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Abstract: In this study, a new artificial intelligence optimization algorithm, Differ-
ential Search (DS), was proposed for Principal Component Analysis (PCA) based
unsupervised change detection method for optic and SAR image data. The model
firstly computes an eigenvector space using previously created k × k blocks. The
change detection map is generated by clustering the feature vector as two clusters
which are changed and unchanged using Differential Search Algorithm. For clus-
tering, a cost function is used based on minimization of Euclidean distance between
cluster centers and pixels. Experimental results of optic and SAR images proved
that proposed approach is effective for unsupervised change detection of remote
sensing image data.
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1. Introduction

One of the most important subjects of remote sensing discipline is to examine the
temporal variation of a specific zone. The existing differences in land cover or
land use can be identified by using satellite images of different periods. Change
detection approaches can effectively be used for solving important problems such
as observing forest and agricultural areas, identifying the changes in land cover
and identifying the spatial difference after a forest fire [7, 10, 12, 14, 20]. Change
detection is separated into two groups as supervised and unsupervised. But in solv-
ing real world problems, unsupervised approach is more preferable than supervised
approach. The reason lying under preference is that to provide the training data
to be used in supervised approach is difficult while unsupervised approach does
not need a training data [17]. Although there are a lot of unsupervised change
detection methods for both optic and SAR remote sensing images, pre-processing
steps consisting of geometric and radiometric corrections are generally needed [10,
17].
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Change vector analysis (CVA), image differencing, principal component analysis
(PCA), image rationing are the basic approaches used in change detection process
[4, 6, 18]. Among them, image differencing is the most commonly used approach.

Many unsupervised change detection methods have been improved over the
last years. Some of them are EM+MRF based [2, 24], PCA and K-Means based
[5], Fuzzy Local Information C-Means Clustering Algorithm (FLICM) [11], Refor-
mulated FLICM (RLICM) [11], Hard C-Means (HCM), Hard C-Means hybridized
with Simulated Annealing (SA-HCM), Hard C-Means Hybridized with Genetic
Algorithm (GA-HCM), Fuzzy C-Means (FCM) Fuzzy C-Means Hybridized with
Genetic Algorithm (GA-FCM) [9]. HCM, SA-HCM, GA-HCM and GA-FCM are
generally used for optic images, FLICM and RFLICM are used for SAR images
and PCA K-Means, FCM and EM+MRF can be used for both optic and radar
images [2, 5, 9-11, 24].

After pre-processing, some of the change detection methods need to generate
the feature space from the images of different dates by the aid of image differenc-
ing or image rationing. And then this feature space is clustered into two clusters
as changed and unchanged [9, 16, 21]. One of the most important components
increasing the success of the operation is the performance of the clustering algo-
rithm. A number of algorithms have been used with this purpose in many studies
[3, 5, 9, 11]. Over the last decade, artificial intelligence (AI) optimization algo-
rithms have been tested for unsupervised classification, i.e. clustering. The studies
show that these algorithms have the potential to outperform the classical clustering
techniques [1, 15, 25]. Although there are a number of AI optimization algorithms
such as Partial Swarm Optimization (PSO), Genetic Algorithm (GA) and Artifi-
cial Bee Colony (ABC) used for clustering, as a new AI optimization algorithm,
Differential Search Algorithm (DS) has not been tested for clustering purpose in
change detection so far. DS algorithm outperformed many conventional AI algo-
rithms in many standard multimodal tests [8]. It is a very powerful algorithm with
fast convergence ability.

