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Abstract: This work is motivated by the interest in feature selection that greatly
affects the detection accuracy of a classifier. The goals of this paper are (i) identify-
ing optimal feature subset using a novel wrapper based feature selection algorithm
called Shapley Value Embedded Genetic Algorithm (SVEGA), (ii) showing the
improvement in the detection accuracy of the Artificial Neural Network (ANN)
classifier with the optimal features selected, (iii) evaluating the performance of
proposed SVEGA-ANN model on the medical datasets. The medical diagnosis
system has been built using a wrapper based feature selection algorithm that at-
tempts to maximize the specificity and sensitivity (in turn the accuracy) as well as
by employing an ANN for classification. Two memetic operators namely “include”
and “remove” features (or genes) are introduced to realize the genetic algorithm
(GA) solution. The use of GA for feature selection facilitates quick improvement
in the solution through a fine tune search. An extensive experimental evaluation of
the proposed SVEGA-ANN method on 26 benchmark datasets from UCI Machine
Learning repository and Kent ridge repository, with three conventional classifiers,
outperforms state-of-the-art systems in terms of classification accuracy, number of
selected features and running time.
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1. Introduction

Data mining application in medicine has proved to be a successful strategy in the
areas of medical services including prediction of usefulness of surgical procedures,
clinical tests, medication procedures , and the discovery of associations among
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clinical and diagnosis data [21]. The applicability of data mining for healthcare
applications is increasingly gaining importance. The availability of diverse-natured
medical data for diagnosis and prognosis and of pervasive data mining techniques
to process these data offer medical data mining a distinctive place to truly assist
and impact patient care.

The unique characteristics of medical databases that pose challenges for data
mining are the privacy-sensitive, heterogeneous, and voluminous data. These data
may have valuable information which awaits extraction. The required knowledge
is found to be encapsulated in/as various regularities and patterns that may not
be apparent in the raw data. Extracting such knowledge has proved to be priceless
for future medical decision making. Feature selection is crucial for analysing the
various dimensional bio-medical data. It is difficult for the biologists or doctors
to examine the whole feature-space obtained through clinical laboratories at one
time. Machine learning algorithms recommend that only few of these features are
significant for the disease diagnosis. These recommended significant features alone
are sufficient to help doctors or experts, understand the biomedical mechanism
better and deeper along with cause of disease; the faster and accurate diagnosis
can help the doctors to provide the best treatment, so that the infected patients
recover as early as possible.

Feature selection methods [9, 23] tend to identify the features which are the most
relevant for classification and can be broadly categorized as either subset selection
methods or ranking methods. The former type returns a subset of the original set of
features which are considered to be the most important for classification. Ranking
methods sort the features according to their usefulness in the classification task.
Most of the classifiers are modeled as per the ranking strategy that selects the final
feature subset, based on ad-hoc manner. Feature selection, as a pre-processing step
to machine learning, is prominent and effective in dimensionality reduction, by (i)
removing irrelevant and redundant data, (ii) increasing learning accuracy, and (iii)
improving result comprehensibility.

Feature selection algorithms generally fall into two broad categories, the filter
model and the wrapper model. The filter model depends on general character-
istics of the training data to select some features without involving any learning
algorithm. The filter model assesses the relevance of features from data alone,
independent of classifiers, using measures like distance, information, dependency
(correlation), and consistency. The filter method is further classified into Fea-
ture Subset Selection (FSS) and Feature Ranking (FR) methods. The wrapper
model needs one predetermined learning algorithm for classification and uses its
performance to evaluate and determine the features to be selected. For each of
the generated new subset of features, the wrapper model is supposed to learn the
hypothesis of a classifier. It has a propensity to find better features suited to the
predetermined learning algorithm resulting in superior learning performance, but
it also consumes more computation time and is economically expensive than the
filter model. Whenever dealing with the large number of features, the filter model
is usually chosen due to its high accuracy and less computational cost [7]. The
hybrid model takes the advantages of the two previous models, and uses an inde-
pendent measure to identify the best subsets for a given cardinality and applies
a mining algorithm to select the best subset among all subsets across different
cardinalities [15].
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In this direction, we have attempted to ensemble of a filter based model with
another wrapper based model, i.e., Shapley values embedded into genetic algorithm
(GA). The ensemble is brought about in a fashion so as to reduce the number of
features as well as enhance the classification accuracy.

