCR), pitch
adjusting rate (PAR), number of iteration (NI) and range of decision vari-
ables [Li, Ui].

Step 2: Random create harmony memory as follows:

HM =


X1

X2

...
Xm

 =


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 , m = HMS. (24)
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Step 3: Generate a candidate solution Xnew = (xnew(1), xnew(2), . . . , xnew(j)),
xnew(j) is as the following steps:

xnew(j) =

{
xmd(i),j if r1 < HMCR,

xnew(j) ∈ [Li, Ui] if r1 ≥ HMCR,
(25)

where xmd(i),j is a randomly selected component of J-th column component
in HM, xnew(j) is a random value of J-th component, r1 is a uniformly dis-
tributed random number between [0, 1]. If xnew(j) is solution of the selected
component of HM, then according to the following trimming:

xnew(j) =

{
xnew(j)± r3 ×BW if r2 < PAR,

xnew(j) if r2 ≥ PAR,
(26)

where r2 and r3 are the uniformly distributed random numbers between [0, 1].

Step 4: Update the harmony memory, if f(Xnew) < f(Xw), Xw is the worst so-
lution of harmony memory, then Xw = Xnew.

Step 5: Repeat Step 3 and Step 4, until the number of iterations reaches NI.

4.2 Improved harmony search algorithm

The speed and convergence precision of HS algorithm are related to the algorithm
parameters. In order to improve the algorithm search efficiency, and to overcome
the shortcomings of the standard HS algorithm, the following is improved in this
paper.

The parameter HMCR should be dynamically regulated from large to small
values, this ensures HM algorithm will fully search the harmony memory at first,
then go to search external harmony memory in later during iterative search. In
order to improve the diversity of population, adjustment method is as follows:

HMCR(t) =

 HMCR(t− 1)× ρ HMCR(t) > HMCRmax,
HMCRmin HMCR(t) ≤ HMCRmin,
HMCRmax t = 0.

(27)

In the early of the HS algorithm, smaller PAR can be good at searching a
better region. In the late of HS algorithm, the larger PAR is conducive to make
the algorithm jump out of local optimal value. So PAR is changed from small to
large. PAR change strategy in this paper is

PAR(t) =
PARmax − PARmin√

NI
×
√
t+ PARmin. (28)

As parameter BW , in the early of HS algorithm, the larger BW is good at
searching in a wide range. Later in the search algorithm, smaller BW is beneficial
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to the precise search within a small area. Therefore, BW should be changed from
large to small, the changing strategy is as follows:

BW (t) = BWmin + (BWmax −BWmin)× e−t. (29)

The new solution xnew is generated through by selecting a component randomly
in memory when the standard HS algorithm updates memory. This will cause the
algorithm search direction uncertain with larger randomness. This paper reference
to crossover idea of genetic algorithm, a new solution xnew1 is generated according
to the standard HS algorithm, then the second new solution xnew2 is generated by
randomly single-point crossover between xnew1 and the other column component.
If f(xnew1) < f(xnew2), xnew1 is reserved, otherwise xnew2 is reserved.

In order to validate the performance of the improved HS algorithm, the following
Sphere function expressed as Eq. (31), Rosenbrock function expressed as Eq. (32)
and Rastrigin function expressed as Eq. (33) are used to test.

f1(x) =
n∑

i=1

x2i , (30)

f2(x) =
n∑

i=1

100(x2i+1 − xi)
2

+ (1− xi)2, (31)

f3(x) =
n∑

i=1

[
x2i − 10 cos(2πxi) + 10

]
. (32)

In order to illustrate the effect of the improved harmony search algorithm in this
paper, standard harmony search algorithm is compared. The standard HS algo-
rithm parameters are the same as literature [1]: HMCR = 0.9, PAR = 0.3, BW =
0.01. The improved HS algorithm parameters in the paper are: HMCRmax = 1,
HMCRmin = 0.4, ρ = 0.97, PARmax = 0.9, PARmin = 0.4, BWmin = 0.0001,
BWmax = 1, cross-factor u = 0.8. The number of iterations is set to 5000,
HMS = 6. The Tab. I shows the three test functions dimension, the global optimal
value and initialization parameters.

Functions Dimensions Range of parameters Optimal value

Sphere 4 [−100, 100] 0
Rastrigin 30 [−5.12, 5.12] 0
Rosenbrock 30 [−2.048, 2.048] 0

Tab. I Function parameters.

In order to eliminate the influence of random, all the algorithms are run for 20
times and the average value is chosen as the optimization results. Figs. 5, 6 and
7 are fitness convergence curve of the three functions in one test process. For the
convenience of the display, the horizontal ordinate is recording a fitness value per
50 iterations, the vertical ordinate is the fitness takes on logarithm of 10. It can
be seen from the figure the improved HS algorithm in this paper is better than the
standard HS algorithm with faster convergence, and better fitness value. Tab. II
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gives the comparison result of HS and IHS algorithms, including the best fitness
value and the average fitness value. The best fitness value and average fitness
value reflects the convergence of the algorithm, the mean value of fitness reflects
the robustness of the algorithm. As can be seen from Tab. II, the best fitness,
the success rate and other performance indexes of improved HS are better than
standard HS algorithm.
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Fig. 5 Sphere function convergence curve.
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Fig. 6 Rastrigin function convergence curve.
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Fig. 7 Rosenbrock function convergence curve.

