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Abstract: One of the most challenging task for Computer Aided Diagnosis (CADx)
systems designed to diagnose breast cancer is to be able to differentiate between
benign and malignant masses. In this work we present a study made as part of an
ongoing project whose aim is to develop an image-based CADx system for diag-
nosing mass lesions. Our system is based on image-based and non-image features.
Image-based features are obtained using Independent Component Analysis (ICA),
and both age and mammogram density are tested as non-image features. Perfor-
mance results are provided for all the valid masses in a public database, obtaining a
statistically significant improvement by adding age to image-based features. How-
ever, the addition of the density of the mammogram does not improve the system
performance.
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1. Introduction

Over a million women worldwide are diagnosed with breast cancer every year,
accounting for a tenth of all new cancers and 23% of all female cancer cases. Breast
cancer incidence rates vary considerably, with the highest rates in North America
and the lowest in Africa and Asia. Around 332,670 new cases of breast cancer
occurred in the European Union in 2008 [17] and it is estimated that 182,460 occur
in the USA each year [25].

The best way to fight against breast cancer is early-stage diagnose, and mam-
mography seems to be the most effective test to diagnose breast cancer [22] since
lesions can be detected before they are even felt by the patient. Early-stage detec-
tion greatly increases cure chances though, unfortunately, even expert radiologists
can miss a significant proportion of abnormalities [3]. Moreover, an important
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number of mammographic abnormalities are diagnosed as benign after biopsy [12]
obliging patients to undergo an invasive procedure and wait for the corresponding
result.

Many methods have been proposed in the last two decades to achieve a ro-
bust mammography-based CADx system. Although there are various types of
mammographic abnormality, they can be primarily grouped in either masses or
microcalcifications [19]. In the literature we can find different proposals focused on
detection and segmentation of masses in mammograms, as found in [21]. Neverthe-
less, studies described in papers addressing both detection and diagnosis of masses
usually use a proprietary database of small size or, if using a public database, the
cases selected are not specified. This makes it difficult to compare results between
different techniques. Rangayyan [23] provides a comparison of selected computer
aided methods indicating the size of the used dataset and its accuracy results. The
number of mammograms used in the listed works is as low as 25 in the work of
Brzakovic [6], being the highest 322 in the work of Zheng and Chan [33] that uses
all the mammograms provided by the Mini-MIAS database. Horsch [14] analyzes
recent studies in mammography CADx and concludes that, in view of the observed
variability in the used data sets, currently the only mammography database that
is public and sufficiently large to allow for a meaningful and reproducible evalua-
tion of a CADx system is the Digital Database for Screening Mammography [13]
(DDSM).

Mass diagnosis is performed using very different techniques and datasets, most
of which are considered to be non reproducible [14]. In CADx system, the perfor-
mance is usually expressed by the Area Under the ROC Curve [10] (AUC or Az).
Restricting ourselves to works which provide a reproducible selection of mammo-
grams, the number of papers that address this problem is really reduced [14]. Some
studies use human provided features, as Elter [8], where the BI-RADS R© (Breast
Imaging-Report and Database System) [1] description of abnormalities is used to
predict malignancy considering three types of classifiers. This technique was ap-
plied to 2,100 masses from DDSM, reporting an AUC value of 0.89. Similarly,
Kim [18] also uses BI-RADS R© features from DDSM but adds 14 gray level fea-
tures extracted from masses. This study analyzes the dependence of the system’s
performance on the features selected and the origin of the case, i.e., the institution
where the case was collected from. The authors report AUC values from 0.76 to
0.94. Finally, Yoon [30] adds the assessment of the cancer as a parameter to be
considered in the diagnosis of a mass. The AUC values reported by this author are
between 0.92 and 0.97.