In this study, Differential Search Algorithm (DS) was used as a clustering
method in an automatic PCA based unsupervised change detection approach de-
veloped by Celik (2009) [5]. This change detection approach is automatic, fast
and can be used in both optical and SAR remote sensing images. Its clustering
phase is the most arguable and developable step because of the fact that resulting
change and unchanged regions are categorized by clustering process and many dif-
ferent methods exist. In this approach, after a difference image is obtained from
multi-temporal images, the difference image is separated into k×k non-overlapping
blocks and transformed into a feature space by PCA. Then, a min-max normal-
ization is applied to the feature space and the obtained data set is clustered into
two groups with Differential Search Algorithm (DS) as changed and unchanged
areas. According to this, the relationship between PCA and DS algorithm is that
PCA constructs features and DS transforms these features into clusters. Finally,
performance tests are done through ground truth maps of optic and SAR image
data sets.
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2. PCA Based Unsupervised Change Detection
with DS (PCA-DS Approach)

In the first step of the method, two multi-temporal images must be registered to
each other. If it is necessary, the radiometric distortions coming from sensor, at-
mosphere, etc. must be corrected at this step. Then, second step is the calculation
of the difference image. Let Xtime1 and Xtime2 be the images belonging to same
geographical areas in different dates and Xdiff be difference image. For optical
images, Xdiff is calculated by subtracting the image density values of Xtime1 from
Xtime2 and then absolute value of Xdiff is calculated [2, 5]. The equation for optical
images is defined as

Xdiff = |Xtime2 −Xtime1| . (1)

For SAR images, Xdiff is calculated by subtracting the logarithmic values of Xtime2

and Xtime1 then absolute value of Xdiff is calculated. The equation for SAR images
is defined as [3]

Xdiff =

∣∣∣∣log
Xtime2

Xtime1

∣∣∣∣ = |log(Xtime2)− log(Xtime1)| , (2)

where log is natural logarithm.
In the third step, the difference image Xdiff is separated into k × k blocks in a

lexicographical order. Let this obtained matrix be Mp
diff . Eigenvectors of the Mp

diff

matrix are generated with PCA. In Mp
diff , p is an index value with

1 ≤ p ≤ S b(R× C)/(k × k)c , (3)

where S is the number of column vector sets in Mp
diff , R is the number of rows of

Xdiff , C is the number of columns of Xdiff . Since it has shown that k = 3 generates
more successful results [5], k value is set as 3 in this study. A mean vector (Φ) is
calculated from Mp

diff along the columns as

Φ =
1

S

S∑
p=1

Mp
diff . (4)

After that, this mean vector is subtracted from each column vector of Mp
diff matrix

∆p= Mp
diff −Φ, (5)

where ∆p difference vector set. Then, covariance matrix (CM) is calculated with
matrix algebra as

CM =
1

S

S∑
p=1

∆p(∆p)
T, (6)

where ()T is transposing process. Eigenvalues (λi) and corresponding eigenvectors
(ei) of the covariance matrix (CM) are computed. Then the related eigenvectors
for reducing of effective dimension are selected by Cumulative Percent Variance
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(CVP) selection criteria which are subjective but highly effective selection criteria
for real data sets [23] as follows:

CVP(n) = 100

(∑n
i=1 λi∑k×k
i=1 λi

)
. (7)

In CVP, the eigenvectors are sorted in descending order in terms of eigenvalues
and the first bundle of eigenvectors that provides a reasonable percent (e.g. 90%,
95% or 99%) is selected which reduces the effective dimension. These selected
eigenvectors are used to project pixel values in Mdiff(x, y) into feature vector space
as

v(x, y) =


v1
v2
v3
...
vσ

 , (8)

where 1 ≤ n ≤ k2, vσ = (ei)
T (Mdiff(x, y) − Φ), 1 ≤ i ≤ n, 1 ≤ x ≤ R, 1 ≤ y ≤ C

and n is the number of eigenvectors used for projecting Mdiff(x, y) onto eigenvector
space.

The later step is the normalization of the feature vector space v(x, y) into [0, 1]
interval in order to boost the performance of DS optimization. This technique,
called also min-max normalization, is performed according to the following equa-
tion:

ϕnew =
ϕ− ϕmin

ϕmax − ϕmin
. (9)

In Eq. (9), ϕnew is the normalized value; ϕ, ϕmin and ϕmax are the original value,
minimum value and maximum value in the feature space, respectively. The tests
of this study show that this type of normalization increases the effectiveness of DS
in terms of convergence speed.