Functions
Average Best Standard Success
fitness fitness deviation rate [%]

Sphere by HS 1.3272 0.6125 0.3157 76
Sphere by IHS 0.0321 0.0011 0.0004 100
Rastrigin by HS 13.6480 11.3287 2.0176 55
Rastrigin by IHS 0.2939 −0.2435 0.0623 100
Rosenbrock by HS 15.1525 10.5421 2.5652 20
Rosenbrock by IHS 0.1236 0.0952 0.0463 100

Tab. II Algorithm simulation results.

This section verifies that the convergence speed and accuracy of improved HS
algorithm are better than the standard HS algorithm. In the simulation, the im-
proved HS algorithm is applied to the weight coefficients optimization of network
traffic hybrid prediction model.

5. Simulation

The network traffic data for simulations is the same with Section 2. The former
400 groups for training and modelling network traffic hybrid prediction model, the
remaining 100 groups of data are used to validate the predictive accuracy of the
model. Network traffic queues embedding dimension m is chosen as 20. After
trained, the GM (1,1) prediction model parameters are b = 147.8073, a = −0.0093.

Elman neural network input layers are the same with embedding dimension
m, are taken to be 20, maximum number of iterations is 3000, iteration goal is
0.0001, the hidden layer number is 10, the output layer number is 1, the multi step
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prediction can be obtained through iteration. When GM (1,1) model and Elman
neural network model are trained, the network traffic predicted value is used for
weight coefficient optimization according to the Eq. (22). The improved harmony
search algorithm proposed in this paper is used as optimization algorithm. The
fitness function uses the root mean square error between the network traffic actual
value and predictive value. Parameters of the improved HS algorithm are used the
same values as described in Section 4. Through the optimization search, the optimal
weight coefficient is obtained as α = 0.3018, β = 0.7216. Fitness convergence curve
as shown in Fig. 8.

Fig. 9 is GM (1,1) prediction model comparison between predicted value and
actual value of the 100 groups network traffic. Fig. 10 is Elman neural network
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Fig. 8 RMSE fitness convergence curve.
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Fig. 9 The GM(1,1) prediction model comparison between predicted and actual
value.
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prediction model comparison between predicted value and actual value of the 100
groups network traffic. Fig. 11 is hybrid prediction model comparison between
predicted value and actual value of the 100 groups network traffic.

In order to further verify prediction precision of network traffic hybrid predic-
tion model. Fig. 12 shows the comparison between predicted value and actual value
of network traffic by ARMA model in literature [18], Fig. 13 shows the comparison
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Fig. 10 The Elman neural network prediction model comparison between predicted
and actual value.
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Fig. 11 The hybrid prediction model comparison between predicted and actual value.
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between predicted value and actual value of network traffic by LSSVM in litera-
ture [9]. The ARMA model parameters are determined according to the Akaike
information criterion (AIC), it is p = 2, q = 1. The LSSVM parameters obtained
by grid cross validation model, the parameters as γ = 32.03, σ2 = 4.361.
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Fig. 12 The ARMA prediction model comparison between predicted and actual
value.
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Fig. 13 The LSSVM prediction model comparison between predicted and actual
value.
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Prediction model RMSE MAPE

Hybrid prediction model 6.2722 1.035
GM(1,1) 12.7614 2.402
Elman neural network 16.2809 3.424
LSSVM 12.0303 2.253
ARMA 18.9903 3.503

Tab. III The prediction error comparison of five models.

Fig. 14 shows the prediction error distribution of five prediction models, the
prediction error can be observed from this figure that the prediction model proposed
in this paper has smaller prediction error and more uniform error distribution.

Tab. III is root mean square error (RMSE) and mean absolute percentage error
(MAPE) comparison of five prediction models.
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Fig. 14 The prediction error distribution of five prediction models (a: Elman b:
GM(1,1) c: LSSVM d: ARMA e: Hybrid prediction model).

Through comparison between the predictive value and actual value of network
traffic from Fig. 9 to Fig. 13, the prediction error contrast from Fig. 14, the RMSE
and MAPE contrast from Tab. III, it can be seen the network traffic hybrid pre-
diction model has higher prediction accuracy than other common single prediction
models. The main reason of the prediction accuracy improvement is that two mod-
els are used to predict, thus can overcome the shortcomings of the single prediction
model. GM (1,1) grey model can weaken the randomness of the network traf-
fic original sequence, and the Elman neural network has good prediction ability
for nonlinear sequence, through hybrid model can achieve better prediction effect.
At the same time, two prediction model weight coefficients are optimized by the
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improved HS algorithm, the prediction error can complement each other at each
moment, so the prediction precision is improved.

5.1 Conclusions

In this paper, in order to increase the prediction accuracy of network traffic, a
hybrid prediction model combining grey model and Elman neural network is pro-
posed. The optimal weight coefficients of hybrid prediction model are optimized
by an improved HS algorithm, it can achieve the best prediction results. The sim-
ulation was performed using the actual data collected from the actual telecommu-
nication network. Simulation results demonstrate that the improved HS algorithm
has higher convergence speed and better fitness value. The simulation also shows
network traffic hybrid prediction model has higher prediction accuracy and smaller
prediction error than other prediction models.
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