More recently, some other papers describing classification of masses in mam-
mograms (benign and malignant) have been published [32, 28, 29]. Though these
papers were not analyzed in [14], in our view only [32] would have been listed as
reproducible. In that study, they used mass shape features and an ensemble system
formed by four specialist classifiers based on patient age (young/old) and region
of interest (ROI) size (large/small). To train and test the system, they used the
DDSM database, selecting the mammograms from Lumisys scanner. From these
selected mammograms, they removed instances with extreme digitization artifacts
and extremely large size (over 2000 × 2000 pixels). They also removed instances
with mixed BI-RADS descriptors, and those ROI images that displayed only a por-
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tion of a mass. Finally, they considered 543 mass prototypes (272 benign and 271
malignant) and obtained a performance of 56% with a single classifier trained with
all mass prototypes, and a performance of 72% with the ensemble system of spe-
cialist classifiers. On the other hand, Tahmasbi [28] proposed an approach based on
Zernike moments as descriptors of shape and margin characteristics, and a Multi-
layer Perceptron (MLP) trained with Back-Propagation (BP) or Opposition-based
Learning (OBL) algorithms. They used the MIAS database (67 ROIs with benign
lesions and 54 ROIs with malignant lesions) to train and test their system. As it
was stated in [14] the MIAS database is valid for a meaningful and reproducible
evaluation of a CADx system. Finally, Verma [29] presents an approach which
relies on a soft clustered based direct learning classifier (SCBDL). They selected
200 mammograms (100 malignant and 100 benign) from the USF’s Digital Data-
base for Screening Mammography (DDSM) database, but they did not specify how
they made this selection, and therefore a meaningful and reproducible evaluation
cannot be made. In our study, we use a feature extractor based on Independent
Component Analysis (ICA) to diagnose the masses provided in the mammograms
of the DDSM. And as a secondary objective, we analyze the effect on the perfor-
mance of our system obtained by the addition of non-image parameters such as
age and breast density of the mammogram. The previously cited works used mass
shape and margin as a base for the diagnosis being both features provided by hu-
man DDSM radiologists. As we mainly considered computer extracted features, a
direct comparison of our results with those presented in the previously cited works
does not provide an accurate picture of the performance of the different proposals.
On the other hand, an approach similar to ours was presented in [7], where they
also used an ICA-based feature extractor to obtain a number of texture features
from regions of interest, which were later classified as abnormal o normal tissue
using a supervised probabilistic classifier. However, they used the MIAS database
for the mammographic images, and therefore we cannot compare the results, con-
sidering that they should be obtained over the same set of data to be comparable,
as stated in [20] and [14].

The rest of our paper is organized as follows. Section 2 introduces the general
concepts related to feature extraction and dataset characteristics used in our expe-
riments. Next, Section 3 describes our methodology in detail. The results obtained
by applying the system to a concrete subset of the DDSM database can be found
in Section 4, and finally, our conclusions and possible improvements of our work
are presented in Section 5.

2. Materials and methods

In this section, we provide a brief description of the mammogram database utilized.
Furthermore, we describe the procedure implemented to build a set of mass proto-
types and the main characteristics of the image feature extractor. Finally, in the
last subsection we outline our distributed implementation of the neural classifier
training process.
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2.1 Data and prototype creation

The DDSM [13] is a resource available to the mammographic image analysis re-
search community. Contains a total of 2,620 cases, each of which provides four
screening views, mediolateral oblique (MLO) and craniocaudal (CC) projections of
left and right breasts. Therefore, the database has a total of 10,480 images.

The cases are categorized in four major groups: normal, cancer, benign and
benign without callback. In addition to the regular DDSM volumes, DDSM website
provides the so called “DoD BCRP Mammography Datasets at USF” composed
of four sets. They have been created for preliminary evaluation of the perfor-
mance of CADx algorithms. Two of the four datasets focus on spiculated masses
(BCRP MASS 0 and BCRP MASS 1), while the other two focus on clustered mi-
crocalcifications (BCRP CALC 0 and BCRP CALC 1). Each case in the BCRP
datasets contains at least one malignant lesion of the corresponding type.

All cases in the DDSM database were reported by experienced radiologists pro-
viding various BI-RADS parameters (density, assessment and subtlety), BI-RADS
abnormality description and proven pathology. For each abnormality identified, the
radiologist draws free form digital curves defining ground truth regions. Besides,
each DDSM case includes additional information such as patient age, date of study
and digitization or digitizer’s brand.