The objective of this research work is aimed at selecting more significant and
meaningful features from the available raw medical dataset so as to help the physi-
cian to arrive at an accurate diagnosis. Aggressive dimensionality reduction is
executed with the motive of increasing the prediction accuracy. The features are
subjected to a genetic evolution process within which they undergo the memetic
operations namely include and remove. This process is coupled with Shapley Value
Analysis that finds out the contribution made by a feature towards the classification
process. Eventually, the optimal feature subset that is with minimum cardinality
and maximum accuracy is selected.

2. Related work

Numerous works have been carried out in the field of dimensionality reduction
for medical diagnosis. The following section summarises them, highlighting the
strengths and weaknesses of each method.

John Q. Gan et al. [6] proposed the Filter-Dominating Hybrid Sequential For-
ward Feature Selection (FDHSFFS) algorithm for high dimensional feature subset
selection. This method proved to be fast but demanded huge computational com-
plexity. Another variant of the SFFS method called Improved F-score and Sequen-
tial Forward Search (IFSFS) was proposed by Juanying Xie et al [29] for feature
selection to diagnose erythemato-squamous disease. This method was designed to
improve the F-score of the classifier and measured the discrimination among more
than two sets of real numbers instead of measuring between only two sets of real
numbers.

Another category of feature selection methods used mutual information score.
La Vinh et al. [27] proposed a novel feature selection method based on the nor-
malization of the well-known mutual information measurement to estimate the
potential of the features.

An incremental learning algorithm, in which the most informative features are
learnt at each step, is proposed by Ruckstieb et al. [19] and is called as Sequential
Online Feature Selection (SOFS). Another Scatter Search-based approach coupled
with Decision Trees (SS+DT) is proposed by Shih-Wei Lin et al. [13]. The method
acquired optimal parameter settings and selected the beneficial subset of features
that resulted in better classification. In [12] Irena Koprinska empirically evaluated
feature selection methods for classification of Brain-Computer Interface (BCI) data.
A new feature selection method based on rough set theory has been proposed by
Sushmita Paul et al. [18]. The proposed method identified discriminative and
significant genes from high-dimensional microarray gene expression data sets.

Correlation Based Filter [4, 14] is another strategy for feature selection. En-
semble methods have also been proposed. Monirul Kabir et al. [16] presented
a new Hybrid Genetic Algorithm (HGA) for Feature Selection (FS), called as
HGAFS. It employed a new local search operation that is devised and embed-
ded in HGA to fine-tune the search in feature selection process. Sasikala et al. [21]
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proposed a multi-level feature selection process named ‘Multi-Filtration Feature
Selection (MFFS)’ which adjusted the Principal Component Analysis (PCA) pa-
rameter named “variance coverage” and recommended the classifier model with
the value at which maximum classification accuracy is obtained for 22 benchmark
medical datasets.

Hybrid schemes that combine wrapper-based and filter-based approaches are
also in the literature. [2, 24] are two such schemes where the features are ranked
and then selected so as to offer superior classification accuracy. In the first stage,
the features are ranked by the relief algorithm of filter model. In the second stage,
the features that exceed the given threshold value are chosen for further processing.
They analysed and used shapley values to evaluate the contribution of features to
the classification task in the ranked feature subset. J. Sanchez-Monedero et al.
[20] investigated the suitability of Extreme Learning Machines (ELM) for resolving
bio-informatics and biomedical classification problems.

Genetic Algorithm (GA), one of the universally used contemporary stochastic
techniques for global search, has been well known for its ability to generate high
quality solutions in a given tractable time even for intricate problems. It has been
applied for feature selection process in numerous applications and proved its worth
[25]. Contrarily, owing to the intrinsic nature of the GA evolution process, it
consumes long time to find the local optimum point of convergence in the solution
space and unfortunately sometimes could not locate the optimal solution point
with adequate precision. A recommended way of alleviating the local optimal
problem is to ensemble GA with few memetic operations (also called as local search
operations).