In the last step, feature vector space which min-max normalization has been
done is clustered into two classes by using DS algorithm. As in all of the optimiza-
tion methods, DS algorithm also needs an objective function for minimization. The
objective function used in this study is given as

cj =
{
xi; min(‖xi − cntj‖2)

}
, (10)

arg min
cntj

∑
‖cj − cntj‖2. (11)

In Eqs. (10) and (11), ‖‖2 is Euclidean distance, xi is i-th pixel, cntj is the center of
the j-th class, cj represents all of the pixels in the j-th class. As can be seen in the
objective function, DS optimizes the cluster centers so that these centers provide
the least minimum total distance between the cluster centers and the pixels of each
cluster in each iteration.

After the clustering, change detection map (CDM) is ready. Since DS algorithm
initializes the cluster centers randomly, the cluster labels of change and unchanged
regions can vary from simulation to simulation, i.e. the change cluster doesn’t
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always obtain the same label such as 1 or 2. In order to solve this problem, a
simple label correction process can be done as

CDM =

{
CDM m1 = 2 and m2 = 1
(CDM × (−1)) + 3, m1 = 1 and m2 = 2

}
, (12)

where m1 and m2 are label values of pixels in changed and unchanged areas, re-
spectively.

One of the most important characteristics of the proposed approach is a PCA
block based approach: Firstly, the difference image prepared and then pixel blocks
with size of k×k are used instead of individual pixels. These blocks are transformed
into a new feature space by PCA. By this way, local consistency can be improved
upon classical approaches. Another prominent feature of the approach is that a
new evolutionary optimization DS algorithm is used for unsupervised classification
instead of Fuzzy C-means or K-Means. Thus, the potential of DS algorithm in the
change detection applications of remotely sensed images can be revealed.

3. Differential Search (DS)

DS is a population-based iterative meta-heuristic optimization algorithm. It was
developed by Civicioglu to solve optimization problems having real values [8]. DS
algorithm simulates Brownian-like random walk action used by a superorganism
with the purpose of migrating. As the fertility of food areas changes depending
on climate, a lot of species migrate to more fertile fields. A lot of species such as
birds, fire ants and bees have seasonal migration cycle. Migrating species generate
superorganisms involving a number of individuals. After that, superorganisms
start to change the location towards more productive areas. The movement of the
superorganisms can be explained by Brownian-like random walk [8].

Many of predatory species control the fertility of that habitat before migrating
to a new habitat. If the potential of this habitat is enough for the needs of ten
super organisms, it settles in this new area temporarily and goes on migration with
goal of finding more productive regions. The population consisting of candidate
solutions in DS algorithm means a migrating superorganism. This superorganism
selects the good locations as stop-over site in habitat. Then the superorganism
clans that find a good accommodation area migrate there.

The number of artificial organisms (clans) (i, e., Xi, i = {1, 2, 3, . . . , N}) form-
ing superorganism (i.e., Superorganism g, g = 1, 2, 3, . . . ,maxgen) is equal to the
dimension related optimization problem. In DS algorithm a member of superor-
ganism’s initial position is calculated by using following equation:

xi,j = rand(up lim
j
−low lim

j
) + low lim

j
, (13)

where N, maxgen, uplimj and lowlimj values are population number, generation
number and habitat boundaries defined for j-th elements of clans, respectively [8].

In DS algorithm, stopover site search process can be explained with a sim-
ple Brownian-like random walk model [22]. Randomly selected individuals from
the clan in limited number move on from important parameters to their donor =
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[
XRand−Shuffling(i)

]
targets for the success of migration process so as to find stop-

over sites. Rand-Shuffling function is used for changing the placement of the com-
ponents in Xi set. The changes in the locations of artificial organisms are identified
by using scale factor. The scale factor is obtained by gamma random number gen-
erator which is controlled by uniform number generator. The operating range of
this number generator is [0,1]. Besides that, artificial superorganism can move in
many different directions with this kind of tip number generator. A new stop-over
site in DS is calculated as [8]:

StopoverSite = (SOrganism + SFactor)× (Donor− SOrganism), (14)

where SOrganism is a superorganism and SFactor is a scale factor.
In Differential Search Algorithm, three different stop-over site producing mech-

anisms are defined as Bijective DS, Surjective DS and Elitist DS. In Bijective DS,
every clan searches its habitat by going to a different clan. Bijective DS is suitable
for using multi-modal problems. In Surjective DS, a clan has the tendency of going
another clan existing in a more productive location. It can be preferred for partly
multimodal and mostly unimodal problems. Elitist DS makes all the clans go to
the clan presenting in the most productive area. It is a quite fast mechanism and
can be used especially for unimodal problems. In addition to this, there are dif-
ferent defined random number generators which can be used for generating Scale
Factor. In this study, Standard normal distributed random number generator was
preferred. Which individuals in artificial organism generating superorganism will
join the searching is determined at the end of a random process. The parameters
of DS algorithm are p1, p2, stop over site production mechanism and scale factor.
These parameters effect the convergence speed of DS for calculating the class cen-
ters. p1 and p2 control the mutation variable: p1 is used to determine the type of
mutation strategy randomly and p2 defines the variation for the mutation strategy.
The experimental tests confirm that the optimum value for p1 and p2 was 0.3×rand
[8].

Stop over site production mechanism determines the search direction of DS
algorithm: Elitist DS focuses on the best solution in each generation, Bijective DS
searches randomly all over the solution space; Surjective DS partially focuses on
the best solution. As given in Experimental study-II section, Bijective DS gives
the best results for all datasets.

Scale factor is a parameter which is updated according to the type of the random
number generator in each generator and aims to accelerate the convergence speed
by searching solution space by multiplying with mutation variable. Although there
are 6 different scale factor production mechanisms, the tests show that function of
R = 1/normrnd(0, 5) gives the best results for all data sets.

4. Datasets, Experimental Results and Discussions

In this paper, both SAR (Bern and Ottawa dataset) and optic (Sardinia and Mex-
ico dataset) images are used. All datasets were downloaded from Pudn website
(Accessed 12 September 2013). In order to remove the speckle noise, SAR images
were filtered by the Enhanced Lee Filter (5 × 5 windows). The fourth band of
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the multispectral images was selected for change detection process because of the
reflectance characteristics of water, land and vegetation objects [13]. Moreover, a
ground truth map was employed to calculate the performance [3-5, 10, 21]. The
measures below were used for quantitative analysis of developed approach:

– False Alarm (FA): Number of unchanged pixels identified as changed pixels.

– Missed Alarm (MA): Number of changed pixels identified as unchanged pixels.

– Total Error (TE): Total number of incorrect categorized, which is sum of FA
and MA.

– Total Error Rate (TER): Ratio of sum of FA and MA to number of image
pixels (PN). (TER = (FA+MA)/PN×100)

5. Experimental Study-I

In this section, Sardinia (Landsat 5 TM) dataset and Bern dataset were used.
Sardinia image set belongs to Mulargia Lake in Sardinia Island from 1995 and
1996 years. In Sardinia data, the water level of Mulargia Lake increased between
two dates and its nearby sites were flooded. The image sizes are 300× 412 pixels.
Because the histograms of multi-temporal Landsat 5 images are very similar to each
other, any radiometric correction was not applied. Sardinia dataset and ground
truth image are shown in Fig. 1. The SAR image set is a C-band ERS-2 dataset
of Bern, Switzerland obtained by European Remote Sensing (ERS)-2 satellite in
April and May in 1999. In Bern data, The Aare River overflowed and submerged
the partial part of Bern city. The image sizes are 301 × 301 pixels. The filtered
Bern dataset and ground truth change detection map is shown in Fig. 2.