In our method, we use the regions provided by the radiologists to define squared
ROIs, which are considered as prototypes for the mass classes. The DDSM database
contains 2,582 regions reported as masses, both benign and malignant. From these
regions, those located on the border of the mammograms were discarded, because
it was not possible to take a square, with the mass centered, without stretching.
Therefore, only 2,324 regions could be considered. Some mass prototype examples
are shown in Tab. I.

2.1.1 Regions of interest

Ground truth regions are defined in the DDSM database by a chain code which
generates a free hand closed curve. As stated above, we use the chain code to
determine the smallest square region of the mammogram that includes the manually
defined area. Therefore, if the mass is located near one edge of the mammogram,
this procedure may not be able to obtain a squared region from the image and
the mass is discarded as a valid prototype. Fig. 1 shows the ground truth region
marked by the radiologist (solid line) and the area to be used as ROI (dot-dashed
box).

DDSM mammograms were digitized with four different scanners for which op-
tical density calibration [13] and spatial resolution is known. In addition, three
scanners provide a linear optical response, and the fourth provides a logarithmic
one. To eliminate the dependence of the origin of each digitized mammogram, all
the ROIs considered were converted to optical density using the referenced calibra-
tion parameters.

The regions generated in this way have different sizes. However, the selected
image feature extractor needs to operate on regions with the same size. Therefore,
we need to reduce the size of the selected regions to common sizes. The reduction of
ROIs to a common size has demonstrated to preserve mass malignancy information
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Tab. I Mass samples for each shape and margin combination. Each ROI has been
resized to a common size of 128×128 pixels. Mammogram case and view is located
over each ROI.

.

[2]. To determine the optimum region size, we resized each ROI to three sizes:
32 × 32, 64 × 64 and 128 × 128 pixels. Resizing has been carried out using the
bilinear interpolation algorithm provided by the OpenCV [5] library.

2.2 Feature vectors

As described above, we analyzed the performance variations obtained with the
use of mixed feature vectors, combining image-extracted and non-image features
available for each region of interest. The feature vector is mainly composed by
image-extracted features using ICA. The non-image features that we considered
for this study were age and mammogram density, obtained from each case specifi-
cation. Both parameters were normalized when included as additional features in
the feature vector of each ROI using the following expression:

xnori =
xi − x

σ
, (1)

where x and σ are the mean and the sample standard deviation calculated over the
set of prototypes.
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Fig. 1 Ground truth region defined by a radiologist (solid line) and the ROI con-
sidered (dot-dashed box) on a DDSM mammogram.

2.3 Independent Components Analysis

Independent Component Analysis [15] is a statistical generative model whose ob-
jective is to explain the original data (X) using statistically independent random
vectors (S), as it is indicated in Eq. (2). ICA defines a generative model for the
observed multivariate data, typically given as a large sample database. In this
model, it is assumed that the data are linear combinations of unknown latent vari-
ables, and the system whereby combined is also unknown. It is also assumed that
non-gaussian latent variables are mutually independent and thus considered inde-
pendent components of the observed data. These independent components, also
called sources or factors, can be found by ICA. In our application, we can de-
compose or expand our image (I(x, y)) by using a base of images (ai(x, y), with
i = 1, . . . , p) multiplied by coefficients (si):

I(x, y) =

p∑
i=1

Ai(x, y)si. (2)

The goal of ICA is to estimate the mixing matrix A, in addition to the sources
sj . This technique can be used for feature extraction since the components of X
can be considered as features representing the objects [15].
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2.3.1 ICA feature extraction

Many basic models in image processing express an image as a linear superposition of
some features or basis functions, where the coefficients are different for each image.
Some linear transformations widely used in image processing are the Fourier, Haar
or Gabor transforms [11]. Following this model, we can represent a ROI in a
mammographic image as a series expansion in these functions. The coefficients
of this series expansion can then be used as features characterizing the ROI to
compose a feature vector which may be used to diagnose it. We can visualize this
idea in Fig. 2.
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Fig. 2 A ROI expressed as a linear superposition of some ICA extracted basis
functions.