Another upcoming approach to feature selection is the use of game theory. The
major benefit of the game theory approach is the facility to calculate a numerical
indicator, i.e. a relevance index, which denotes the relevance of each feature under
a specific condition. It can be used to analyse performance of the other features
under the same condition. Further, the game theory approach developed presents
a new characterization for the shapley value, i.e., it is more context sensitive and
thus justifies its relevance for ranking/indexing the features.

After reviewing the works on feature selection for medical applications, it is
observed that most of the existing methods suffer from the following problems:
(1) depending on the complexity of the search method, the iterations of evalua-
tions are too large; (2) they rely on a univariate ranking that does not take into
account interaction among the variables already included in the selected subset
and the remaining ones. Moreover, a method that produces the maximum accu-
racy employs more number of features and hence more running time is involved
in the construction of the respective classifier. It is also true that a method with
the fewest features produces inferior detection accuracy. A holistic and universal
method that achieves the maximum classification accuracy with fewest features
possible is still an open research problem. This paper makes an attempt to design
such a feature selection sequence, called SVEGA that achieves a good trade-off
between the number of features selected and detection accuracy.

This paper is organised as follows: Section 3 describes the proposed method and
the algorithm. Experimental results and discussions are presented in Section 4. The
paper is concluded with a mention on the future scope of this work.
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3. System and methodology

3.1 Shapley values

Shapley Value Analysis (SVA) has been proved to be a promising strategy for
feature selection process. Shapley Value Analysis [17, 11] is a game theory based
technique for causal function localization that addresses the issue in describing and
calculating the contributions made by the interactions among the group of elements
in a data set with multiple features and their corresponding performance scores.

Consider a set of players denoted as N'. Let N/ = |N| be the number of players
in this set. Any non-empty set S C N is referred as a coalition of players. Fach
coalition has a worth function denoted as v(S), which calculates the total profit
produced by the service when all the players in this coalition S are active. The
v(S) is given in Eq. (1) as follows:

u(S) =Y Pi(9), (1)

i€S

where P;(S) represent the profit of player ¢ in the coalition S.

Shapley in [3, 5] presented the value as an operator that assigns an expected
marginal contribution to each player in the game with respect to a uniform dis-
tribution over the set of all permutations on the set of players. Specifically, let
][] be a permutation (or an order) on the set of players, i.e., a mapping exists as
one-to-one function from N onto N, and let us imagine the players appearing one
by one to collect their payoff according to the order [[. The marginal contribution
A; of player i to a coalition S is given in Eq. (2) as follows:

Ai(s) = v(s U {i}) — v(s), (2)

where v denotes the function which associates with every non-empty subset S of
F, a real number v(s) (the value of S) with v({p}) = 0. The unbiased estimator
for the shapley value, for a player i is given by the mean of marginal contributions
to all possible coalitions of players in N, is given in Eq. (3) as follows:

Bi(0) = = 3 A(Si () g
zel]

where [] denotes set of permutations over N and S;(7) is the set of players from =
that appear before player i in the permutation.

The feature selection process can be analogously seen as a coalition game where
many features cooperate among themselves to achieve optimal performance in a
particular task like classification, in our case. Here, the set IV represents all the
features, n represents the individual features and v(S) stands for the accuracy
metric obtained by the classifier using a subset of features S. Evaluation of features
using the shapley value involves testing on all possible combinations of subsets of
features.
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3.2 GA in feature selection
3.2.1 Chromosome encoding

For a GA to search the optimal features in the solution space efficiently, both the
chromosome encoding and design of fitness function has to be executed carefully.
As far as the bio medical datasets are concerned, a natural encoding prevails over
the feature space. Hence a fixed-length binary string encoding in which the value
of the i-th gene {0,1} indicates whether or not the i-th feature (i = 1 to ‘n’,
where ‘n’ represents the total number of features) from the overall feature set is
included in the specified feature subset. Thus, each individual chromosome in the
GA population is of fixed length, i.e., n-bit binary string, representing the respective
subset of the given feature set (a gene value ‘1’ denotes that the corresponding
feature is selected and ‘0’ denotes that the corresponding feature is omitted. This
encoding is preferred and advantageous since it is a standard representation and
the basic GA model can be used as such, without any further modification.