In the application of Sardinia Landsat 5 image data, PCA-DS approach was
compared with HCM, EM+MRF, PCA-KMeans, FCM, SA-HCM, G-HCM and G-
FCM methods. Except PCA-K Means, results of the other methods were taken
from the original papers cited in Tab. I. Thus, the efficiency of the PCA-DS ap-
proach was analyzed for optic images. The visual results and error values obtained
from ground truth map data are given in Fig. 3 and Tab. I, respectively. As seen
from Tab. I, PCA-DS approach yielded the best change detection accuracy in all

Fig. 1 Multitemporal Landsat 5 TM images of Mulargia (Band 4): (a) September
1995, (b) September 1996, (c) Ground truth.

147



Neural Network World 2/2016, 141–154

Fig. 2 Multitemporal SAR Images of Bern: (a) April 1999, (b) May 1999, (c)
Ground truth.

Fig. 3 Change detection result of Sardinia data set, (a) PCA-DS approach,
(b)Error Map (False and Missed Alarms) of PCA-DS, (c) Ground truth.

False Missed Total Total
Change Detection Method Alarm Alarm Error Error

Rate

HCM [9] 275 4133 4408 3.56
EM+MRF(β = 1.7) [19] 3856 289 4145 3.35
SA-HCM [9] 425 2727 3152 2.55
G-HCM [9] 3006 132 3138 2.53
FCM [9] 494 2246 2740 2.21
G-FCM [9] 627 1983 2610 2.11
PCA-Kmeans Based [5] 1603 832 2435 1.97
Proposed Approach 744 1405 2159 1.73

Tab. I The quantitative results of Sardinia Landsat 5 TM image dataset.

methods. These results were obtained from DS with Bijective stop-over site pro-
duction mechanism. In this mechanism, the scale factor is an inverse random num-
ber coming from a normal distribution with 0 mean and standard deviation of 5.
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Population and generation number values were 10 and 500, respectively. These pa-
rameters were also used for SAR application. However, PCA-DS approach yielded
better results than other methods for Sardinia dataset.

In the application of ERS-2 SAR image data of Bern, PCA-DS approach was
compared with PCA-KMeans, FCM, FLICM and RFLICM methods. Except PCA-
KMeans, the results of other the methods were taken from the original papers cited
in Tab. II. Quantitative change detection results are listed in Tab. II. As seen from
Fig. 4 and Tab. II, PCA-DS approach could generate quite successful results, i.e.
except RFLICM method, PCA-DS outperforms other change detection methods
for SAR data.

Fig. 4 Change detection result of Bern data set. (a) Proposed approach, b) Error
Map (False and Missed Alarms) of PCA-DS, (c) Ground truth.

False Missed Total Total
Change Detection Method Alarm Alarm Error Error

Rate

FCM [11] 507 61 568 0.626
FLICM [11] 137 169 306 0.337
PCA-Kmeans Based [5] 146 158 304 0.335
RFLICM [11] 133 159 292 0.322
Proposed Approach 160 133 293 0.323

Tab. II The quantitative change detection results of Bern dataset.

6. Experimental Study-II

In this section, Mexico and Ottawa image set was used for experimental studies.
Also proposed approach was examined in point of DS parameters in this exper-
imental study. The Ottawa image set is two SAR images (290x350 pixels) over
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Ottawa acquired by the Radarsat SAR sensor at Ottawa, Canada in July 1997 and
August 1997. Ottawa data consists of before and after images of flood occurred in
1997 by Red River. The Mexico data set belongs to an area in Mexico acquired
by Landsat 7 ETM+ from April 2000 and 2002. In Mexico data, the fire occurred
between two dates destroyed the vegetation in a wide region and its environmental
effect was imaged in 2002.

In the applications of Ottawa and Mexico image sets, PCA-DS approach was
compared with PCA-KMeans which can generate good results for both optic and
SAR images. Quantitative change detection results and computation times are
listed in Tab. III. As seen from Tab. III and Fig. 5 and 6, proposed approach
yielded better results for Ottawa and Mexico image sets. From a computational
burden point of view, PCA-DS approach is more complex and certainly slower
PCA-Kmeans method because of clustering phase takes longer for all applications
since DS is not a built-in function as Kmeans in Matlab as seen in Tab. III.