To estimate ICA basis from images we need to collect samples (patches) from
the images to model. The collected patches are used to build a data matrix X
which is the input to the FastICA [16] algorithm. In this algorithm, input data are
centered first by subtracting the mean of each column of the data matrix X. The
data matrix is then whitened by projecting the data onto its principal component
directions using a pre-whitening matrix (K). The number of components (features)
to extract is selected a priori. The ICA algorithm then estimates an un-mixing
matrix W so that XKW = S, being S the estimated sources matrix.

Using the previous notation, being ~R the image associated to a previously-
centered ROI, we can obtain the feature vector (~F ) that characterizes the ROI as
~F = KW ~R.

2.4 The classifier

We used an artificial neural network (ANN) to classify the obtained feature vectors.
In particular, we consider a classical feed-fordward multilayer perceptron with a
single hidden layer, which was trained using a variant of Back-Propagation (BP)
algorithm named Resilient Back-Propagation (RPROP) [24]. Regarding the im-
plementation, the Stuttgart Neural Network Simulator environment SDK [31] was
used to generate and train the neural network classifiers. To avoid local minimum
during the training process, each setting was repeated four times, changing the
initial weights in the net at random. Furthermore, the number of neurons in the
hidden layer was allowed to vary between 50 and 650 in steps of 50, selecting the
network that provides the highest success rate over the test subset.

3. Outline of the process

In this section, we provide an overview of the structure of our system, describing
the main steps required to configure it and to obtain a diagnose for an unknown
region of interest.
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3.1 System setup

The implementation of the system consists of three stages. In the first stage we
estimate ICA basis from ROI images. The second stage involves all the procedures
required to optimize the neural classifiers for each considered feature vector com-
position. And finally, in the last stage we evaluate the diagnostic capability for
each input setting to select the best system configuration.

We estimated ICA basis using mass prototypes (both benign and malignant) as
input to the FastICA algorithm applying log cosh function to estimate neg-entropy.
For of the selected prototype sizes (32×32, 64×64 and 128×128), we generated a
set of ICA basis. Each ICA basis allows us to estimate a specific number of features
from a ROI of a given size. In order to optimize the performance of the system, we
obtained ICA basis to calculate from 10 to 60 features in steps of five, totalizing
33 different feature extraction configurations. Fig. 3 shows an ICA basis obtained
from sample patches which provides 30 features.
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Fig. 3 Obtention of ICA basis vectors of mammographic tissue from a set of pro-
totypes.

Any combination of ICA window size and number of features to be extracted
generates an input configuration for the neural classifier. To train it, we built
a data set of ICA-extracted feature vectors for each input configuration. Each
data set was split into three disjoint subsets: learning, validation and test. We
decided to use a validation subset to estimate the generalization error and improve
generalization by avoiding the overtraining [4].

Once the subsets intended for learning, validation and testing were gener-
ated, the neural network classifier (a Multilayer Perceptron) was trained with the
RPROP learning algorithm [24]. The Stuttgart Neural Network Simulator (SNNS)
[31] environment was used to generate and train the network. The high number of
input configurations to be optimized led us to use SNNS’s kernel function facilities.
These libraries allowed us to implement network training procedures in standalone
executable that could be run in a distributed Beowulf cluster [27].
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To achieve an optimal network configuration, we made a sweep of the number
of neurons in the hidden layer. We trained several network configurations with a
number of hidden neurons ranging from 50 to 650 in steps of 50. Furthermore,
each configuration was repeated four times, performing a random initialization of
the neuron weights in each repetition.

Finally, the test subset, which contains input vectors not used in the optimiza-
tion of the neural classifier, was used to provide performance results of our system.

3.2 Experiments

Two experiments were configured using the same database of prototypes, but
changing the procedure to build the sets of prototypes and the method to eval-
uate the performance of the system. This may let us study the robustness of
our system to variations on the composition of the sets. The setup for this two
experiments was as follows:

• In experiment A ten different training cycles were carried out building the
corresponding prototype sets as follows. First, all the prototypes extracted
from the BCRP MASS 1 subset and fifty benign prototypes (randomly se-
lected in each cycle) were included in the test subset. Then, the remaining
prototypes were used to build training and validation subsets, assigning 80%
of them to the training subset and the other 20% to the validation subset.