3.2.2 Fitness function

Each chromosome of the current GA population denotes a competing feature subset
which has to be evaluated by their fitness so as to provide input to the ANN
classifier model. This is achieved by calling on the classifier with the particular
feature subset and the medical training dataset (which includes only the selected
features corresponding to that feature subset). The ANN classifier constructed
is then evaluated for its performance on a set of unseen test data. Hence this
work is aimed to enhance the detection accuracy of the ANN classifier model that
is ultimately achieved by maximizing the sensitivity and specificity of the ANN
classifier. Consequently this knowledge is imparted into the model via the GA
fitness function. The fitness function is formulated in Eq. (4) as follows:

Fitness(¢) = Max(Obj_Fun(SF.)), (4)

where SF. denotes the Selected Feature subset encoded by a given chromosome
¢, and the objective function for feature selection Obj_Fun(SF.) calculates the
contribution of the given feature subset SF. in Eq. (5) as follows:

Obj_Fun(SF.) = a(1/7) + B(Sensitivity(SF.)) + 7 (Specificity (SF.)),  (5)

where 7 = No. of ones in the SF,. The sensitivity value attained with the selected
feature subset encoded by a given chromosome ‘¢’ is denoted as
TP
Sensitivity (SF;) = ———. 6
ensitivity(SF,.) TP 1 TN (6)
Also the specificity value attained with the selected feature subset encoded by a
given chromosome ‘c’ is denoted as
TN
Specificity(SF,.) = ———— 7
pecificity(SF.) = . (7)
where TP and TN are the number of instances which are correctly classified in
‘healthy’ and ‘affected’ classes respectively. Likewise FP and FN are the number

180



Sasikala S., Appavu S., Geetha S.: Improving detection. ..

of instances which are incorrectly classified in ‘healthy’ and ‘affected’ classes re-
spectively. We use the number of features and classification accuracy, represented
through specificity and sensitivity, as the metrics in our Obj_Fun (SF.). The for-
mer metric has to be minimized and the latter one needs to be minimized. i.e.
minimum number of features and maximum accuracy. A higher value of specificity
and sensitivity leads to improved detection accuracy. Further, for 7, the number
of one’s present in the chromosome, a lesser Tvalue is preferred over a higher 7.
So, the fitness function has been designed to include (1/7) as its component, which
has to be maximized. Now all the components of fitness function have a common
goal, i.e., to be maximized. Weight values are distributed among the three com-
ponents - number of features, specificity, and sensitivity like a = 0.4, § = 0.3, and
~v = 0.3. If two subsets attain the same performance, while having different number
of features, then the chromosome with smaller number of selected features is fa-
vored with higher survival priority and is carried over to the next generation. This
strategy is preferred in a feature classification problem, where a subset of features
with fewer features giving higher classification accuracy is better over a subset of
features with more features giving lower or equal classification accuracy.

3.2.3 Genetic operators

The genetic operators like crossover, mutation and selection applied are that of
the general simple GA’s i.e., ranking selection, restrictive crossover and mutation
with elitism. In each of the GA generation, the elite chromosome, i.e., the chromo-
some having the best fitness value is selected and subjected to shapley value based
memetic operators as a part of the Lamarckian learning process. The Lamarck-
ian learning [22] brings improvement in the result by placing the locally improved
individual genes back into the population pool so that they acquire the reproduc-
tive opportunities. We define two memetic operators in the SVEGA, namely an
‘include’ operator which includes/adds a feature to the elite chromosome, and a
‘remove’ operator which removes/omits the existing features from the elite chromo-
some. The key issue is deciding which features to include and which ones to omit.
Preferably, the features to be removed will be the ones which provide the least
contribution when considered as a whole set and the ones which provide highest
contribution must be included into the solution feature subset. This characteristic
has to be brought in the existing GA paradigm. This requirement is fulfilled by
the use of shapley value concept. For a given chromosome encoding ¢ of a selected
subset, let @ and R be the sets of selected and omitted features encoded in c,
respectively. The function of the ‘include’ operator is to identify and select the
feature with maximum shapley score when measured in coalition, from set R and
to push it to the set ). On the other hand, the ‘remove’ operator serves to identify
and select the features with minimum contribution score and deletes from set @
and moves that into the set R. The pseudo code of these memetic operators is
outlined in Algorithm 1 and Algorithm 2.