Change Detection False Missed Total Total Comp.
Method Alarm Alarm Error Error Rate Time [s]

Ottawa PCA-Kmeans [5] 583 1901 2484 0.024 0.7
Image set PCA-DS 856 1574 2430 0.023 26.68
Mexico PCA-Kmeans [5] 1024 3662 4686 0.018 1.38

Image set PCA-DS 1589 2428 4017 0.015 74.76

Tab. III The quantitative results of Ottawa and Mexico dataset.

Because of Differential Search Algorithm’s and dataset structure; accuracy can
vary depending on stop-over site mechanism and scale factor. To examine ef-
fectiveness of stop-over site producing mechanism and scale factor, PCA-DS ap-
proach was run with Ottawa image set with each mechanism and scale factor
and best results are shown in Tab. IV and Tab. V (Population and generation
number values are 10 and 200, respectively.). In this study, the best accuracy
for all datasets was obtained by Bijective DS for stop-over site mechanism and
R = 1/normrand(0, 5) for scale factor. Tab. V illustrates effect of different scale
factors: R = lognrnd(rand, 5 × rand) returns an array of random numbers gener-
ated from the lognormal distribution with rand mean and standard deviation of

Stop-over Site Total Total
Producing Mechanism Error Error Rate

Surjective 3339 0.033
Elitist 3274 0.032
Bijective 2430 0.023

Tab. IV The quantitative results of Ottawa dataset in point of stop-over site pro-
ducing mechanism.
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Fig. 5 Multitemporal Radarsat images of Mexico: (a) April 2000, (b)May 2002,
(c) Result of PCA-DS Approach, (d) Error Map (False and Missed Alarms) of
PCA-DS (e) Result of PCA-Kmeans Approach, (f) Ground Truth.

Fig. 6 Multitemporal Radarsat images of Ottawa: (a) July 1997, (b) August 1997,
(c) Result of PCA-DS Approach,(d) Error Map(False and Missed Alarms) of PCA-
DS (e) Result of PCA-Kmeans Approach, (f) Ground Truth.
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Scale factor Total Error Total Error Rate

R = lognrnd(rand, 5× rand) 4424 0.043
R = 1/gamrnd(1, 0.5) 3893 0.038
R = 1/normrnd(0.5, 0.5) 3675 0.036
R = 4× randg 3225 0.031
R = 4× randn 2737 0.027
R = 1/normrnd(0, 5) 2430 0.023

Tab. V The quantitative results of Ottawa dataset in point of scale factor.

5×rand; R = gamrnd(1, 0.5) generates random numbers from the gamma distribu-
tion with shape parameters in 1 and scale parameters in 0.5; randg returns a scalar
random value chosen from a gamma distribution with unit scale and shape; randn
returns a pseudorandom scalar drawn from the standard normal distribution; rand
returns a pseudorandom scalar drawn from the standard uniform distribution on
the open interval (0,1) [8].

7. Conclusions

The clustering, i.e. unsupervised classification, has an important role in change
detection analysis of remotely sensed images as well as computer vision applica-
tions. Since any priori thematic information does not exist, different approaches in
clustering produce different clusters. So, in this study a new artificial intelligence
optimization method, Differential Search, was proposed for clustering in change de-
tection analysis of both optic and SAR remote sensing images. DS algorithm was
blended with an automatic PCA based unsupervised change detection method, i.e.
PCA-DS approach. The performance of PCA-DS approach was compared with
a number of change detection techniques. The applications with Sardinia, Bern,
Ottawa and Mexico data sets showed that the blending with DS based clustering
made the approach more effective and successful. Also proposed approach was
examined in point of stop-over site production mechanism and scale factors. The
optimum values of DS parameters for both optical and Radar data sets were de-
termined and reported in the study. DS relatively needs less parameters and it is
a robust algorithm. With the help of quantitative results, it can be concluded that
DS algorithm had a very promising potential as a clustering method in PCA based
change detection.
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