• In experiment B a 10-fold cross-validation test [4] was carried out using all
the collected prototypes. In each fold, the prototypes selected to adjust the
model were divided into two parts, using 80% of the prototypes to train the
neural network and the remaining to avoid overtraining.

Tab. II shows the average number of benign and malignant masses on each
subset (training, validation and test) for both experiments. In experiment A, since
prototypes were included in training or validation subsets randomly and indepen-
dently of its pathology, we provide mean values for the ten cycles. As can be seen,
the selection process led to a balanced distribution of malignant and benign pro-
totypes in each subset. In average, an 80.7% of the malignant prototypes were
included in the training subset and the remaining 19.3% into the validation subset.
In the same way, a 79.3% of the benign prototypes where included in the training
subset and a 20.7% into the validation subset. Furthermore, the 10-fold process
carried out in experiment B generates a maximum imbalance among malignant and
benign prototypes number lower than two percent for the three subsets.

Fig. 4 shows the performance values obtained with classifiers that used exclu-
sively ICA feature extractors with a ROI size of 64 × 64, over their corresponding
test set on experiment B. The best median success rate value was obtained for an
ICA feature extractor which operates over 64×64 pixel prototypes and provides 20
features from the ROI. Therefore, as the best performances was obtained on pro-
totypes of 64× 64 pixel, making further tests was discarded, both with prototypes
smaller than 32 × 32 pixels and larger than 128 × 128 pixels.

To evaluate the improvement obtained adding non-image features, we decided
to compare only those input configurations that include the selected ICA feature
extractor and other non-image features.
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Subset Pathology Experiment A Experiment B

Training
Malignant 900.3 823.3

Benign 857.7 802.7

Validation
Malignant 215.7 251.3

Benign 223.3 217.7

Test
Malignant 76 121.2

Benign 51 115.8

Tab. II Average number of malignant and benign masses in each subset of the two
experiments.
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Fig. 4 Success rate over the test set of classifiers that used exclusively 64×64 ICA
feature extractors and the considered features number.

4. Results and discussion

Neural classifiers’ performance was evaluated by means of Receiver Operating Char-
acteristics (ROC) graphs [9] and accuracy tests. Specifically, we choose the Area
Under the ROC Curve (AUC) [10] to compare the performance of the considered
classifiers. ROC curves were generated using the ROCR package of the R language
environment [26].

Fig. 5 provides ROC curves obtained for the four feature combinations consid-
ered in experiment A. Graph (a) in Fig. 5 corresponds to a system whose input
feature vector only considers the 20 features provided by the common ICA feature
extractor. Graph (b) shows the response of the system when adding the normal-
ized age to the previous feature vector. Graph (c) shows the performance obtained
combining ICA features and normalized mammogram density. And finally, graph
(d) provides the response of the system that considers ICA features, normalized
age and density to generate its input feature vector.
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Fig. 5 ROC curves for experiment A: (a) Only ICA features; (b) ICA + age; (c)
ICA + density; (d) ICA + age + density. False positive rate is plotted in x axis
and average true positive rate is plotted in y axis.

Fig. 6 provides ROC curves obtained for experiment B with the same arrange-
ment shown in graphs (a-d). Tab. III provides a summary of the AUC numeric
values obtained both on experiment A and experiment B, and its corresponding
confidence intervals for a significance level of 95%.

Direct observation of the ROC graphs for the same input configuration in exper-
iments A and B allows to visually assess that there are differences in performance.
Nishikawa [20] associated this behavior to the composition of the data sets. Fur-
thermore, we can also observe a performance dependence on the normalized age (see
Figs. 5 or 6), being this dependence statistically meaningful in both experiments
for a significance level of 95% (see Tab. III). The inclusion of the density parameter
worsens the overall system performance in both experiments, though this differ-
ence is significative only in experiment A. This result suggests that the use of this
parameter, which characterizes the global breast tissue, can provide information
not relevant to the scale ROI. On the other hand, comparing the configurations
ICA+age and ICA+age+density in our experiment, we observe a slightly differ-
ent behavior regarding the usefulness of the density parameter in the diagnosis of
ROIs. Experiment B achieves higher AUC by including the density parameter in
the input configuration ICA+age, though this improvement was not statistically
significant.
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Fig. 6 ROC curves for Experiment B: (a) Only ICA features; (b) ICA + age; (c)
ICA + density; (d) ICA + age + density. False positive rate is plotted in x axis
and average true positive rate is plotted in y axis.