A notable point is that the shapley measure for each feature (i.e., step (1) in
Algorithm 1 and Algorithm 2) needs to be calculated only once. Then this feature
ranking information is stored for use inside include and remove operators, for fine
tuning the entire search of solution space by the GA process.
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Algorithm 1 Memetic operator -‘include’ Algorithm.
BEGIN
Rank the features in R in decreasing order of their Shapley values. Select
a feature R; in R by linear ranking selection in such a way that a feature
with larger shapley value of a feature in R is more likely to be selected.
Add R; to Q.
END

Algorithm 2 Memetic operator — ‘remove’ Algorithm.
BEGIN
Rank the features in Q in decreasing order of Shapley value. Select a feature
Q; in Q by linear ranking selection in such a way that a feature with larger
Shapley value of a feature in Q is more likely to be selected. Eliminate all
the features in Q — {Q;}.
END

The computational complexity of these two memetic operators can be quantified
according to the search range L, which specifies the upper bound for both ‘include’
and ‘remove’. Therefore, with ‘L’ possible include operations and ‘L’ possible
remove operations, we get a total of ‘L?’ possible combinations of include and
remove operations executed on a chromosome. The ‘L?’ combinations of ‘include’
and ‘remove’ are executed on the candidate chromosome in a random sequence and
once an improvement is seen either in the fitness value or reduction is seen in the
number of selected features without decline in the fitness value, the procedure is
stopped.

The pseudo code of the shapley value embedded memetic operation executed
on the elite chromosome of each of the GA generation is outlined in Algorithm 3.
After executing the above given Lamarckian learning process over the elite chromo-
some, the GA population then goes through the typical evolutionary operations like

Algorithm 3 Algorithm for Shapley value based Memetic operation.

BEGIN

Select the elite chromosome ¢, to undergo memetic operations.

for j =1to L? do
Generate a unique random pair of values {i,r} where 0 <i,r < L.
Apply ‘i’ times include on the elite chromosome ¢, and generate a new chro-
mosome Ces.
Apply ‘r’ times remove on c.s and generate a new chromosome c.
Calculate the fitness of new modified chromosome ¢~ based on Obj_Fun(SF,).
if ¢, is better than ¢, either on fitness value or the number of features. then

Replace the genotype ¢, with c.» and stop applying the memetic operation.

end if

end for

END
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linear ranking selection, restrictive crossover, and mutation operators with elitism.
Since we had a prior knowledge on the optimum number of features for certain
datasets, we allowed the integration of such information into our proposed SVEGA
by limiting the number of ‘1’ bits in each of the chromosome to a maximum of
‘m’ (‘'m’ is safely chosen to greater than the optimum number of features) during
the evolutionary search process. To facilitate this aspect, we employed restrictive
crossover operator and mutation rather than the conventional evolutionary opera-
tors of GA, so that the number of '1’ bits occurring in each chromosome does not
break the constraint imposed by the prior knowledge on ‘m’ during the search.

3.2.4 Proposed SVEGA algorithm for feature selection

The algorithm of the entire model is given below in Algorithm 4.