The accuracy (P (Ŷ = Y )) is estimated as TP+TN
P+N and gives the likelihood of a

correct diagnosis with the implemented system. The accuracy analysis performed
on our system provides the results presented in Tab. III. The values shown indicate
the average probability for each configuration analyzed. This study shows lower
performance in experiment B, presenting an overall behavior similar to previous
ROC analysis.

As we stated in the introduction, considering [32, 28, 29], we can only reliably
compare our results with those presented in [32]. Here, the authors selected the
cases provided only by one scanner, the Lumysis, for the purpose of data consis-
tency. They obtained an accuracy of 56% with a single classifier trained with all
mass prototypes, and an accuracy of 72% with the ensemble system of specialist
classifiers. As can be seen in Tab. III, we have obtained the best performance for
the experiment A, with an AUC about 0.8 and an accuracy about 77%, while for
the experiment B was obtained an AUC about 0.7 and an accuracy around 69%.
As can be seen, our results (for both experiments) are better than those presented
in [32] where a single classifier is used. Besides, if we compare with their results for
an ensemble of specialist classifiers, our results are better for experiment A, and
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Configuration Experiment A Experiment B

AUC 95% CI AUC 95% CI

ICA 0.706 [0.679, 0.732] 0.624 [0.605, 0.642]
ICA+age 0.825 [0.805, 0.846] 0.739 [0.719, 0.759]
ICA+density 0.602 [0.576, 0.628] 0.620 [0.599, 0.641]
ICA+age+den 0.805 [0.788, 0.822] 0.755 [0.731, 0.780]

ACC[%] 95% CI ACC[%] CI 95% CI

ICA 70.5 [68.5, 72.6] 61.3 [59.5, 63.0]
ICA+age 77.6 [76.1, 79.0] 69.6 [67.4, 71.7]
ICA+density 63.3 [62.4, 64.2] 61.0 [59.1, 63.0]
ICA+age+den 75.9 [74.4, 77.4] 70.5 [68.5, 72.6]

Tab. III ROC area results and Accuracy results. Summary results obtained for
both experiments over the test subset. AUC values provide the average area under
ROC curve, and ACC represents the average true positive fraction, both with the
given confidence interval (CI) for a significance level of 95%.

only a little worse for experiment B. Moreover, it is important to remark that our
method is more robust since we consider all cases of the DDSM database, regard-
less of the source (Lumisys 200 Laser, Howtek, DBA M2100 ImageClear, Howtek
MultiRAD 850 [13]).

5. Conclusions

This work presents a method for the diagnosis of masses provided in mammograms
of the DDSM. The masses are classified into malignant and benign, considering
image-extracted features complemented by non-image parameters: age of the pa-
tient and breast density of the mammogram. The method has been tested with a
concrete subset of the DDSM, using two different procedures to select the proto-
types in the training stage. The results obtained in the experiments suggest that
ICA can be considered as a serious technique for feature extraction when design-
ing a CADx system for the diagnosis of masses. Though comparisons can not be
made, as we discussed in Section 1, these results are not far from those of other
authors, and can be improved when features extracted by ICA are combined with
features not directly obtained from images, such as the age. In fact, the system
performance increases significantly when normalized age is included, though this
increase is not observed with breast density. Therefore, more research effort should
be conducted to determine which non-image features are suitable for the task. On
the other hand, we have observed a significant variation linked to the prototype
selection criteria chosen, what can be considered as a drawback of the method. In
this case, it would be interesting to study more deeply this dependence, in order to
determine the procedure that better retains the prediction capacity of the classifier.
Finally, to reduce the number of false positives per image and improve the rates
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of correct diagnosis, we intend to use techniques for feature selection as genetic
algorithms (GA). In summary, a lot of work should be done to have a completely
reliable diagnosis system, but these results can be considered quite promising.
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