Algorithm 4 Shapley value embedded genetic Algorithm (SVEGA) for feature
selection.
Input: Encoded n-bit binary string (where n is the number of features), num-
ber of generations gencount, population size (PS), crossover probability (P.),
mutation probability (P,).
Output: A set of selected features, that has lower cardinality and yields higher
sensitivity and specificity values.
BEGIN
Randomly generate an initial population, which denoted SF, of size PS encoded
with n-bit binary string. Each gene value can be ‘0’ or ‘1’. (A gene value of
‘1’ means, the feature at that position is selected and a value of ‘0’ means, the
feature at that position is omitted).
Initialize « = 0.4, 8 = 0.3 and  =0.3, M (total number of records in the training
set), Pc and Pm.
while (not Current_fitness= Previous_fitness <0.0001 or gencount is not reached)
do
Apply restrictive cross over and mutation operator to the chromosome at the
specified probability Pc and Pm.
Evaluate the fitness value of all chromosomes in the population according to
Obj Fun(SF.) = a(1/7) + B(Sensitivity(SF.)) + v(Specificity (SF.))
where 7 =No. of ones in the SF,.
Select the elite chromosome ¢, and subject it to Shapley value based memetic
operations.
Replace the elite chromosome c. with improved new chromosome c.» by
Lamarckian-Learning process.
end while
END

3.3 Classifiers and its performance metric

In order to evaluate the efficiency of the proposed SVEGA method, the selected
features by this method are evaluated using three successful classifiers such as Naive
Bayes (NB), J48 and Artificial Neural Network (ANN) [1].The classification models
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are evaluated for performance metrics including accuracy, number of features, and
CPU running time.

A binary classifier model has two discrete outputs — positive class and nega-
tive class. The performance metrics of the classifier is calculated by classification

accuracy as
TP+ TN

TP+FP+TN+ FN'

Accuracy =

4. Experimental results and discussion

4.1 Biomedical datasets

The proposed approach has been evaluated on 26 biomedical datasets (both syn-
thetic and microarray) from the UCI machine learning repository [8] and Kentridge
repository [10]. These datasets are diverse in nature i.e. they cover small, medium
and high dimensional dataset. Tab. I summarises the 26 biomedical datasets. The
dataset categorisation is done like: 2-30 features as small dimensional datasets,
31-1000 features as medium dimensional datasets and >1000 features as high di-
mensional datasets. The generalisation ability of the proposed method is tested and
proved by executing on all these categories of datasets. The proposed algorithm
produces equally good classification accuracy on all these datasets.

4.2 Experimental set-up

The tests are carried out in a high end system with Intel i7, 1TB RAM, DDR3,
500GB hard drive on a Windows XP operating system. The proposed algorithm is
implemented in WEKA environment [28]. WEKA is acknowledged as a landmark
system in the field of machine learning and data mining. It has attained widespread
acceptance among the academia and industry community, and has become a widely
used tool for data mining research. Another flavour that is highly encouraging is
its “Open Source” nature. The free access given to the source code has enabled
us to develop and customize the modules for our work. The stepwise approach is
as follows. The input to the system is given in the Attribute-Relation File Format
(ARFF). The proposed algorithm is executed and the selected optimal features are
obtained as the output. A result is created in WEKA using the name specified in
\@relation”. The attributes specified under \@attribute” and instances specified
under \@data” are retrieved from the ARFF file and then they are added to the
created table. 10-fold cross validation is performed for all the classifiers. Fifty
runs were done for each classification algorithm on each dataset with features se-
lected by SVEGA method. In each run, the dataset is split in the ratio of 80:20,
into training and testing set. Ten runs of genetic algorithm were executed. As a
whole, the execution of the ensemble SVEGA and classifier model is an iterative
procedure (SVEGA-ANN procedure). Each run results in a complete diagnosis
model. After 10 runs, the classifier model with the highest Sensitivity and Speci-
ficity and has minimum number of features is identified to be the best classifier
model. The following parameter setting is adapted in our SVEGA: Population size
(PS): 50, Number of generations gencount: 100, Probability of crossover (P.): 0.6,
Probability of mutation (Py,): 0.005.
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The memetic operation range ‘L’ in SVEGA is empirically set to 4 (this value
gave the best results on all system constraints). These configurations are con-
sistently maintained in our experiments on all the 26 synthetic and microarray
datasets.

4.3 Test results and discussion

The comparison of the proposed SVEGA method against state-of-the-art feature
selection systems [3, 26, 19] has been carried out with conventional classifiers using
the above specified objectives as the main metrics. The three main objectives such
as number of features selected, classifier accuracy on the selected feature subset and
the running time has been recorded in Tab. II. It could be observed that SVEGA
outperforms other methods. Tab. III shows the precision, specificity, sensitivity
and F-measure values obtained using features selected by the proposed system.

Empirical results on few representative datasets are shown in Tab. II and
Tab. III while the complete results are shown under Appendix (continuation of
Tab. IT and Tab. III).

Based on the results obtained in Tab. IV and Tab. V, we conclude that the ANN
produces comparably best results than the other conventional methods in terms of
accuracy. These results show that by using the proposed SVEGA feature selector,
high detection accuracies can be achieved with relatively small number of features.
Fig. 1 shows the number of features selected by the proposed SVEGA and other
existing systems on log, scale. From the graph, it has been observed that SVEGA
method outperforms the other existing methods by selecting minimum number of
features possible.
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Fig. 1 Features selected (logy scale) by the proposed SVEGA method and other
existing methods on Bio-Medical dataset.

An increase of 93.12% from 82.37% is obtained on NB classifier, 92.02% from
78.38% on J48 and 93.88% from 82.42% on ANN models. SVEGA coupled with
ANN achieves the maximum accuracy. However this advantage comes at the cost
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Classifiers Raw Bu et al. Feng et al. Senthamarai Proposed
Data  (2009) (2008) et al. (2010) SVEGA System
Naive Bayes (NB) 82.37 82.63 85.86 89.22 93.12
J48 (C4.5) 78.38 82.74 84.64 88.58 92.02
Artificial Neural 82.42  85.7 87.97 91.82 93.88

Network (ANN)

Tab. IV Classifier performance on reduced set of features by SVEGA feature se-
lector.

Classifiers Raw Bu et al. Feng et al. Senthamarai Proposed
Data  (2009) (2008) et al. (2010) SVEGA System
Naive Bayes (NB) 148.4 147.4 125.49 127.83 108.76
J48 (C4.5) 152.8 139.2 137.51 149.17 126.94
Artificial Neural 161.2 141.5 137.71 129.36 118

Network (ANN)

Tab. V Average Running Time (sec.) of Conventional Classifiers on reduced set
of features.

of higher computational cost. Tab. V displays the average running time obtained
on the test dataset over 10 runs of executing SVEGA.It could be observed that
ANN consumes a bit higher time than Naive Bayes.

100 4

95 -

®Naive Bayes (NB)
=
© 90
g ®J48- Decision Tree (DT)
2 85
il Artificial Neural Network
E] ANN
S 80 (ANN)
<

75 A

70 -
RawData  Buetal(2011) Fengetal. Senthamaraiet Proposed

(2008) al. (2010) SVEGA

System

Fig. 2 Average Accuracy obtained by the Classifier models.

These results confirm that the proposed methodology is the best fit for improv-

ing classification accuracy through the process of feature selection for biomedical
datasets.
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#Raw Data
B Bu et al. 2011)
I Feng et al. (2008)
u Senthamarai et al. (2010)
®Proposed SVEGA System

Running Time in Seconds

Naive Bayes (NB)  J48- Decision Tree Artificial Neural
DdT) Network (ANN)

Fig. 3 Average Running Time consumed by the Classifier models.

5. Conclusion

This work proposes a feature selection strategy integrating GA and shapley value
that enhances classification accuracy of the ANN model. The system is superior
to the existing methods in two crucial perspectives such as reduction in the num-
ber of features and improvement in classification accuracy, precision, sensitivity,
speficity, etc. The proposed FS method SVEGA is evaluated with three already
existing systems using three successive classifiers. Experiments conducted on 26
medical datasets summarizes the characteristics of this proposed method with var-
ious performance metrics like accuracy, number of features selected and running
Time (sec). Precision, Sensitivity, Specificity, F-Measure has been observed that
the proposed system performs well even when the dataset has different number of
samples, features and classes. This justifies that the proposed features and learn-
ing paradigm SVEGA-ANN is a promising strategy to be applied on any data
classification problem.
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